
Nonminimal coupling for the gravitational and electromagnetic fields: Black hole solutions
and solitons

Alexander B. Balakin*
Kazan State University, Kremlevskaya str., 18, 420008, Kazan, Russia

Vladimir V. Bochkarev†

Kazan State University, Kremlevskaya str., 18, 420008, Kazan, Russia
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Using a Lagrangian formalism, a three-parameter nonminimal Einstein-Maxwell theory is established.
The three parameters q1, q2, and q3 characterize the cross-terms in the Lagrangian, between the Maxwell
field and terms linear in the Ricci scalar, Ricci tensor, and Riemann tensor, respectively. Static spherically
symmetric equations are set up, and the three parameters are interrelated and chosen so that effectively the
system reduces to a one parameter only, q. Specific black hole and other type of one-parameter solutions
are studied. First, as a preparation, the Reissner-Nordström solution, with q1 � q2 � q3 � 0, is displayed.
Then, we search for solutions in which the electric field is regular everywhere as well as asymptotically
Coulombian, and the metric potentials are regular at the center as well as asymptotically flat. In this
context, the one-parameter model with q1 � �q, q2 � 2q, q3 � �q, called the Gauss-Bonnet model, is
analyzed in detail. The study is done through the solution of the Abel equation (the key equation), and the
dynamical system associated with the model. There is extra focus on an exact solution of the model and its
critical properties. Finally, an exactly integrable one-parameter model, with q1 � �q, q2 � q, q3 � 0, is
considered also in detail. A special submodel, in which the Fibonacci number appears naturally, of this
one-parameter model is shown, and the corresponding exact solution is presented. Interestingly enough, it
is a soliton of the theory, the Fibonacci soliton, without horizons and with a mild conical singularity at the
center.

DOI: 10.1103/PhysRevD.77.084013 PACS numbers: 04.40.Nr, 04.50.Kd, 04.70.Bw

I. INTRODUCTION

A natural and very general extension of the Einstein-
Maxwell Lagrangian yielding a general system of equa-
tions for a nonminimal coupling between the gravitational
and electromagnetic fields, with nonlinear terms, was set
up and studied in [1]. Within this general theory, a special
theory, worthy of discussion, arises when one restricts the
general Lagrangian to a Lagrangian that is Einstein-Hilbert
in the gravity term, quadratic in the Maxwell tensor, and
the couplings between the electromagnetism and the met-
ric are linear in the curvature terms. The motivations for
setting up such a theory are phenomenological, see, e.g.,
[2,3] for reviews and references. This theory has three
coupling constants q1, q2, and q3, which characterize the
cross-terms in the Lagrangian between the Maxwell field
Fij and terms linear in the Ricci scalar R, Ricci tensor Rik,
and Riemann tensor Rikmn, respectively. The coupling
constants q1, q2, and q3 have units of area, and are a priori
free parameters, which can acquire specific values in cer-
tain effective field theories. More specifically, the action

functional of the nonminimal theory linear in the curvature
is

 S �
Z
d4x

�������
�g
p

L; (1)

where g is the determinant of the spacetime metric gik, and
the Lagrangian of the theory is

 L �
1

4�

�
R
�
�

1

2
FmnFmn �

1

2
�ikmnFikFmn

�
: (2)

Here � � 2G, G being the gravitational constant and we
are putting the velocity of light c equal to one, Fik �
@iAk � @kAi is the Maxwell tensor, with Ak being the
electromagnetic vector potential, and Latin indexes are
spacetime indexes, running from 0 to 3. The tensor �ikmn

is the nonminimal susceptibility tensor given by
 

�ikmn �
q1R

2
�gimgkn � gingkm� �

q2

2
�Rimgkn � Ringkm

� Rkngim � Rkmgin� � q3R
ikmn; (3)

where q1, q2, and q3 are the mentioned phenomenological
parameters. The action and Lagrangian (1)–(3) describe
thus a three-parameter class of models, nonminimally
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coupled, and linear in the curvature [1–3]. Lagrangians of
this type have been used and studied by several authors.

The first and important example of a calculation of the
three couplings was based on one-loop corrections to
quantum electrodynamics in curved spacetime, a direct
and nonphenomenological approach considered by
Drummond and Hathrell [4]. This model is effectively
one-parameter since the coupling constants are connected
by the relations q1 � �5q, q2 � 13q, q3 � �2q. The
positive parameter q appears naturally in the theory, and
is constructed by using the fine structure constant �, and
the Compton wavelength of the electron �e, q � ��2

e

180� . In
these models it is useful to define a radius rq, an effective

radius related to the nonminimal interaction, through rq ����������
2jqj

p
. Thus, the corresponding effective radius for the

nonminimal interaction in this case, is the Drummond-
Hathrell radius rqDH, given by rqDH � �e

��������
90�

p
. In [5] one

also finds a quantum electrodynamics motivation for the
use of generalized Einstein-Maxwell equations.

Phenomenological models, i.e., models based on exter-
nal considerations to obtain the couplings, or parameters,
q1, q2, and q3, have also been considered. Prasanna [6,7]
wanting to understand how the strong equivalence princi-
ple can be weakly violated in the context of a nonminimal
modification of Maxwell electrodynamics, has shown that
q1 � q2 � 0, q3 � �q, q a free parameter, is a good
phenomenological model. Another type of requirement,
one with mathematical and physical motivations, is to
impose that the differential equations forming the non-
minimal Einstein-Maxwell system are of second order
(see, e.g., [8,9]). For instance, in [9], by imposing a
Kaluza-Klein reduction to four dimensions from a Gauss-
Bonnet model in five dimensions, thus guaranteeing sec-
ond order equations for the electric field potential Ai, and
metric gik, it was discussed a model in which q1 � q2 �
q3 � 0 and 2q1 � q2 � 0, i.e., with q1 � �q, q2 � 2q
and q3 � �q. So the extra nonminimal term is a kind of
Gauss-Bonnet term, and the model is called the Gauss-
Bonnet model. Yet another type of requirement, this time
purely mathematical, was suggested in [1]. The idea is
connected with the symmetries of the nonminimal suscep-
tibility tensor �ikmn [see Eq. (3)]. For instance, one can
recover the relations q1 � q2 � q3 � 0 and 2q1 � q2 � 0,
used in [9], by the ansatz that the nonminimal susceptibil-
ity tensor �ikmn is proportional to the double dual Riemann
tensor �R�ikmn, i.e., �ikmn � ��R�ikmn, for some � (see, [1]
for details and motivations). Analogously, one can use the
Weyl tensor Cikmn in the relation �ikmn � !Cikmn, for some
!, or the difference Rikmn � Cikmn instead of �R�ikmn, to
introduce some new linear relations between q1, q2, q3,
namely 3q1 � q2 � 0 and q2 � q3 � 0. Yet another type
of requirement is to choose the parameters so that one
obtains exact solutions. As we will see this will lead to a
model with q1 � q2 � q3 � 0 and q3 � 0, i.e., q1 � �q,
q2 � q, q3 � 0. Since this model is integrable we call it the

integrable model. A subcase of this has additional interest
and is called the Fibonacci soliton.

Up to now we have a theory defined through Eqs. (1)–
(3), with each chosen set of values for the parameters q1,
q2, and q3, giving a model. We have seen that the reduction
from three-parameter models to one-parameter models,
specified by the one-parameter q and the relations between
q1, q2, and q3, happens in several instances, either through
direct calculation, as in [4,5], or through phenomenologi-
cal and other considerations, as in [6–9] or [1] and here.
This certainly simplifies the analysis, and we will consider
this one-parameter type of models, in which q1, q2, and q3,
have a specified relation to the parameter q. For all these
models, one can pick an effective radius rq �

���������
2jqj

p
, as in

the Drummon-Hathrell case, which gives the range of the
nonminimal interaction between the gravitational and elec-
tric fields. Of course, rq can be set to zero, in the case the
world is pure Einstein-Maxwell, or otherwise can have a
given specified value. The radius rqDH defined above is a
candidate but in principle not the unique choice. Thus,
possible estimations of the parameter q, and so of rq,
from, for instance, astrophysical observations, are un-
doubtedly of interest (see, e.g., [7]).

Now, after choosing a model, specified by q and by the
relations between q1, q2, and q3, it is important to study
exact solutions. Exact solutions of the equations of non-
minimal electrodynamics in nonlinear gravitational wave
backgrounds were obtained in [10–14], and a nonminimal
Bianchi-I cosmological solution was discussed in [15] in
this context. Here we want to study charged black hole and
other charged solutions of nonminimal models. The
Reissner-Nordström solution is a standard solution in
pure Einstein-Maxwell theory, with two horizons, an event
and a Cauchy horizon, and a timelike singularity at the
center (see, e.g., [16]). Paradigmatic charged black hole
solutions also appear in the framework of Einstein theory
minimally coupled to nonlinear electromagnetic fields, as
well as other matter fields. Such solutions were found by
Bardeen and others [17–21] and the main feature is that
they are regular, without singularities inside the horizon.
Within quartic gravity nonsingular charged black hole
solutions have also been found [22]. Since the nonminimal
theory we are considering possesses new degrees of free-
dom, namely, the phenomenological parameter q and its
relations to q1, q2, and q3, we believe that these allow us to
introduce new aspects to the problem of finding black hole
and other solutions of each chosen model. Three aspects
can be mentioned. First, one wants to have a gauge in order
to compare the new solutions. Thus, we study the Reissner-
Nordström solution, the trivial solution in this context,
where q1 � q2 � q3 � q with q � 0, in order to under-
stand the novel features, such as causal and singularity
structure, of the new solutions. Second, one should try to
search for models exactly or quasiexactly soluble. This
requirement will take us, among the models cited above
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and the many other possible models, to two interesting
models. They are, the Gauss-Bonnet type model where
q1 � �q, q2 � 2q and q3 � �q, and the integrable model
where q1 � �q, q2 � q, q3 � 0. In both models we per-
form a detailed analysis. Third, we vary q within each of
the two nontrivial models and in trying to consider non-
minimal extensions of the Reissner-Nordström solution,
we search for features that are similar or distinct from
the two paradigmatic solutions, the Reissner-Nordström
solution itself and the Bardeen solutions. In our search
for charged black hole solutions in nonminimal models
we work in Schwarzschild coordinates and impose certain
requirements. The first requirement is connected with the
electric field E�r�. We demand it is a regular function on
the interval 0 � r <1, the origin being also regular (i.e.,
the value E�0� is finite), and for large values of r the electric
field is Coulombian, E�r� ! Q

r2 , where Q is the electric
charge. The second requirement is concerned with the
metric functions gik. These should take finite values at
the center (gik�0� � 1). Horizons at r � 0 are not ex-
cluded, and far away the solutions should be asymptoti-
cally flat. Upon these conditions and solving the
nonminimal equations in certain cases we will find electric
charged solutions with one horizon only, thus causally
distinct from the Reissner-Nordström. However, like
Reissner-Nordström, the solutions have a singularity at
the center, although here the singularity is spacelike in-
stead, as the Schwarzschild case, but conical, thus much
milder. We have also found in one model a gravitational
charged soliton, without horizons, where the fields are well
behaved, apart from a mild conical singularity at the center.
Although this and other solutions with horizons are almost
regular at the center, we have not obtained strictly non-
singular black hole of the type found by Bardeen and
others [17–22]. The difference is based on two aspects.
First, we consider spherically symmetric static solutions
with g00�r�grr�r� � 1, in contrast to the Schwarzschild,
Reissner-Nordström, and minimal regular Bardeen solu-
tions. Second, we assume that the values g00�0� and grr�0�
are finite, but can differ from one. Moreover, we admit, that
g00�0� can, in principle, be equal to zero. This means that
the scalar curvature invariants for such a metric can take
infinite values at the center, and the solution of the non-
minimal Einstein equations is not regular at the center in
this general sense. However, in many cases the singularity
is a conical one, so much milder than the nasty ones of
Schwarzschild and Reissner-Nordström. In summary, we
find charged black hole solutions different in horizon
structure from the Reissner-Nordström but similar to
Bardeen black holes, and although singular, in certain
cases can be considered quasiregular conical singularities,
in-between Schwarzschild and Reissner-Nordström types
of singularities and the no singularities of Bardeen.

This paper is organized as follows. In Sec. II, in particu-
lar, in subsection II A, using the Lagrangian formalism of

the Introduction, we establish a three-parameter nonmini-
mal Einstein-Maxwell model. In Sec. II B, we set up static
equations for studying black holes and reduce the three-
parameter model to a one-parameter model. In Sec. III we
study specific spherically symmetric one-parameter solu-
tions. In Sec. III A we define the basic quantities and basic
variables. In Sec. III B we display the Reissner-Nordström
solution as a preparation, where q1 � q2 � q3 � q with
q � 0. In subsection III C we analyze in detail a one-
parameter model, the Gauss-Bonnet model, with q1 �
�q, q2 � 2q, q3 � �q (i.e., q1 � q2 � q3 � 0 and 2q1 �
q2 � 0), using the known solution of the Abel equation, the
key equation of the model, and the dynamical system
associated with this model. We display the charged black
hole solutions, and we focus on a specific exact solution
and its critical properties. In subsection III D we consider
in detail an exactly integrable one-parameter model, the
integrable model, with q1 � �q, q2 � q, q3 � 0 (i.e.,
q1 � q2 � q3 � 0 and q3 � 0). We examine a special
submodel, the Fibonacci soliton, of this one-parameter
model and present the corresponding exact solution. In
Sec. III E we present, by means of a table, the summary
of the results of the models studied. In Sec. IV we
conclude.

II. NONMINIMAL COUPLING, LINEAR IN THE
CURVATURE, BETWEEN GRAVITY AND

ELECTROMAGNETISM: EQUATIONS AND
REDUCTION FROM THREE PARAMETERS TO
ONE PARAMETER FOR STATIC SPHERICALLY

SYMMETRIC SYSTEMS

A. The three-parameter model: General equations

The variation of the Lagrangian (1)–(3) with respect to
the metric yields (see, [1] for details),

 Rik �
1
2Rgik � �	T�0�ik � q1T

�1�
ik � q2T

�2�
ik � q3T

�3�
ik 
: (4)

The energy-momentum tensor of the pure electromagnetic
field T�0�ik is

 T�0�ik �
1
4gikFmnF

mn � FimFk
m: (5)

The definitions for the other three parts of the stress-energy
tensor, T�1�ik , T�2�ik , and T�3�ik , are

 T�1�ik � RT�0�ik �
1
2RikFmnF

mn � 1
2gikr

lrl�FmnF
mn�

� 1
2rirk�FmnF

mn�; (6)

 

T�2�ik � �
1
2gik	rmrl�F

mnFln� � RlmF
mnFln


� Fln�RilFkn � RklFin� � R
mnFimFkn

� 1
2r

lrl�FinFk
n� � 1

2rl	ri�FknF
ln�

� rk�FinFln�
; (7)
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 T�3�ik �
1
4gikR

mnlsFmnFls �
3
4F

ls�Fi
nRknls � Fk

nRinls�

� 1
2rmrn�Fi

nFk
m � Fk

nFi
m�: (8)

In addition, the nonminimal electrodynamics associated
with the Lagrangian (1)–(3) obeys the equation

 rk	F
ik � �ikmnFmn
 � 0; rkF

�ik � 0; (9)

where Fmn is the Maxwell tensor and F�kl is dual to it.
Consider now these master equations in the case of a static
spherically symmetric spacetime.

B. Static spherically symmetric nonminimally coupled
fields. Reduced three-parameter system of equations:

One-parameter models

1. Preliminaries

Using Schwarzschild coordinates, the line element for a
static spherically symmetric system can be put in the form

 ds2 � B�r�c2dt2 � A�r�dr2 � r2�d�2 � sin2�d’2�; (10)

where B and A are metric potentials that depend on the
radial coordinate r only. This form of the line element is
useful as when B and 1=A are simultaneously zero it
signals the presence of an event horizon. Assume also
that the electromagnetic field inherits the static and spheri-
cal symmetries. Then the potential four-vector of the elec-
tric field Ai has the form

 Ai � A0�r��
0
i : (11)

From (11) the Maxwell tensor is equal to Fik � A00�r��
��ri�

0
k � �

0
i �

r
k�, where a prime denotes the derivative with

respect to r. To characterize the electric field, it is useful to
introduce a new scalar quantity E�r� as E2�r� �
� 1

2FmnF
mn. Then the electric field squared is E2�r� �

1
AB �A

0
0�

2 from which one obtains in turn Fr0 �
��AB�1=2E�r�. Since the expressions 1=A and

�������
AB
p

enter
frequently in the master equations, it is sometimes conve-
nient to use the functions N�r� and 	�r� defined as N�r� �

1
A�r� and 	�r� �

������������������
A�r�B�r�

p
. In summary, the functions

 E2�r� �
1

	2 �A
0
0�

2; (12)

and

 N�r� �
1

A�r�
; 	�r� �

������������������
A�r�B�r�

p
; (13)

are alternatives to the functions A0�r�, A�r�, and B�r�.

2. Key equation for the Maxwell field and its solution

The Maxwell equations (9) with (11) give only one
nontrivial equation, namely,

 	r2E�r��1� 2�0r
0r�r��


0 � 0; (14)

which can be integrated immediately to give
 

E�r�
�
r2

�
1� �q1� q2� q3�

�
N00 � 3N0

	0

	
� 2N

	00

	

��

� 2r�2q1� q2�

�
N0 �N

	0

	

�
� 2q1�N� 1�

�
�Q;

(15)

where Q is a constant, to be associated with the central
electrical charge of the solution. This equation gives the
electric field of a central charge, corrected by the radial
component of the dielectric permeability tensor, 1�
2�0r

0r�r�. This component describes the vacuum screening
effect on the central charge, due to the interaction of the
vacuum with curvature, analogously to the screening of a
charge by a nonhomogeneous medium in a spherical cav-
ity. Supposing the spacetime to be asymptotically flat, i.e.,
Riklm�1� � 0, one can see that (15) yields asymptotically
the Coulomb law E! Q=r2, and the constant Q indeed
coincides with the total electric charge of the object.

3. Key equations for the gravitational field

The equations for the gravitational field (4) with (5)–(8)
and the metric potentials (10) redefined as in (13) can be
rewritten as a pair of equations for N�r� and 	�r�, respec-
tively,
 

	r�1� N�
0

�r2 � ��E2�00N�q1 � q2 � q3�

� �E2�0
�
�

1

2
�q1 � q2 � q3�

�
N0 �

8N
r

�

�
N
r
�2q1 � q2�

�
� E2

�
1

2
� �q1 � q2 � q3�

�

�
N00 � 3N0

	0

	
� 2N

	00

	
�
N0

r
� 2

N

r2

�

� �2q1 � q2�

�
2
N0

r
� 2

N
r
	0

	
�
N

r2

�

� q1
�N � 1�

r2

�
; (16)

 

2	0

�r	
� ��E2�00�q1 � q2 � q3�

� �E2�0
�
�q1 � q2 � q3�

�
	0

	
�

4

r

�
� �2q1 � q2�

2

r

�

� E2

�
�q1 � q2 � q3�

2	0

r	
�

2q3

r2

�
: (17)

The first equation can be reduced to an equation for E�r�
and N�r�, by extracting the term 	0

	 from the second one.
The second equation contains the unknown functions E�r�
and	�r� only. Thus, Eqs. (15)–(17) form the key system of
equations for the nonminimal Einstein-Maxwell model of a
static spherically symmetric object. It is a system of three
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ordinary differential equations of second order for the three
unknown functions, E�r�, N�r�, and 	�r�. The form of
equations is not canonical. In principle, the electric field
E�r� can be extracted explicitly from (15) as a function of
N00, N0, N, 	00

	 , 	0
	 , and r. Inserting such E�r� into the

Eqs. (16) and (17), we obtain equations for N�r� and
	�r� of fourth order in their derivatives.

4. General features and notes

Below we focus on models admitting solutions to
Eqs. (15)–(17), such that they can be represented by a
series expansion regular at r � 0, i.e.,

 A �r! 0� �A�0� �A0�0�r� 1
2A

00�0�r2 � . . . (18)

where A�r� symbolizes generically the functions E�r�,
N�r�, and 	�r�. Our purpose is to find solutions satisfying
three conditions: First, the electric field E�r� should be a
continuous function regular at r � 0 (E�0� � 1) and also
should be of Coulombian form at r! 1. Second, the
metric functions N�r� and 	2�r�N�r� should be regular at
r � 0. Third, in terms of the functions A�r� and B�r� the
asymptotic flatness requires that B00�1� � A00�1� �
B0�1�A0�1� � 0, and A�1� � const, B�1� � const. So,
essentially, one can put, 	�1� � 1 and N�1� � 1.

Note that the regularity of the functions E�r�, N�r�, and
	�r� at r � 0 does not guarantee that the solution of the
Einstein-Maxwell model is characterized by regular curva-
ture invariants. For instance, when N�0� is finite but
N�0� � 1, the model displays a conical singularity and
the scalar invariants of the curvature tend to infinity as r!
0. In considering solutions such that the fields are finite we
try to be as close as possible to Bardeen’s idea of having
black hole solutions without singularities, by finding a
regular E�r� and putting the metric coefficients in the
form N�r� � 1� 2Mr2�r2 � r2

0�
��3=2� and 	�r� � 1, for

some r0 [17]. As we will see it will turn out that this is
not achieved, since although the electric and metric poten-
tials are regular, the black hole solutions found here are
singular at the center, where the curvature invariants blow
up. Notwithstanding, these solutions are very interesting.
Using the ansatz (18) and the Eqs. (15)–(17) one can
couple the values E�0�, N�0�, 	�0�, and q1, q2, q3. The
relations are different for the cases	�0� � 0 and	�0� � 0,
which we now analyze.

(i) 	�0� � 0.—When 	�0� � 0, but 	0�0� � 0, one ob-
tains from the system (15)–(17) that �	

0

	��r! 0� ! 1
r , and

the decomposition (18) is valid at r! 0, when the follow-
ing conditions are satisfied,
 

E�0�
3q1q2 � q

2
2 � 2q1q3

3q1 � q2 � q3
� Q;

E2�0��q1 � q2� � 1 � 0;

N�0�	2�3q1 � q2 � q3�
 � 2q1 � q2;

(19)

for generic q1, q2, and q3. There are two specific cases.
When q1 � q2 � q3 � 0, but both 2q1 � q2 � 0 and q1 �
q2 � 0, then Q � 1

2E�0��q2 � q1� and N�0� � 1
4 . When

q1 � q2 � q3 � 0 and 2q1 � q2 � 0, simultaneously,
then �q1E2�0� � �1, providing q1 is negative, and N�0�
is fixed by the relation N�0� � 1� Q

2q1E�0�
� 1. As in the

case 	�0� � 0, see below, here the Ricci scalar R�r� takes
an infinite value at r � 0.

(ii) 	�0� � 0.—When all three functions, E�r�, N�r�,
and 	�r� are regular at r � 0, and 	�r�, appearing in the
denominator of Eqs. (15)–(17), does not vanish at r � 0,
one obtains from the system (15)–(17) the following set of
equations

 E�0�2q1	N�0� � 1
 � Q; E2�0�2q3 � 0;

N�0�	1� �E2�0��q1 � q2 � 2q3�
 � 1� q1�E2�0�;

(20)

for generic q1, q2, and q3. Since the charge of the object,Q,
is considered to be nonvanishing, one obtains immediately
from the first equation of the set that E�0� � 0 and N�0� �

1. Thus, we infer,

 q1 �
Q

2E�0�	N�0� � 1

;

q2 �
2	N�0� � 1
 � �E�0�Q

2N�0��E2�0�
; q3 � 0:

(21)

The relations (20) give that the curvature invariants are
infinite in the center r � 0. For instance, when N�r� and
	�r� are regular in the center and 	�0� � 0, then the Ricci
scalar
 

R�r� � 2N
	00

	
� N00 � 3N0

	0

	
�

4

r

�
N0 � N

	0

	

�

�
2

r2 �N � 1� (22)

tends to infinity at r! 0, since N�0� � 1, as well as
generally N0�0� � �N�0� 	

0

	 �0�.

5. The order of differential equations and the choice of
the parameters: One-parameter models

Now we want to analyze the simplest cases of the system
of equations (15)–(17). One sees that there is an immediate
simplification when q1 � q2 � q3 � 0, since second order
derivatives and products of first order derivatives disappear
from the equations. In such a case the system (15)–(17)
reduces to
 

E�r�
�
r2 � 2r�2q1 � q2�

�
N0 � N

	0

	

�
� 2q1�N � 1�

�
� Q;

(23)

 

r	0

�	
� r�2q1 � q2��E2�0 � q3E2; (24)
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	r�1� N�
0

�
� r�E2�0�2q1 � q2�N

� E2

�
r2

2
� q1 � 2r�2q1 � q2�

�
N0 � N

	0

	

�

� N�3q1 � q2�

�
: (25)

Moreover, the three-dimensional matrix, composed of the
coefficients in front of the first derivatives �E2�0, N0 and 	0,
has rank two. This means that for q1 � q2 � q3 � 0 the
system (23)–(25) can be reduced to one algebraic equation
and two differential equations of the first order. The cor-
responding algebraic equation is
 

��2q1 � q2��r2 � 2q1�E3 � 2��2q1 � q2�QE2

� 	r2 � 2q3�N � 1�
E�Q � 0; (26)

which in turn links two functions, E�r� andN�r�. Now from
Eq. (26), one can consider three subcases, that emerge from
the case q1 � q2 � q3 � 0. First we consider briefly the
trivial case in this context, q1 � q2 � q3 � q, q � 0, i.e.,
the Reissner-Nordström limit, see subsection III B. Then
we consider two interesting nontrivial cases: first, q3 � 0,
second, q3 � 0, When q3 � 0 it is easy to express N�r� in
terms of E�r�. In the subsection III C we consider a specific
model in this class, characterized by the supplementary
condition q1 � �q, q2 � 2q, q3 � �q (i.e., q1 � q2 �
q3 � 0, 2q1 � q2 � 0�: This is the Gauss-Bonnet type
model, which has been considered as an important model
in [8,9], and for which we present an extended analysis
with relevant new details. For the second case q1 � �q,
q2 � q, q3 � 0 (i.e., q1 � q2 � q3 � 0, q3 � 0�, E�r� de-
couples from N�r� and we deal with a cubic equation for
the determination of the electric field. We will consider
such a model, the integrable model, in subsection III D.

III. SOLUTIONS OF THE REDUCED THREE-
PARAMETER MODEL: SOLUTIONS OF ONE-

PARAMETER MODELS

A. Basic quantities and variables

One should first define three quantities, rM, rQ, EQ, as
follows

 rM � 2GM; rQ �
����
G
p
jQj; EQ �

Q

r2
Q

: (27)

Now, the models we are going to discuss here are essen-
tially one parametric, with q1, q2, and q3 being a multiple
of some parameter q. It is useful to introduce first a
quantity rq, given through

 rq �
���������
2jqj

q
; and 2q � �r2

q; (28)

with rq being a radius. From rM, rQ, and rq, one can then
construct two independent dimensionless quantities,

namely

 a �
2q

r2
Q

� �
r2
q

r2
Q

; (29)

and

 K �
rM
rQ
: (30)

The a quantity gives the deviation from the standard
Reissner-Nordström case, and K fixes the ratio between
the total mass to the total charge of the object.

In addition, for what follows below, it is useful to write
the equations of motion by defining two dimensionless
variables, a normalized radius x and a normalized electric
field Z�x�, defined as follows

 x �
r
rQ
; Z�x� �

E�r�
EQ

: (31)

Also, the function N�x� can be defined in terms of another
useful function y�x�, i.e.,

 N�x� � 1�
y�x�
x
: (32)

The physical interpretation of y�x� is connected with the
effective mass of the object, i.e., M�r�, as we will see
below. With these quantities defined we now discuss the
Reissner-Nordström limit and the two new models.

B. The Reissner-Nordström limit: q1 � q2 � q3 � q,
with q � 0

When the nonminimal parameters q1, q2, and q3 are set
to zero, i.e.,

 q1 � q2 � q3 � q; q � 0; (33)

and so a � 0 as well, we can integrate immediately
Eqs. (15)–(17). In terms of the above functions, the system
of key equations can be rewritten as

 x2Z� 1 � 0; (34)

 xN0�x� � N�x� � 1� 2Z� x2Z2; (35)

 

	0�x�
	
� 0: (36)

The solutions to these equations are

 Z�x� �
1

x2 ; (37)

 N�x� � 1�
K � 1=x

x
; (38)

 	�x� � 1: (39)

The function y�x� in (32) is here given by
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 y�x� � K �
1

x
; (40)

where K is defined in (30), and one can see through
Eq. (35) that y obeys the equation

 

dy
dx
�

1

x2 : (41)

Of course one can transform to the original fields E�r�,
A�r�, and B�r�, giving

 E�r� �
Q

r2 ; (42)

 

1

A�r�
� 1�

2GM�r�
r

; (43)

 B�r� � 1�
2GM�r�

r
; (44)

which are the usual Reissner-Nordström functions. Note,
then, that the physical interpretation of y�x� given in (40) is
connected with the effective mass of the object, i.e., M�r�,
which in turn is given by the definition

 N�r� �
1

A�r�
� 1�

2GM�r�
r

� 1�
y�x�
x
: (45)

Thus, y�x� is related to the dimensionless effective mass,
since y�x� � rM

rQ
M�r�
M , with M�r� � M� Q2

2r , M being the

asymptotic mass of the object.
We study in this context the usual static spacetimes with

a � 0, i.e., the Schwarzschild and Reissner-Nordström
spacetimes, which are special solutions of the full system
of equations. These two solutions are heavily singular, both
the metric and the Kretschmann scalar diverge at r � 0. So
these solutions are outside the spirit of the solutions we
want to find. They do not serve as models. However, they
are of interest to set the nomenclature, and to have a gauge
with which we can compare the solutions we find in the
two models studied below. Note that for these solutions
	2�x� � A�r�B�r� � 1. In these cases the problem of
searching for horizons is equivalent to finding their radial
position rh through the solutions of B�r� � 1

A�r� �

1� 2GM�r�
r � 0, where M�r� is the effective mass. In terms

of dimensionless mass y�x�, see Eq. (45), or Eq. (40), this
condition can be written as y�x� � x. For the
Schwarzschild metric y�x� � K, where K � rM=rQ is de-
fined in (30). Then, one obtains only one horizon at x �
xh � K, which is just the Schwarzschild radius, r � rM.
For the Reissner-Nordström metric one has y�x� � K � 1

x ,
and the equation K � 1

x � x gives three different cases:
(i) K > 2 (i.e., rM > 2rQ, or GM2 >Q2 in the standard

notation): there are two solutions xh �
K
2 �

��������������
K2

4 � 1
q

, and

xh �
K
2 �

��������������
K2

4 � 1
q

, corresponding to the outer and inner

horizons, respectively, of a usual Reissner-Nordström
black hole. (ii) K � 2 (i.e., rM � 2rQ, or GM2 � Q2):
there is one horizon only, given by xh � 1, corresponding
to an extremal black hole. (iii) K < 2 (i.e., rM < 2rQ, or
GM2 <Q2): there is no solution to the equation y�x� � x.
The object is a naked singularity.

C. The Gauss-Bonnet model: q1 � �q, q2 � 2q, q3 �
�q (i.e., q1 � q2 � q3 � 0 and 2q1 � q2 � 0)

1. Preliminaries

Consider now, in Eqs. (1)–(3), the following specific
one-parameter model

 q1 � �q; q2 � 2q; q3 � �q

�i:e:; q1 � q2 � q3 � 0; 2q1 � q2 � 0�;
(46)

for some parameter q. In this model the susceptibility
tensor is proportional to the double-dual Riemann tensor
and is divergence-free [1], i.e., �ikmn � q�R�ikmn, and
rn�ikmn � 0. Moreover, the coupled Einstein and electro-
magnetic equations are second order in the derivatives,
which is the reason why this model is called a Gauss-
Bonnet model. Gauss-Bonnet gravity in five and higher
dimensions has the property that its equations are of second
order, Lovelock gravity being a generalization of it.
Actually, one can show that the model specified by (46)
comes from Kaluza-Klein reduction to four dimensions
from five a dimensional Gauss-Bonnet theory, i.e.,
Einstein gravity plus a Gauss-Bonnet term [9]. Using
(46), Eqs. (23)–(25) convert, respectively, into

 E�r�fr2 � 2q�1� N�g � Q; (47)

 r
	0

	
� �qE2; (48)

 	r�1� N�
0 � 1
2�E

2	r2 � 2q�1� N�
: (49)

After appropriate redefinitions these equations agree with
the ones discussed in [9]. The correspondingly modified
algebraic equation (26) coincides with (47). We now con-
sider two ways of analyzing this system of equations: first,
we use a power series expansion, and second, we apply the
formalism of dynamical systems.

2. Abel equation and its solution

(I) The Abel equation.—Using from Eq. (47) that

 N�r� � 1�
1

2q

�
r2 �

Q
E�r�

�
; (50)

one obtains the Abel equation (see, e.g., [23]) for E�r� from
(49),

 rE0�r� � E� 3
r2

Q
E2 � �qE3: (51)
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Similarly, eliminating E�r� from Eq. (47) one can trans-
form Eq. (49) into the Abel equation for a function ��r�,
here defined as

 ��r� � 1� N�r�: (52)

Thus, Eq. (49) is given by

 	r�0�r� ���r�
	r2 � 2q��r�
 �
�Q2

2
: (53)

Clearly, the values E�0� and N�0� are related through
N�0� � 1� Q

2qE�0� . Searching for solutions N�r� regular
at r � 0, we have to consider E�0� to be nonvanishing,
E�0� � 0. In such a case Eq. (51) yields �qE2�0� � 1. This
means that q has to be positive in these solutions. Thus,
although we analyze all cases, we tend to focus in models
with a � 2q

r2
Q
> 0. Finally, a possible solution, regular at r �

0, should be characterized by 	�0� � 0. It is convenient to
use the auxiliary quantities rq �

���������
2jqj

p
, rQ, and a used

before [see Eqs. (28) and (29)], to write

 E�0� �
1������
�q
p �

Q
rQrq

�
EQ���
a
p ;

N�0� � 1�
Q
2

����
�
q

s
� 1�

rQ
rq
� 1�

1���
a
p :

(54)

Using Eqs. (47)–(49), plus the asymptotic conditions
	�1� � 1, N�1� � 1, as well as the condition that the
electric field is asymptotically Coulombian E! Q=r2, one
can obtain the following formula for the asymptotic mass
M,
 

rM � 2GM

� lim
r!1
f	2	r�1� N� � 1

2r�QE� 2N�qE2
g

� lim
r!1

r�1� N�: (55)
(II) The solution of the Abel equation for small r.—In

the vicinity of the point r � 0 the solutions for E�r�, N�r�
and 	�r� are assumed to have a polynomial form of the
type given in Eq. (18). The decomposition of a regular
solution E�r� with nonvanishing E�0� is

 E�r� !
EQ������
jaj

p �
1�

3������
jaj

p �
r
rQ

�
2
� . . .

�
; (56)

and the corresponding N�r� with finite N�0� is given by

 N�r� ! 1�
1������
jaj

p �
1

4a2

�
r
rQ

�
2
� . . . : (57)

For this solution the effective mass M�r� becomes equal to
zero at r � 0. Moreover, N�0� � 0, when electric and
nonminimal radii coincide, i.e., rQ � rq, a � 1.

(III) Power series expansion with respect to rQ
r .—The

decomposition of the electric field yields

 E�r� �
Q

r2

�
1� a

rM
rQ

�
rQ
r

�
3
�
X1
n�5

nbn

�
rQ
r

�
n�1

�
; (58)

where the bn are defined below. Infinity is a regular point
for N�r�, thus, taking into account (55) one obtains the
following decomposition of N�r�

 N�r� �
1

A�r�

� 1�
rM
r
�
r2
Q

r2 � a
rM
4rQ

�
rQ
r

�
5
�
X1
n�5

bn

�
rQ
r

�
n�1

;

(59)

where again, the bn are given below. The function 	�r� �������������������
A�r�B�r�

p
is equal to one in the Schwarzschild and the

Reissner-Nordström cases, but not in general. When q � 0
the logarithm of this function can be represented by the
decomposition

 ln	�r� � �
a
4

�
rQ
r

�
4
�

1�
X1
n�4

8nbn
n� 3

�
rQ
r

�
n�1

�
X1
n�4

X1
m�4

4nm
n�m� 2

bnbm

�
rQ
r

�
n�m�2

�
: (60)

The bn coefficients can be taken from Eq. (59), and starting
from b5 can be found by the recurrence formula

 bn�3 � �a
Xn�1

m�0

�
n�m
n� 3

�
bmbn�m; (61)

with

 b0 �
rM
rQ
; b1 � �1; b2 � b3 � 0;

b4 � a
rM
4rQ

; b5 � �
a
5
; b6 � 0;

b7 � �a
2 r

2
M

7r2
Q

; b8 � a2 9rM
32rQ

; . . . :

(62)

The decompositions (58)–(60) are regular at r � 1 and
absolutely converge in the interval r > rQH�a�, where
H�a� � limn!1j

bn�1

bn
j. Note that the terms b0 and b1 are

the Schwarzschild and Reissner-Nordström terms, respec-
tively, and that the bn for n  2 are the terms that give the
post-Reissner-Nordström behavior. Note also that for q �
0, i.e., the Reissner-Nordström case (or the Schwarzschild
case when, further, Q � 0), the function 	 in (60) is equal
to one, as it should. For r! 1, Eqs. (58)–(60) give useful
asymptotic formulas, showing that, for E�r� and N�r�, the
first post-Reissner-Nordström terms are of fifth order in
�
rQ
r �, and that the decomposition for log	 starts with a term

of fourth order. When necessary, one should convert from
N and 	 to A and B. Numerical calculations, see Figs. 1–3,
confirm that the corresponding curves tend to the corre-
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sponding horizontal asymptotes, when r goes to infinity,
i.e., E�r� tends to zero, and 1

A�r� andB�r� tend to 1. It follows
from (58) that, for positive q, q > 0, the curvature coupling
effects on the electric field are analogous to a dielectric
medium, since the asymptotic electric field effectively
decreases. For negative q, q < 0, there are no solutions
with N�r� regular at r � 0, and, since we are mostly
interested in regular or quasiregular solutions, we do not
fully discuss this case.

3. The dynamical system associated with the model

We now study this model, specified through Eq. (46),
using a dynamical system analysis.

I. First analysis: The plots and numerics
(A) Key dynamic equation.—In order to find the regular

solutions E�r�, N�r�, and 	�r� in the whole interval 0<
r <1 let us transform the master equations (47)–(49) to
the independent variable x � r

rQ
, a dimensionless radius,

and to the unknown dimensionless function y�x� given in

Eqs. (38) and (40), i.e.,

 y�x� � x	1� N�x�
: (63)

The physical interpretation of y�x� is connected with the
so-called effective mass of the object, M�r�, see Eq. (45).
Putting these definitions into Eq. (49), we obtain the fol-
lowing key equation

 

dy�x�
dx

�
x

x3 � ay�x�
: (64)

This equation is indeed a key one, since using its solution
y�x� we can represent explicitly the electric field by

 E�x� � EQZ�x�; with Z�x� �
1

x2 � ay�x�=x
; (65)

the metric function N�x� by Eq. (45), and 	�x� by the
integral form

 ln	�x� � ln
�������������������
A�x�B�x�

p
� a

Z x

1

dx0

x0
Z2�x0�: (66)

FIG. 1. Nonminimal solution of the Gauss-Bonnet model, with q1 � �q, q2 � 2q, and q3 � �q, of gravitational electrically
charged objects characterized by a � 2q=r2

Q, for K � 2
���
2
p

(K > 2). Plots (a), (b), (c), and (d) depict the metric potentials 1=A�r� and

B�r�, the function log
������������������
A�r�B�r�

p
, and the electric field E�r�=EQ, respectively, as functions of x � r

rQ
, for solutions with different values

of the nonminimal quantity a. The Reissner-Nordström black hole has a � 0, the curves of which are clearly shown in the plots. In this
case the curves for 1=A�r� and B�r� have two zeros representing the inner and outer horizons, and for r! 1 they go to one, while the
curve E�r�=EQ tends to zero, respectively, and when r! 0 these curves tend to �1 (the electric field is in a logarithmic scale). For
a < 0 and 0< a< a0 the black holes behave quite similarly as the case a � 0, with two horizons, and the function E�r�=EQ tends to
finite values as r! 0. For a � a0 the curve for 1=A�r� tends to a finite negative value when r! 0, and takes the value zero only once.
On the other hand B�r� has two zeros one at the same point as 1=A�r�, the event horizon, and the other at r � 0, signaling the presence
of a singularity there. The function E�r�=EQ tends to finite values as r! 0. For a > a0 the curves 1

A�r� and B�r� have one zero, and thus
one horizon only, at the same r, and then tend to infinity as r! 0, an analogous behavior to the Schwarzschild black hole. The function
E=EQ tends to finite values as r! 0. See text for more details.
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Moreover, A follows from A � 1=N and B from B �
	2=A, i.e.,

 B�x� �
�

1�
y�x�
x

�
exp

�
2a

Z x

1

dx0

x0
Z2�x0�

�
: (67)

Note that the function y�x� is also a function of the quantity
a, so in general should be written as y�x; a�.

(B) Three typical cases.—In this problem there are two
independent dimensionless quantities, constructed from
rM, rQ, and rq, namely a and K, see Eqs. (29) and (30).
Note that K, besides fixing the ratio between the total mass
and the charge of the object, gives the value of the dimen-
sionless mass y�x� at r � 1, since y�1� � K. Taking into
account the quantity K, and in conformity with the
Reissner-Nordström solution, let us distinguish three dif-
ferent situations, (i) K > 2, (ii) K � 2, (iii) K < 2, within
each situation the quantity a can vary from zero to infinity.
Figures 1–3 display typical cases in each situation, and
Fig. 4 shows the behavior of y�x�. In slightly more detail:
(i) K > 2 (i.e., rM > 2rQ): For K > 2, we use K � 2

���
2
p

as

a typical value for the numerical analysis, see the plots in
Fig. 1, [see Fig. 1(a) for 1

A�r� , Fig. 1(b) for B�r�, Fig. 1(c) for

ln
������������������
A�r�B�r�

p
, and Fig. 1(d) for E�r�). When a � 0 this case

gives the usual Reissner-Nordström black hole with two
horizons. For other a’s there are also black holes, some
with different properties. (ii) K � 2 (i.e., rM � 2rQ): For
K � 2 see the plots in Fig. 2, [see Fig. 2(a) for 1

A�r� ,

Fig. 2(b) for B�r�, Fig. 2(c) for ln
������������������
A�r�B�r�

p
, and

Fig. 2(d) for E�r�). When a � 0 this case gives the extreme
Reissner-Nordström black hole with one horizon. For other
a’s there are also interesting solutions with black holes.
(iii) K < 2 (i.e., rM < 2rQ): For K < 2, we use K � 1 as a
typical value for the numerical analysis, see the plots in
Fig. 3, [see Fig. 3(a) for 1

A�r� , Fig. 3(b) for B�r�, Fig. 3(c) for

ln
������������������
A�r�B�r�

p
, and Fig. 3(d) for E�r�]. When a � 0 this case

gives a Reissner-Nordström naked singularity, a solution
without horizons. For other a’s there are also solutions.

(C) Scaling of the key equation.—The key equation (64)
remains invariant after the following scale transformations:

FIG. 2. Nonminimal solution of the Gauss-Bonnet model, with q1 � �q, q2 � 2q, and q3 � �q, of gravitational electrically
charged objects characterized by a � 2q=r2

Q, for K � 2. Plots (a), (b), (c), and (d) depict the metric potentials 1=A�r� and B�r�, the

function log
������������������
A�r�B�r�

p
, and the electric field E�r�=EQ, respectively, as functions of x � r

rQ
, for solutions with different values of the

nonminimal quantity a. The extremal Reissner-Nordström black hole has a � 0, the curves of which are clearly shown in the plots. In
this case the curves for 1=A�r� and B�r� have one double zero representing an extremal horizon, and for r! 1 they go to one, while
the curve E�r�=EQ tends to zero, respectively, and when r! 0 these curves tend to�1 (the electric field is in a logarithmic scale). For
a < 0 and 0< a< a0 the black holes behave quite similarly as the case a � 0, with one horizon, and the function E�r�=EQ tends to
finite values as r! 0. For a � a0 the curve for 1=A�r� tends to a finite negative value when r! 0, and takes the value zero only once.
B�r� has two zeros one at the same point as 1=A�r�, signaling there is only one horizon, and the other at r � 0, signaling the presence of
a singularity there. The function E�r�=EQ tends to finite values as r! 0. For a > a0 the curves 1

A�r� and B�r� have at the same r, one
zero, and thus one horizon only, and then tend to infinity as r! 0, an analogous behavior to the Schwarzschild black hole. The
function E�r�=EQ tends to finite values as r! 0. See text for more details.
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 x!
1

K
x; y!Ky; a!

1

K4a: (68)

Thus, the critical values of a that one may eventually
encounter when K � 1, are also critical values that one
can easily find for arbitrary K using the formula a0�K� �
1
K4 a0�1�.

II. Second analysis: Critical properties of the family of
the solutions

(A) About the mass function y�x; a� when x � 0, y�0; a�:
the critical value of the quantity a, a0.—We now write
explicitly that y is a function of both x and a, y � y�x; a�
since this is important to our analysis. Plots of this dimen-
sionless mass function y�x; a� are displayed in Fig. 4. In
Fig. 4(a), y�x; a� is shown for several values of a, and in
Fig. 4(b), a plot for y�0; a� as a function of a is shown. A
simple qualitative analysis shows that the mass function
y�x; a� at the central point x � 0, i.e. y�0; a�, as a function
of the quantity a, has to possess a zero. Indeed, when a �
0, y�x; 0� � K � 1

x , (where, recall, K � rM
rQ

), corresponding

thus to the Reissner-Nordström solution. When a � 1,
y�x;1� � K, corresponding thus to the Schwarzschild so-
lution. Note as well that when a � �1, y�x;�1� �
constant. In addition, when x � 1, y�1; a� � K, a condi-
tion at infinity that holds for arbitrary a. In order to prove
our assertion, that y�0; a� as a function of a possesses a
zero, consider then y�0; a� as a function of the quantity a in
the interval 0< a<1. One can see that y�0; 0� � �1
and y�0;1� � K > 0. Supposing that y�0; a� is continuous
in such an interval, one can conclude that there exists at
least one specific value of the a quantity for which
y�0; a0� � 0, where a0 is the value of a for which
y�0; a0� � 0. Figure 4(b) shows that, for K � 1 the zero
of the function y�0; a� � 0 happens, when a � a0 ’ 7:49.
But the most interesting fact is that the curve y � y�0; a�
displays a discontinuity in the first derivative with respect
to a just at a � a0. One can see explicitly a finite jump of
the derivative at this point, a � a0. Nevertheless, the func-
tion y � y�0; a� itself is continuous at this point. That is
why a0 is a critical value of the quantity a. For other Ks the

FIG. 3. Nonminimal solution of the Gauss-Bonnet model, with q1 � �q, q2 � 2q, and q3 � �q, of gravitational electrically
charged objects characterized by a � 2q=r2

Q, for K � 1 (K < 2). Plots (a), (b), (c), and (d) depict the metric potentials 1=A�r� and

B�r�, the function log
������������������
A�r�B�r�

p
, and the electric field E�r�=EQ, respectively, as functions of x � r

rQ
, for solutions with different values

of the nonminimal quantity a. The Reissner-Nordström naked singularity has a � 0, the curves of which are clearly shown in the plots.
In this case the curves for 1=A�r� and B�r� have no zeros, and for r! 1 they go to one, while the curve E�r�=EQ tends to zero,
respectively, and when r! 0 these curves tend to�1 (the electric field is in a logarithmic scale). For a < 0 and 0< a< a0 the naked
singularity behaves quite similarly as the case a � 0, and the function and E�r�=EQ tends to finite values as r! 0. For a � a0 the
curve for 1=A�r� tends to a finite positive value as r! 0, while B�r� has a zero at r � 0, signaling the presence of a singularity there.
The function E�r�=EQ tends to finite values as r! 0. For a > a0 the curves 1

A�r� and B�r� have one zero at the same r, and thus one
horizon only, and then tend to infinity as r! 0, an analogous behavior to the Schwarzschild black hole. Thus, by tuning the
nonminimal quantity a one can turn a Reissner-Nordström naked singularity, which has a � 0, into a black hole, when a > a0. The
function E�r�=EQ tends to finite values as r! 0. See text for more details.
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critical values can be found using the scaling properties
(68), yielding a0�K� �

7:49
K4 . For instance a0�2� � 0:468

and, for the typical case we study, a0�2
���
2
p
� � 0:117. For

negative a, y�0; a� ! 0 asymptotically when a! �1.
(B) The critical points of the associated autonomous

two-dimensional dynamical system.—The key equa-
tion (64) can be put as an autonomous dynamical system

 _y � x; _x � x3 � ay; (69)

where _� d
d
 and 
 is an auxiliary parameter. In Eq. (69)

there is one critical point at

 �x; y� � �0; 0�: (70)

In the vicinity of this critical point the variables x and y are
connected by the relation x2 � ay2 � constant, which
means this point is a saddle point when a is positive, and
a center when a is negative. If a > 0 there are two sepa-
ratrices y � � x��

a
p . The equation forN�r� � 1

A�r� can also be

written as dynamical,

 

_N � �1� N�r2 � 2q�1� N�2 � r2
Q;

_r � r	r2 � 2q�1� N�
;
(71)

which is much more complicated than Eq. (69) for y�x�.
Nevertheless, if q is positive (i.e., a is positive), one can
find the critical points immediately,

 �r; N� �
�
0; 1�

rQ
rq

�
: (72)

In order to present the integral curves for the total interval
of the auxiliary parameter 
, we resort to numerical calcu-
lations. The results are presented in Figs. 1–3. It is clear
that for the critical a � a0 the curve for N�r� � 1

A�r� tends
to one when r! 1, and takes a finite value 1

A�0� � 1� 1����
a0
p

at the center of the object, r � 0. This critical curve is a
separatrix between the curves having a > a0 and those
having a < a0. The same type of behavior happens with
the curves for B�r�. One also has that for a � a0 there
exists a unique integral curve for y�x� with asymptotic
value given by y�1� � rM

rQ
, and for r! 0 one has

y�0; a0� � 0. Again, this curve behaves as a separatrix.
Similar reasoning goes to the curve E�r�. In other words,
the critical point N � 1�

rQ
rq

, given in Eq. (72), is just a

saddle point, corresponding to the critical value a0, ob-
tained numerically, and it is the final point of the unique
integral curve, which coincides with the separatrix of the
function y � � x����

a0
p at small x. When q < 0 and, thus, a is

negative, there are no regular or quasiregular solutions to
the master equations for the whole interval 0 � r <1.

(C) Vertical asymptotes and the electric barrier.—From
Eq. (64) one sees that, when y�x; a� � � x3

a , the derivative

FIG. 4. Reduced mass profiles y�0; a� and y�x; a� for the nonminimal Gauss-Bonnet model, with q1 � �q, q2 � 2q, and q3 � �q,
of gravitational electrically charged objects characterized by a � 2q=r2

Q. Plots of the curves y�0; a� and y�x; a� are shown, with x �
r=rQ. For a0 < a (with a0 > 0) the characteristic curve y � �x3=a is not intercepted by the function y�x; a�. For a � a0 the
intersection takes place at x � 0. For 0< a< a0 the point of crossing floats along the characteristic curve, and the integral curve has
two branches. Finally, for a < 0 there is no intersection of y�x; a� with the characteristic curve. In the plot y�0; a� it is shown explicitly
the existence of a point obeying y�0; a0� � 0 with positive a0.
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y0�x; a� becomes infinite and vertical asymptotes appear in
the graph of y�x� versus x. At the point x � x�, for which
y�x�; a� � � x�3

a , the electric field (65) becomes infinite,
and so these vertical asymptotes can be interpreted in terms
of an electric barrier.

When a < 0, Figs. 1(d), 2(d), and 3(d) show that for all
three values of K the curve for the electric field has a form
of a finite barrier. Indeed for r! 1 the electric field E�r�
tends to zero, then at some radius it reaches a maximum,
the barrier height, and finally goes to a finite positive value
when r! 0. A charged test particle with sufficiently high
energy can overcome this barrier, be trapped in the poten-
tial well and then oscillate inside. When a � 0, more
specifically, when a! 0�, the barrier height increases
and tends towards the center r! 0. For a � 0 [see again
Figs. 1(d), 2(d), and 3(d)] one obtains the standard,
Reissner-Nordström, behavior, E�r� � Q

r2 . This means
that the electric barrier has become infinite, taking its
maximum value (an infinite value) at the center r � 0. In
other words, the vertical asymptote for the electric field
appears at r � 0. Finally, when a > 0 this vertical asymp-
tote and the position of the infinite electric barrier shift
from the center towards positive r values, then stop at some
value of the quantity a, drift back again to smaller values of
r and, finally, the infinite electric barrier disappears at a 
a0, (with a0 > 0). When a � a0 the curve tends to the
horizontal asymptote at r! 0, there is yet no trap. When
a > a0, one can see a finite electric barrier with the corre-
sponding traps, for all values of K.

Since the integrals in (66) and (67) diverge when E�r� is
discontinuous, then in searching for solutions with regular
functions E�r�, 1

A�r� , and B�r�, we should reject all the cases
where vertical asymptotes appear. For a  a0, numerical
calculations show that vertical asymptotes do not appear.
So we will mainly consider solutions for this range of the
quantity a, i.e., a  a0.

(D) Horizons.—To analyze the a  a0 case, with a
nonsingular electric field and possible nonsingular metric
potentials 1=A and B, we have studied previously, for
comparison, the usual static spacetimes with a � 0, i.e.,
the Schwarzschild and Reissner-Nordström spacetimes,
which are special solutions of Eq. (10). One has for these
that A�r�B�r� � 1. For a  a0 one sees from (60) that
A�r�B�r� � 1, in contrast to the a � 0 case.
Nevertheless, as in the a � 0 case, horizons are still given
by the condition 1

A�r� � 0, or y�x� � x. We have analyzed
this numerically. For a > a0 the results are the following:
(i) K > 2 (i.e., rM > 2rQ): A typical case is K � 2

���
2
p

, see
Fig. 1. One finds that for a > a0 � 0:117, there is only one
horizon. (ii) K � 2 (i.e., rM � 2rQ): For K � 2, see Fig. 2.
One finds that for a > a0 � 0:468, there is one horizon
also. (iii) K < 2 (i.e., rM < 2rQ): A typical case is K � 1,
see Fig. 3. One finds that for a > a0 � 7:49, there is only
one horizon also.

Note that Figs. 1–3 show that when a > a0, for all
formal possibilities (K > 2, K � 2, K < 2) the curves
1=A tend monotonically to minus infinity and cross the
line 1=A � 0 only once. Thus, for arbitrary a > a0 the
plots of 1=A are continuous, irregular at the center and
characterized by one horizon. These solutions have thus an
analogous behavior to the Schwarzschild black hole.
Moreover, by tuning the nonminimal quantity a one can
turn a Reissner-Nordström naked singularity, with K < 2
and a � 0, into a black hole, when a > a0. Now, since the
a � a0 is a very special case, we discuss it in particular.

(E) The solution with a � a0.—In the framework of the
model under discussion, i.e., when q1 � �q, q2 � 2q, and
q3 � �q, all the three functions, E�r�, 1

A�r� , and B�r�, are
regular in the interval 0 � r <1 if and only if a �

a0�K� �
7:49
K4 (recall a � 2q

r2
Q

). This means that we deal

with a one-parameter family of exact solutions, the arbi-
trary quantity being K � rM

rQ
, and all the curvature coupling

constants, q1, q2 and q3, being expressed explicitly via K.
The critical q corresponding to a0 is thus, with the help of
Eqs. (27)–(30), given by, qa0

� 7:49Q6=32GM4. We now
consider these solutions in more detail: (i) There are two
different solutions, corresponding to the separatrices
y�x� � � x����

a0
p at small x. The physical solution, the solution

that gives the appropriate limit when x! 1 and has no
jumps on the derivative of the characteristic curve ay�x� �
�x3, is y�x� � � x����

a0
p . The plots of 1

A�r� , B�r� and E�r� are

displayed in Figs. 1–3. (ii) The solutions, which we dis-
cuss, are characterized by finite values at the center, and
E�0� � 0, A�0� � 0, and N�0� � 0, but 	�0� � 0 and
B�0� � 0. (iii) For this model 1

A�r� � B�r�, and there are
two distinct critical radii; first, the radius for which 1

A�r� �

N�r� � 0; second, the radius for which B�r� � 0 which
signals an infinite redshift surface, and an event horizon in
the case of static spacetimes, such as the ones we are
treating here. (iv) For 1

A�r� � 0, one finds that such a solu-
tion exists when rq < rQ, i.e., a0 < 1; this is a necessary
condition [see, e.g., (57)]. Moreover, within this case it is
possible to have such a zero when K4 > 7:49, i.e., K >
1:65 or rM > 1:65rQ. For rq > rQ, one has, 1

A�0� � 1�
rQ
rq

is

positive and without zeros. (v) For the infinite redshift
surface and event horizon, B�r� � 0, one finds that when
a � a0, for the critical quantity, the function B�r� is zero
both at r � 0 and at the radius for which 1

A�r� � 0. (vi) The
Kretschmann scalar diverges at r � 0, so although the
metric functions are regular, spacetime is not, time stops.

(F) Remark.—Some important aspects derived from
qualitative and numerical analyses of this nonminimal
model, with q1 � �q, q2 � 2q and q3 � �q, can be
found in [9]. Our results are in thorough concordance
with this initial analysis. We have supplemented those
aspects on several grounds, of which we stress briefly three
novel details obtained here: (i) We have found a complete
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converging decomposition of the solution of the Abel
equation based on the recurrence formula (61). This gives
us not only the asymptotic decompositions for r! 1,
but also the possibility to link the limiting formulas for r!
0 and r! 1 [see (58)–(60)]. (ii) We have formulated and
discussed the problem of the infinite electric barrier, asso-
ciated with the vertical asymptote appearing when x3 �
ay�x; a� � 0, thus completing physically and mathemati-
cally the analysis given in [9]. (iii) We have
found, first, the critical value of the nonminimal parameter
q, namely, qa0

� 7:49Q6=32GM4, second, the scaling law
of the critical parameter qa0

for different values of the
asymptotic quantity K � rM=rQ, namely, qa0

�K� �
7:49=K4, third, the significance of the choice for K,
namely, K > 2, K � 2, and K < 2, in the qualitative
analysis.

D. The integrable model: q1 � �q, q2 � q, q3 � 0
(i.e., q1 � q2 � q3 � 0 and q3 � 0)

1. Preliminaries

Now, we consider the model with

 q1 � �q; q2 � q; q3 � 0

�i:e:; q1 � q2 � q3 � 0; q3 � 0�;
(73)

which, as we have seen, has the property that E�r� decou-
ples from N�r� and we deal with a cubic equation for the
determination of the electric field. Since the basic feature
of the model is that it is integrable, we call it the integrable
model. For such a model the susceptibility tensor �ikmn can
be written in terms of the Einstein tensor Gik �

Rik � 1
2Rg

ik as follows, �ikmn � q
2 	G

imgkn �Gingkm �
Gkngim �Gkmgin
; where we have put q1 � �q2 � �q.
Thus, the model becomes one-parametric and we can in-
troduce the dimensionful quantities defined above, rQ, EQ,
rq, and the dimensionless quantities a and K. We assume
that EQ inherits the sign of the charge Q and the quantity a
can be positive or negative depending on the sign of q.
Then, we introduce the two dimensionless variables, the
normalized radius x and the normalized electric field Z�x�,
defined in (31). In terms of these, the system of key
equations can be rewritten as

 a�x2 � a�Z3 � 2aZ2 � x2Z� 1 � 0; (74)

 xN0�x� � N	1� ax�Z2�0�x�
 � 1� 2Z� �x2 � a�Z2;

(75)

 

	0�x�
	
� �a�Z2�0�x�: (76)

Clearly, Eq. (74) for Z�x� is the key equation for finding
N�x� and 	�x� from (75) and (76), respectively. If instead
of N�x� one uses y�x� then Eq. (75) gives an equation for dydx
of the type of Eq. (41) or Eq. (64), but more complicated,

which for this analysis is not very illuminating. For this
model it is better to start analyzing the electric field E�r�, or
its redefinition Z�x�.

2. Electric field

Consider now Eq. (74) in detail. Equation (74) is a one-
parameter algebraic equation of third order for the dimen-
sionless electric field. Below we denote its solution as
Z�x; a�. The function Z�x; a� can be generally presented
by the well-known Cardano formula, nevertheless we pre-
fer to analyze qualitatively this one-parameter family of
solutions. Depending on the value of the quantity a the
solution Z�x; a� can possess one or three real branches. The
corresponding plots are presented in Fig. 5. When a � 0,
one obtains, as it should, the Coulombian solution
Z�x; 0� � 1

x2 . The curves displaying Z�x; a� for nonvanish-
ing values of the quantity a are more sophisticated.

(i) a > 0.—When a is positive, the functions Z�x; a�
take finite values for all values of the quantity a, see the
curves a, b, c, d in Fig. 5. The initial values Z�0; a� satisfy
the cubic equation a2Z3�0; a� � 2aZ2�0; a� � 1 � 0.
There is only one real solution of this cubic equation for
a > 0, if the discriminant D � 1

108a5 �27a� 32� is positive,
i.e., when 32

27 < a<1, see box a of Fig. 5 for details. This
plot displays three real branches of the solution Z�x; a�,
nevertheless, only one of them is defined on the whole
interval 0 � x <1. Two other branches are defined for
x  xmin�a� only and contact at the point x � xmin�a�. Only
one branch tends to the horizontal asymptote Z � 0 at x!
1. When 0< a � 32

27 , the discriminant D is negative or
equal to zero, which guarantees that there are three real
starting points, Z1�0; a�, Z2�0; a�, Z3�0; a� for the three
corresponding branches of the solution Z�x; a�, see the
curves in boxes b, c, d of Fig. 5. Nevertheless, when 1<
a � 32

27 , two branches of the solution Z�x; a� are not con-
tinuous, only the third being defined on the whole interval
0 � x <1, see box b of Fig. 5. When 0< a � 1 all three
branches are continuous and are defined on the whole
interval 0 � x <1, one of them is asymptotically
Coulombian. There are three horizontal lines Z � � 1�����

jaj
p ,

Z � 0 and Z � � 1�����
jaj
p , which yield distinct ranges for the

functions Z1�x; a�, Z2�x; a�, and Z3�x; a�. Clearly, the curve
of Coulombian type is in between the separatrices Z � 0
and Z � � 1�����

jaj
p . The model with critical a, call it a0 again,

is the one that has a � 1, i.e., a � a0 � 1. This model can
be solved analytically, and we consider this case in detail
below. Finally, when a tends to zero remaining positive, the
starting points Z1�0; a� tend to minus infinity, and Z2�0; a�,
Z3�0; a� grow infinitely. Clearly, at a! 0� the branch
Z2�x; a� is the only branch that remains visible at finite
values of x, and is Coulombian.

(ii) a � 0.—When a � 0, one obtains the Coulombian
solution Z�x; 0� � 1

x2 , see the curve in box e of Fig. 5.
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(iii) a < 0.—When a is negative, the coefficient (x2 �

a) in the first term of Eq. (74) vanishes at x �
������
jaj

p
and the

line x �
������
jaj

p
is the vertical asymptote of the graph Z�x; a�,

see the example of the curve for a � �1 in box f of Fig. 5.
When a tends to zero remaining negative, the vertical
asymptote shifts towards the line x � 0, and the solution
Z�x; a! 0�� converts, finally, into the Coulombian solu-
tion. At large values of x the plots of the function Z�x; a <
0� tend to the Coulombian curve Z�x; 0� for all values of the
quantity a. Thus, for a � 0 the solutions Z�x; a� are not
regular at all in the range 0 � x <1.

3. Metric functions

To study the gravitational part of the solution, we ob-
serve that the solution of (75) for N can be presented in
quadratures
 

N�x; a� � 1�
1

x
eaZ

2�x;a�
�
K �

Z x

1
d�e�aZ

2��;a�

�

�
��2 � a�Z2��; a� � 2Z��; a�

� 2a�Z��; a�
d
d�
Z��; a�

��
; (77)

where Z�x; a� is supposed to be already found. The con-
stant of integration K can clearly be related to the asymp-
totic mass of the object M. When x! 1 and
Z�x! 1; a� ! 1

x2 , Eq. (77) yields that K � rM
rQ

, as defined

in (30). On the other hand, searching for a solution N�x; a�,
which is finite at x � 0, and taking into account that Z�0; a�
is finite, we should require that

 K �
Z 0

1
d�e�aZ

2��;a�
�
��2 � a�Z2��; a� � 2Z��; a�

� 2a�Z��; a�
d
d�
Z��; a�

�
: (78)

In this case the formula (77) transforms into
 

N�x; a� �
1

x
eaZ

2�x;a�
Z x

0
d�e�aZ

2��;a�	��2 � a�Z2��; a�

� 2Z��; a� � 1
; (79)

providing

 N�0; a� � 1� aZ2�0; a� � 2Z�0; a�: (80)

Since the electric field at the center satisfies the condition

 1� 2aZ2�0; a� � a2Z3�0; a� � 0; (81)

[see (74)], then N�0; a� can be rewritten as N�0; a� � 1�
1

aZ�0;a� in accordance with the first relation from (20). Thus,
for the family of solutions with regular functions N�r; a�
and E�r; a� the quantity K is a function of the value Z�0; a�,
i.e., depends on the quantity a according to the formula
(78), K � K�a�.

Also, from (76) for 	 one finds

 	�x; a� � 	�1; a� expf�a	Z2�x; a� � Z2�1; a�
g; (82)

with Z�x; a� being found from (74). For the asymptotically
Coulombian branch we have to set Z�1; a� � 0 and thus
	�1; a� � 1. Then, the function 1=A is taken from 1=A �
N and the function B is taken from A and 	, B � 	2=A.

In the Reissner-Nordström solution and in the previous
discussed model, i.e., the Gauss-Bonnet model (see
Secs. III B and III C, respectively), we divided the solutions
according to K > 2, K � 2, and K < 2. Here it is no more
convenient to make such a division. The reason is that K is
not a free quantity here, rather K � K�a�. Since it is not a
free quantity, we cannot classify the models with respect to
it, we can only calculate this quantity (numerically) after
solving the problem as a whole. In the Gauss-Bonnet
model of Sec. III C we could classify through K because
the equations for Z�x� and N�x� cannot be decoupled, thus,
Z�0; a� and N�0; a� are connected. This means that we can
chooseK as a convenient quantity for the classification, the
dependent quantity being Z�0; a�. Here, in this model, the
solution for Z�x� satisfies a decoupled equation, the latter
does not depend on N�x�. Thus solving the decoupled
equation for Z�x; a�, we can classify the quantity Z�0; a�
as the independent one. Then, we obtain N�x; a� and, as we
see, N�0; a� depends on E�0; a�, an so K is a dependent
quantity, K � K�a�. An explicit example where K�a� is
calculated is given below for the case a � a0 � 1. So, as
when discussing the electric field, we again divide the
analysis into three cases, here with subcases.

(i) a > 0.—We should further divide into three
subcases.
1> a> 1.—The electric field is discontinuous or ir-

regular at the center. Since in this work we focus on regular
electric fields everywhere, although interesting, we do not
discuss these models here.
a � 1, i.e., a � a0 � 1.—We plot in Fig. 6, boxes (a),

(b), (c), (d), the functions 1=A, B, log
�������
AB
p

, and E=EQ,
respectively. From the figure it is clear that a � 1 is
characterized by the absence of horizons. For a � a0 �
1 the solution is regular, or better, quasiregular, and is a
soliton of the theory, the Fibonacci soliton. Because of its
interest, the case a � a0 � 1 will be solved next explicitly.

1> a> 0.—This case is interesting. In this case we plot
in Fig. 6, boxes (a), (b), (c), (d), the functions 1=A, B,
log

�������
AB
p

, and E=EQ, respectively, for two positive values of
a within this range, namely, a � 0:999, 0.750. From the
figure it is clear that positive a in this range gives one
horizon, and the solution possesses a quasiregular center.
Since the singularity at the center is a conical one, these
black hole solutions can be considered as quasiregular
solutions, and thus are of great interest. Note that extremal
black holes have only one zero, which in turn is a double
zero. So from the figure above, the nonminimal black holes
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do not characterize as extremal. Rather, they are of the
Schwarzschild type, with one horizon, a spacelike singu-
larity, but here, different from Schwarzschild, the singu-
larity is mild, it is a conical singularity.

(ii) a � 0.—It is the Reissner-Nordström case. For this
case the electric field is irregular at the center.

(iii) a < 0.—For these cases the electric field is discon-
tinuous or irregular at the center, like the Reissner-
Nordström case, and we do not discuss these models here.

4. Exact solution: a � a0 � 1, the Fibonacci soliton

Let a � a0 � 1. Then the cubic equation (74) takes the
form

 �Z� 1�	�1� x2�Z2 � �x2 � 1�Z� 1
 � 0: (83)

One sees that Eq. (83) splits into one linear equation and
one quadratic equation. One branch of solutions of (83),
the linear one, describes a constant electric field
Zconst�x; 1� � 1, or, equivalently, E�r� � EQ. This branch
is of no great interest. Another branch ZnonCoulomb�x; 1� is
given by the function ZnonCoulomb�x; 1� �

1
2�1�x2�

	1� x2 ����������������������������
x4 � 2x2 � 5
p


, which is bounded. The graph of this
function starts from ZnonCoulomb�0; 1� � �

��
5
p
�1
2 and tends

asymptotically to the line Z � �1. The behavior of such
electric field is not of Coulombian type, and will be not
discussed further. Yet, there is a third branch. The branch

FIG. 5. It is shown, in the nonminimal integrable model, with q1 � �q2 � �q and q3 � 0, the rescaled electric field Z�x; a�,
�Z�x; a� � E�r�=EQ�, as a function of the scaled radius x �x � r=rQ� of gravitational electrically charged objects characterized by
a � 2q

r2
Q

. (a) Displays the solution Z�x; a� when the nonminimal quantity a satisfies the inequality 32
27 < a<1. There are three real

branches of the solution Z�x; a�. Nevertheless, only one of them is defined on the whole interval 0 � x <1. Only one branch tends to
the horizontal asymptote Z � 0 at x! 1. (b) Displays the solution Z�x; a� in the case 1< a � 32

27 . There are three real starting points
Z1�0; a�, Z2�0; a�, Z3�0; a� for the three corresponding branches of the solution Z�x; a�. Nevertheless, two branches are not continuous,
only the third being defined on the whole interval 0 � x <1. (c) Displays the solution Z�x; a� for the important case a � a0 � 1, the
Fibonacci soliton. (d) Displays the solution Z�x; a� in the case 0< a< 1. (e) Displays the solution Z�x; a� in the case a � 0 which is a
Coulombian electric field. The curve is not continuous. (f) Gives an example of the solution for negative a with a vertical asymptote.
When a tends to zero remaining negative, the vertical asymptote shifts towards the line x � 0, and the solution Z�x; a! 0�� converts,
finally, into the Coulombian solution. At large values of x the plots of the function Z�x; a < 0� tend to the Coulombian curve Z�x; 0� for
all values of the quantity a.
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ZCoulomb�x; 1� � Z�x; 1� given by the formula

 Z�x; 1� �
1

2�1� x2�
	1� x2 �

���������������������������
x4 � 2x2 � 5

p

; (84)

describes a Coulombian type electric field. At x! 1, one
has Z�x; 1� ! 1

x2 , or equivalently, E�r� ! Q
r2 . The graph of

this function starts from Z�0; 1� �
��
5
p
�1
2 . Interesting to note

that the starting points Z�0; 1� are associated to the well-
known Fibonacci series and the ‘‘golden section’’ � ���

5
p
�1
2 � 2��

5
p
�1
� 1:618 . . . . For the Coulombian type solu-

tion, the function N�x; 1�, which we write simply as N�x�
when suitable, is regular at the center only if the constantK
satisfies (78). The corresponding quadrature for N�x� is

 N�x� �
1

2x	�x�

Z x

0
d�	���	�2 � 3�

����������������������������
�4 � 2�2 � 5

q

;

(85)

where 	�x� is given by (86). Clearly,N�1; 1� � N�1� � 1

and N�0; 1� � N�0� � 3�
��
5
p

2 , so that 1� N�0� � 1
� � ��

1, and the relations (20) are satisfied. The plot of the
function N�x� for a � a0 � 1 is shown in Fig. 6. Clearly,
the function N�x� is positive in the interval 0 � x <1. For
the Coulombian type solution (84) the function 	�x; 1�,
which we write simply as 	�x� when suitable, is given by

 	�x� � exp
�
�

3� �1� x2�
���������������������������
x4 � 2x2 � 5
p

� x4

2�1� x2�2

�
; (86)

with 	�0; 1� � 	�0� being equal to expf��1���g. Then
one finds 1=A from 1=A � N and B � 	2=A. The function
B�x� is also positive, and B�0� � �1� 1

��e
�2�1��� ’

0:002 032. Thus, this solution is a solution without hori-
zons and is regular. Although the curvature scalars diverge,
the singularity at the center is a mild one, it is a conical
singularity. The asymptotic massM of the object defined as

 rM � 2GM � lim
r!1
fr	1� B�r�
g; (87)

is represented in this case by the integral
 

M �
jQj

4
����
G
p

Z 1
0
d�
�

1

	���
� �

	0���

	2���

�
1

2
	�����2 � 3�

����������������������������
�4 � 2�2 � 5

q
�

�
: (88)

Numerical calculations give the value

 M ’ 0:442
jQj����
G
p ; (89)

which yields in addition,

FIG. 6. Nonminimal solution of the integrable model, with q1 � �q, q2 � q, and q3 � 0, of gravitational electrically charged
objects characterized by a � 2q

r2
Q

. Plots (a), (b), (c), and (d) depict the functions 1
A , B, log

�������
AB
p

and E=EQ, respectively, as functions of

x � r
rQ

, for three typical values of the quantity a, when 0< a � 1. These functions are regular and take finite values at r � 0. The

solution with a � a0 � 1 is a solution without horizons, since 1
A and B are positive everywhere. Indeed the a � a0 � 1 solution is a

soliton of the model, the Fibonacci soliton. It has a mild conical singularity at the center, and is a solution without horizons.
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 K �
2
����
G
p

M
jQj

’ 0:884: (90)

This is thus a very interesting solution. It is a soliton in the
sense that it is made of the very own fields of the theory, the
gravitational and electric fields; it is a solution without
horizons; and it is quasiregular, with a conical singularity
at the center.

Note also that the value a � a0 � 1 can be regarded as a
critical one. There are two reasons for this. First, it is clear
from Fig. 5, that for the unique case a � a0 � 1 there
exists a bifurcation point, in which the two branches of
the curve Z�x; a� or E�r; a� intersect. When a > 1, the
Coulombian branch of the electric field curve is discon-
tinuous. When 0< a< 1, three continuous regular
branches exist. The second reason is that at a � a0 � 1
the corresponding curve on Fig. 6 plays a role of a sepa-
ratrix; when 0< a< 1, desirable curves, continuous and
regular at the center, exist, otherwise they do not appear.

E. Summary of the results

In Table-I the results of the various models studied are
summarized.

IV. CONCLUSIONS

We have shown that the original nonminimal Einstein-
Maxwell theory with three parameters q1, q2, and q3, is
reducible in natural different ways to a theory with one
parameter q only, in which the three parameters obey two
relations between themselves. We have then studied two
special models for static spherically symmetric solutions
obeying the following requirements: the electric field E�r�
is regular everywhere in the interval 0 � r <1, being
Coulombian far from the center. From the solutions of
this class we extract the ones, for which the metric coef-
ficients 1

A�r� and B�r� are regular at the center r � 0 and
tend to one asymptotically as r! 1.

The first nonminimal model, the Gauss-Bonnet model
(with q1 � �q, q2 � 2q, q3 � �q, q free), displays
charged black hole solutions with one horizon only, when
the dimensionless nonminimal quantity a, with a � 2q=r2

Q

naturally appearing in the model, exceeds a critical value
a0, a > a0. Although the black hole is electrically charged
the solutions found have one horizon only, and are similar
in this connection to the Schwarzschild solution. When
a < a0, the solutions are discontinuous in the interval 0 �
r <1, or irregular at the center r � 0. Another main result
in this model is that there exists a unique solution, the
solution for the critical value a � a0, which does not
possess horizons and is characterized by regular fields
E�r�, 1=A�r�, and B�r�, with B�0� � 0 and A�0� � 1,
although the curvature invariants blow at the origin.

The second model, the integrable model (with q1 � �q,
q2 � q, q3 � 0, q free), is also characterized by one
critical value a � a0 � 1 of the nonminimal quantity a.
When a < 0 or a > 1, the solutions are irregular. When
0< a< 1 one obtains black holes with electric field regu-
lar everywhere and with only one horizon, like the
Schwarzschild solution. Finally, when a � a0 � 1, i.e.,
at the critical value of the quantity a, there exists a solitonic
solution with a conical singularity at the center, but other-
wise well behaved. This solution can be called the
Fibonacci soliton, since the well-known � number (� ���

5
p
�1
2 ’ 1:618) associated with the golden section appears

naturally in the expressions for the central values of the
electric field GjQjE�0� � �, and the metric coefficients
are also related to�, namely 1� 1

A�0� �
1
� andB�0� � �1�

1
�� exp	�2�1���
.

Summing up, we can say that the nonminimal curvature
induced interaction between the gravitational and electro-
magnetic fields provides an electric field of static spheri-
cally symmetric charged objects, which is regular
everywhere for different relations between the coupling
constants q1, q2, and q3. As for additional regularity of

TABLE I. In this table it is displayed the main results on the studied models.

q1 � �q, q2 � 2q, q3 � �q q1 � �q, q2 � q, q3 � 0

K � 1, a0 � 7:49 K � 2, a0 � 0:468 K � 2
���
2
p

, a0 � 0:117 K � 0:884, a0 � 1

a < 0 Finite electric field E�r� Finite E�0�, Infinite electric barrier
Infinite 1=A�0�, B�0�

0 Horizon 1 Horizon 2 Horizons

a � 0 Minimal Reissner-Nordstrom model

0< a< a0 Discontinuous electric field E�r� Finite E�r�, 1=A�r�, B�r� 1 Horizon

a � a0 Finite E�r�, 1=A�r�, B�r�

0 Horizons 1 Horizon 1 Horizon 0 Horizons

a > a0 Finite E�r�, infinite 1=A�0� and B�0� Discontinuous E�r�

1 Horizon 1 Horizon 1 Horizon
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the metric coefficients B�r� and A�r�, the nonminimal
interaction can provide models which have very specific,
critical, values for the coupling constants, in which the
geometry has at most a conical, and thus mild, singularity.
This is in line with the problem posed by Bardeen [17],
where one should look for theories with regular black
hole solutions. We have partially solved it within these
models.
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