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Activities in data analysis and numerical simulation of gravitational waves have to date largely
proceeded independently. In this work we study how waveforms obtained from numerical simulations
could be effectively used within the data analysis effort to search for gravitational waves from black hole
binaries. To this end we analyze the cross-correlation between different numerical waveforms weighted by
the detector’s noise. This allow us to propose measures to quantify the accuracy of numerical waveforms
for the purpose of data analysis, study how sensitive the analysis is to errors in the waveforms, and propose
a way to efficiently encode the waveform’s information for its use as a member of the template bank. We
estimate that�100 templates (and�10 simulations with different mass ratios) are needed to detect waves
from nonspinning binary black holes with total masses in the range 100M� � M � 400M� using initial
LIGO. Of course, many more simulation runs will be needed to confirm that the correct physics is
captured in the numerical evolutions. From this perspective, we also discuss sources of systematic errors
in numerical waveform extraction and provide order of magnitude estimates for the computational cost of
simulations that could be used to estimate the cost of parameter space surveys. Finally, we discuss what
information from near-future numerical simulations of compact binary systems would be most useful for
enhancing the detectability of such events with contemporary gravitational-wave detectors and emphasize
the role of numerical simulations for the interpretation of eventual gravitational-wave observations.
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I. INTRODUCTION

Searches for gravitational waves from coalescing com-
pact binary systems rely on concrete knowledge of the
waveform to achieve maximum sensitivity to these
sources. With LIGO currently acquiring data at design
sensitivity (see Fig. 1), an optimal matched filtering search
could detect the gravitational waves from binary black hole
coalescence out to several hundred Mpc. Direct observa-
tion of gravitational waves from these systems will have
significant and far reaching consequences for both gravi-
tational physics and astronomy.

To date, searches for gravitational waves from compact
binary systems using data taken at LIGO, GEO. and
TAMA observatories have concentrated mostly on binary
neutron stars and speculative lower mass systems [1]—
each element of the binary has a mass below mj � 3M�.
Searches for inspiral waves from higher mass systems such
as binary black holes and black hole neutron star pairs have
used detection templates constructed to match with a wide
variety of theoretical waveforms [2]. This is the first step in
searching for one of the most promising and tantalizing
sources accessible to earth-based gravitational-wave de-
tectors. As numerical relativity simulations produce wave-

forms, new issues arise when trying to migrate this
knowledge into analysis efforts.

The gravitational waves measured from a compact bi-
nary system depend on a number of parameters including
the masses m1 and m2, the spins ~s1 and ~s2, the time of
merger t0, and the distance D to the binary. Additional
parameters detailing the orbit, specified at some fiducial
time, include the inclination of the orbital plane � relative
to the direction to the observer, the eccentricity of the orbit,
and the phase of the orbit �0; these are collectively de-
noted with the symbol �. Further, angles describing the
location of the binary on the sky and the polarization angle
between the propagation and detector frames are needed to
obtain the response of a given detector to the incident
wave. For binary black holes these are all the free parame-
ters; for neutron stars there are additional parameters
that relate to their internal structure and composition. In
considering the utility of numerical simulations in
gravitational-wave astronomy, it is critical to understand
the dependence of the numerical waveforms on all of these
parameters. Some of the dependencies are, in principle, in
hand already. For example, the functional form of the
dependence on sky location, polarization angle, and dis-
tance is known analytically if the waves can be extracted
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accurately from numerical simulations. The time of merger
is also easily accounted for by translating the computed
waveform in time (which is done by applying a frequency
dependent phase shift to the waveform).

Post-Newtonian (PN) calculations of the waveforms
demonstrate the complicated dependence on the other
parameters. When all known amplitude and phase terms
are included in the waveform, it is necessary to explicitly
measure the masses, spins, inclination, and phase. On the
other hand, the so-called restricted post-Newtonian tem-
plates (which keep all phase corrections but only the lead-
ing amplitude term) provide a simplified and efficient
detection method for nonspinning binaries. The data analy-
sis problem (for fixed masses) reduces to the detection of a
signal of unknown amplitude and phase for which the
optimal method is well known [3].

In this paper, we present preliminary investigations of
waveform accuracy and discuss implications for numerical
simulations. In Sec. II, we give an overview of the form of
the gravitational-wave strain that is measured at detectors,
the relationship between this and a common way of de-
scribing the waveform from numerical simulations in terms
of Weyl scalars, and summarize the numerical results we
will use as examples. In Sec. III, we provide a framework
to obtain an estimate of the accuracy of a particular simu-
lation with relation to the data analysis techniques. We

present examples from the perspective of both inspiral and
burst searches, and from the inspiral study we obtain a
crude estimate that, for the purposes of detection of non-
spinning binaries, a template bank for initial LIGO con-
taining approximately 100 waveforms will be sufficient;
this corresponds to about 10 simulations with different
mass ratios. In Sec. IV, we conclude with broad discussions
of several important and related issues, including certain
technical aspects of waveform extraction from simulations
that might introduce spurious effects—details of this dis-
cussion are deferred to Appendix A. We also explain how
information from current simulations, before fully quali-
fied simulations can produce template waveforms, can be
used to enhance the detection of binary black holes using
excess-power type searches tuned to the right frequencies.
Finally, we discuss how numerical simulations may be
used to interpret eventual gravitational-wave observations.
Most of our analysis focuses on binary black hole systems,
although in Sec. IV we also comment on other compact
binaries that contain one or two neutron stars. In
Appendix B we provide scaling estimates of the CPU
time (cost) required to simulate binary systems. This
should be useful to estimate how feasible various surveys
of binary black hole merger parameter space would be on
contemporary computer systems.

II. GRAVITATIONAL WAVEFORMS FROM BLACK
HOLE BINARIES

For a binary black hole system, the gravitational-wave
strain measured at one of the detectors can be written as

 h�t� � F���; �; t;  �h��t� t0;m1; m2; ~s1; ~s2; D;��

� F	��; �; t;  �h	�t� t0;m1; m2; ~s1; ~s2; D;��;

(1)

where m1 and m2 are the black hole masses, ~s1 and ~s2 are
the black hole spins, t0 is the time of merger, D is the
distance to the binary, ��; �� are the right ascension and
declination of the binary,  is the polarization angle be-
tween the propagation and detector frame, and � includes
the various elements needed to uniquely specify the or-
bit—for small spins and circular orbits these elements are
the inclination of the orbital plane, �, and the phase of the
orbit at time of merger, �0.

Numerical waveforms are usually obtained from the
Weyl scalar �4. Under a careful choice of coordinates,
frame, and extraction world tube (further discussion of
which is presented in Sec. IV and Appendix A), the wave-
form is related to �4 by

 

d2

dt2
�h� � ih	� � �4: (2)

It is often convenient to represent the waveform in terms of
spin-weight �2 spherical harmonics as

FIG. 1 (color online). The noise sensitivity curves for the
LIGO interferometers published in June 2006 [66]. The thick
black (blue) and dark grey (red) curves are the 4 km interfer-
ometers at Hanford and Livingston, respectively. The light grey
(green) curve is the 2 km Hanford interferometer. The LIGO-I
noise curve used for the sample calculations in this paper is the
thick black (purple) line. Compact binaries generate gravita-
tional waves which sweep upward in frequency as they inspiral
and merge. The frequency ( 
 40 Hz) below which the noise
curve rises sharply determines the longest dynamical time scale
of the sources to which the LIGO instruments are sensitive; this,
in turn, translates to a largest mass compact binary system to
which LIGO is sensitive.
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 h� � ih	 �
X
clm�2Ylm: (3)

For concreteness, we consider waveforms extracted from
numerical simulations performed by Pretorius [4]; similar
calculations can certainly be done with waveforms ex-
tracted from other simulations [5–10].

The simulations evolve two classes of initial data: (a) -
equal-mass, quasicircular corotating initial configurations
as calculated by Cook and Pfeiffer [11–13], and (b) black
hole binary systems formed via the gravitational collapse
of two boosted scalar field pulses. A detailed analysis of
the Cook-Pfeiffer (CP) evolutions is presented in [14]. The
scalar field collapse binaries (SFCB) have nonnegligible
initial eccentricity, zero initial spin, and simulations with
mass ratios up to 1:5:1 have been performed (a more de-
tailed description of the equal-mass scenarios can be found
in [4,15]). Note that the scalar field is merely a convenient
vehicle to create binary configurations; remnant scalar field
energy leaves the vicinity of the binaries in about one light
crossing time (on the order of 1=4 orbit) and is dynamically
insignificant for the subsequent evolution of the binary,
and, in particular, the gravitational waves that are gener-
ated. Here we study three examples from these evolu-
tions—a CP d � 16 case (d labels the initial separation
between the binaries [11]) and two SFCBs, one equal mass,
the other with a mass ratio of 1:5:1. The two former
evolutions exhibit roughly 2.5 orbits before merger, the
latter unequal mass case about 1.5 orbits. In all cases the
remnant is a Kerr black hole with spin parameter a 

0:7Mf, where Mf is the final mass of the black hole, and
roughly 3%–5% of the initial mass energy (i.e. the sum of
the individual masses in the initial data) of the system is
radiated away in gravitational waves. Figure 2 shows a few
samples of the waveforms extracted from these simula-
tions, while Fig. 3 demonstrates the convergence behavior
of the wave with resolution for the CP case. In Fig. 2, data
from the highest resolutions available are shown.

Observe that the waveforms depicted in Fig. 2 have
some noticeable differences. By construction the phases
all match at t � 0. On axis, the CP and unequal mass

FIG. 2 (color online). Samples of �4 from the binary black
hole merger simulations discussed here. Evolutions from three
different initial conditions are shown: Cook-Pfeiffer d � 16 (CP
d � 16), and two scalar field collapse binaries, one equal mass,
the other with a mass ratio of 1:5:1. The top plot shows the real
part of �4 evaluated along the axis � � 0 orthogonal to the
orbital plane (and azimuthal angle � � 0); for brevity we do not
show the imaginary part as it looks almost identical modulo a
phase shift. The figures below show the real and imaginary parts
of �4 evaluated at � � 3�=8 (note the different vertical scale).
Here we show both components as there are noticeable differ-
ences between the two polarizations. In all cases the waveform
was extracted at a coordinate radius of r � 50m, where m is the
sum of initial apparent horizon masses; also, the time has been
shifted so that t � 0 corresponds to the peak in wave amplitude,
and �4 has been multiplied by a constant complex phase angle
to aid comparison.

FIG. 3 (color online). A plot demonstrating the dependence on
numerical resolution of Cook-Pfeiffer d � 16 initial data evolu-
tions. The lowest characteristic resolution (dashed line) has a
characteristic mesh spacing of h, the next lowest one of 3h=4
(dotted line), while the finest resolution has a mesh spacing of
h=2 (solid line). The dominant component of the numerical error
is in the phase evolution of the inspiral portion of the wave. See
[14] for a detailed discussion of the numerical errors in this set of
evolutions.

LEARNING ABOUT COMPACT BINARY MERGER: THE . . . PHYSICAL REVIEW D 77, 084009 (2008)

084009-3



SFCBs have similar phase and amplitude evolution of the
waveform several cycles to the left and right of t � 0;
however, moving toward the orbital plane the similarities
are less evident. There is also a more rapid decoherence
between the equal-mass SFCB and the other two cases
moving away from t � 0. One reason for this is that the
equal-mass SFCB example has initial conditions tuned to
exhibit some ‘‘zoom-whirl’’ type behavior, showing a
couple of whirl orbits before the system finally merges.
During the whirl phase the binaries are quite close together
[inside of what might be considered an innermost stable
circular orbit (ISCO)] and moving faster than a corre-
sponding point in a quasicircular inspiral. Hence the am-
plitude of this portion of the wave is quite a bit larger than
the quasicircular case and remains similar in magnitude
over a couple of wave cycles. These differences are in
contrast to quasicircular equal-mass inspiral results ob-
tained by most groups, visual comparisons of which sug-
gest remarkable similarity in the waveforms over several
wave cycles away from the matching point [16,17]. Given
that all the latter evolutions are approximations to essen-

tially the same astrophysical scenario, the similarity is not
too surprising, but nevertheless is reassuring.

It is also interesting to examine the Fourier spectrum of
these waveforms and to notice the similarities and differ-
ences that are manifest. The amplitude of the Fourier
transform of the gravitational waveform, from the evolu-
tion of Cook-Pfeiffer initial data, shown in Fig. 2, is plotted
in Fig. 4. This is computed directly from �4�t� using the
frequency domain equivalent of Eq. (2) which gives, for
example,

 � 4�2f2 ~h��f� � ~�R
4 �f�; (4)

where ~�R
4 �f� and ~h��f� are the Fourier transform of the

real part of �4 and the strain, respectively (see Sec. III A).
This avoids introducing artifacts from the numerical inte-

FIG. 4. The amplitude of the Fourier transform of the gravita-
tional waveform, from the evolution of Cook-Pfeiffer initial data,
shown in Fig. 2. The vertical dashed lines are the estimated
frequency of the inner-most stable circular orbit given in Eq. (5)
and the frequency of the dominant quasinormal mode, assuming
a � 0:7Mf, given in Eq. (6). The gray shaded region indicates
variations in this frequency due to 10% changes in the mass
used. Notice how the power in these waves is predominantly
emitted between these two frequencies; the initial data is such
that the binary is orbiting at or near the ISCO frequency. In
addition, the dashed gray line which follows the amplitude is
proportional to f�5=6. While this is a convincing fit to the
amplitude, we note that there is weak evidence for two power
laws f�7=6, as given by post-Newtonian approximations [67],
below �1:5fisco and f�5=6 above that frequency. These simula-
tions do not cover the inspiral phase well enough to confirm this
result.

FIG. 5. The amplitude of the Fourier transform of the gravita-
tional waveforms shown in Fig. 2: the top panel is an equal-mass
SFCB, and the lower panel is a mass ratio 1:5:1 SFCB. Note the
differences between these spectra and that shown in Fig. 4. The
bump in the equal-mass spectrum arises from the hangup of the
binary at roughly constant separation with a brief whirl phase
prior to merger.
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gration of Eq. (2). To guide the eye, we indicate the
frequency of the innermost stable circular orbit estimated
by Kidder et al. [18]

 fisco 
 205
�

20:0M�
M

�
Hz; (5)

and the frequency of the l � m � 2 mode of quasinormal
ringing given by

 fqnr 
 1600�1� 0:63�1:0� a�0:3�
�
20M�
MBH

�
Hz; (6)

where M is the total mass of the binary, and MBH and a are
the mass and spin of the final black hole. Notice how the
power in these waves is predominantly emitted between
these two frequencies–the initial data is such that the
binary is orbiting at or near the ISCO frequency. More-
over, the spectrum shows a power-law spectrum reminis-
cent of the behavior of post-Newtonian waveforms. Similar
plots are shown in Figs. 5 for the SFCB waveforms. It is
interesting to note the bump in the spectrum when m1 �
m2; this appears to be caused by the zooming orbits re-
ferred to above. It points to the variety of waveform
morphologies that might exist for binary black hole merg-
ers when eccentricity and even spin of the black holes is
large.

The preceding discussion of similarities and differences
between waveforms is quite heuristic and subjective, and
thus of arguable merit. One of the main purposes of this
paper is to propose metrics to both quantify the accuracy of
simulations and the similarities/differences between wave-
forms, though primarily from the perspective of data analy-
sis. The sets of waveforms depicted in Figs. 2 and 3, that
appear to be significantly different due to either numerical
resolution effects or different initial physics parameters,
will provide useful test cases to gauge the efficacy of the
proposed metrics.

III. ESTIMATING THE WAVEFORM ACCURACY

The accuracy of numerical solutions is generally deter-
mined by comparing results obtained at different grid
resolutions (and at different boundary locations if these
are not placed sufficiently far away to ensure they are
causally disconnected from the region of interest). This
approach determines the pointwise convergence of the
solutions. In the context of gravitational-wave astronomy,
only the waveforms themselves are directly accessible to
observation. It is therefore important, if the results of
numerical simulations are to be useful to gravitational-
wave astronomers, to provide a measure of the waveform
accuracy.

A. Data analysis formalism

The standard tool of gravitational-wave data analysis is
the matched filter. If a signal is present, the detector output

is

 s�t� � n�t� � h�t; �̂�; (7)

where n�t� is the noise and h�t; �̂� is the signal. In general,
the signal depends on a set of unknown (in advance)
parameters �̂. We assume the noise is a zero mean hn�t�i �
0 and stationary process, i.e. hn�t�i � 0 and hn�t1�n�t2�i �
Q�jt1 � t2j� for some function Q. Here h. . .i denotes the
ensemble average over different instantiations of the noise.

Define the Fourier transform of the noise by

 ~n�f� �
Z 1
�1

n�t�e�2�iftdt: (8)

Since the Fourier transform is just a linear transformation
of the noise time series, we also have h~n�f�i � 0. Further,
the variance or power spectrum Sn�jfj� is defined by

 h~n�f�~n�f0�i � 1
2Sn�jfj���f� f

0�: (9)

Notice that this two point function is diagonal; this is a
direct consequence of the stationarity of the noise.
Moreover, the power spectrum of the noise will depend
nontrivially on frequency if the time-domain correlation
function is not diagonal. Noise with a frequency dependent
power spectrum is often referred to as colored noise.

In its simplest form, matched filtering is cross-
correlating a template waveform w�t;�� with the time
series s�t� observed by the gravitational-wave detector.
The matched filter signal-to-noise ratio (SNR) is

 ���� �
2

	w

Z 1
�1

df
~s�f� ~w�f;��
Sn�jfj�

; (10)

where

 	2
w � 2

Z 1
�1

df
~w�f;�� ~w�f;��

Sn�jfj�
: (11)

Notice that the signal-to-noise ratio is normalized such that
h�2i � 1 if the signal is absent, i.e. h�t; �̂� � 0.

Since the signal parameters are not known in advance,
one must search over all possible values of the parameters
� to find the template that best matches the signal buried in
the noise. Then the output of a search (over a small chunk
of data) will be

 � � max
�
����: (12)

The largest SNR will be obtained when w�t;�� �
constant	 h�t; �̂� and � � �̂. In practice, two important
issues arise. First, only a discrete set of values of � can be
searched. This leads to the notion of a bank of templates
with different parameter values. There is a well-developed
formalism for constructing template banks [19] for
gravitational-wave data analysis. In Sec. III D, we will
comment on the number of templates needed for the binary
black hole problem and hence the number of accurate
numerical simulations that must be done. Second, the
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theoretical template waveforms may not accurately agree
with the real signals. It is this issue which we address here.

The expected SNR is then

 h����i �
2

	w

Z 1
�1

df
~h�f; �̂� ~w�f;��

S�jfj�
: (13)

If the template and the signal are the same, then the optimal
SNR (squared) is

 h�opti
2 � 	2

h � 2
Z 1
�1

df
j~h�f; �̂�j2

Sn�jfj�
: (14)

Define the match [19] between a waveform and a template
by

 
 �
h����i
h�opti

(15)

 �
2

	h	w

Z 1
�1

df
~h�f; �̂� ~w�f;��

S�jfj�
: (16)

The fitting factor [20]

 FF � max
�

 (17)

is a measure of the distance between a signal and the whole
template space. If FF � 1, the signal lies inside the tem-
plate space. We will generally use the term match to mean
something that is maximized over a subset of the parame-
ters � and keep the fitting factor for the case when all
template parameters have been maximized over.

B. Reparametrization of the numerical templates

In general, the response of a gravitational-wave detector
to the waves from a compact binary merger will be non-
trivial as expressed in Eq. (1). Motivated by our intuitive
expectation that gravitational radiation is dominated by the
quadrupole waves, we have explored the following repar-
ametrization of the numerical waveforms:
 

w�t;�� 
 A
�
1 Mpc

D

�
�cos�ê��t� t0;m1; m2�

� sin�ê	�t� t0;m1; m2��; (18)

where A and � depend on the right ascension �, declina-
tion �, polarization  , inclination �, and time t. (The
variation in these constants over the short duration of the
signal is completely negligible; however, the response of
the instrument to a gravitational wave from a given loca-
tion on the celestial sphere depends on the time of day.)
Here the plus and cross polarization states ê�;	�t�
t0;m1; m2� are just the waveforms extracted on the axis
orthogonal to the plane of the binary orbit. Explicitly,
ê��t� t0;m1; m2� � iê	�t� t0;m1; m2� � c2;2�t� t0;m1;
m2; D � 1 Mpc� with c2;2 being the l � m � 2 mode in
the expansion given by Eq. (3). Here we present evidence
that this reparametrization may capture the essential fea-

tures of the merger waveforms sufficiently well for the
purposes of detecting the waves. On the other hand, the
full waveforms will probably be needed to extract all the
possible science.

To see that this approximation is good enough for de-
tection, we reexpress the matched filtering SNR in terms of
these templates. First, notice that the amplitude A	
�1 Mpc=D� cancels out of the SNR defined in Eq. (10).
Hence the SNR can be expressed as

 � � max
�;t0;m1;m2

z� cos�� z	 sin�

�	w
; (19)

where �	w � D	w=�A	 1 Mpc� and

 z�;	�t0;m1; m2� � 2
Z 1
�1

~s�f�~e�;	�f;m1; m2�

Sn�jfj�
e2�ift0df:

(20)

For the waveforms considered here, we find that

 2
Z 1
�1

df
j~e��f;m1; m2�j

2

Sn�jfj�

 2

Z 1
�1

df
j~e	�f;m1; m2�j

2

Sn�jfj�
(21)

to better than 3% accuracy. We also find that the two
polarizations are almost orthogonal, that is

 

Z 1
�1

df
~e��f;m1; m2�~e	�f;m1; m2�

Sn�jfj�

 0; (22)

with typical values �3	 10�3. Hence the normalization
constant 	w simplifies considerably and is independent of
� and t0:

 	2
w 
 	2

e � 2
Z 1
�1

df
j~e��f;m1; m2�j

2

Sn�jfj�
: (23)

This allows us to maximize over � analytically to find

 � � max
t0;m1;m2

	�1
w

����������������������������������������������������������������
z2
��t0;m1; m2� � z

2
	�t0;m1; m2�

q
: (24)

Below, we will use the plus and cross quadrature matched
filters to quantify both the accuracy of the numerical
simulations and the accuracy of the approximation intro-
duced in Eq. (18).

Moreover, the match can be written as

 
 � max
�;t0;m1;m2

�
� cos��
	 sin�� (25)

where

 
�;	 �
hz�;	i
	h	e

: (26)

It is straightforward to see that the validity of the repar-
ametrization in Eq. (18) requires that
� 
 1 and
	 
 0,
independent of the inclination �, when h�t; t0; m1; m2� �
h��t; t0; m1; m2; ��, and that 
	 
 1 and 
� 
 0, inde-
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pendent of the inclination �, when h�t; t0; m1; m2� �
h	�t; t0; m1; m2; ��. This result is confirmed in Table I;
only the mass space needs to be searched by the explicit
construction of a discrete bank of templates.

It must be stressed, however, that this approach is not
sufficient for the interpretation of observations and mea-
surement of parameters. Moreover, there are likely to be
regimes where this approach is insufficient even for
detection.

C. Example of waveform accuracy estimation

As we mentioned above, differences between the true
waveform from a binary black hole merger and the tem-
plate waveform can result in degradation of the SNR. In
particular, numerically generated waveform templates
might be inaccurate for any number of reasons, e.g. trun-
cation errors, instabilities, errors in boundary conditions, or
incorrect waveform extraction. To get a handle on these
effects, it is useful to compare waveforms which are sup-
posed to represent the same physical process that were
generated in different ways.

Here, we present a sample analysis of the waveforms
presented in [4,14,15]. Using the formalism outlined
above, one can compute the matches 
� and 
	 for the
waveform generated at the finest resolution and templates
at coarser resolutions. This investigation follows the stan-
dard convergence testing of numerical relativity, but with
an emphasis on the utility of the waveforms for data

analysis. Moreover, the answer to this question depends
on the mass of the binary and the detector being considered
(as it depends on its particular noise curve). In Fig. 6, we
show the match 
� versus the binary mass for the initial
LIGO noise curve shown in Fig. 1. For each template
waveform (i.e. the waveforms from evolutions with coarser
resolution), there are sets of points: the triangles indicate
the match before maximization over t0, the circles indicate
the match after maximization over t0. When the match
exceeds 0.9, we may be tempted to conclude that the finest
resolution waveforms are sufficiently accurate to be used
for gravitational-wave data analysis. This is not the whole
story, however. Referring back to Fig. 4, we note that the
waves with frequencies f & 205�20M�=M� appear to de-
pend on the initial data while those above that frequency
might reasonably be considered independent of the initial
data. Given that the current LIGO instruments are sensitive
to waves above 40 Hz, this suggests that the match should
only be trusted for masses M * 100M�.

On the other hand, the small match obtained without
maximization over time suggests that the evolutions are
slightly different. In Fig. 7, we show the time shift needed
to maximize the match. Note that the shift scales linearly
with mass. This suggests that the difference between these
waveforms might be captured simply by rescaling the mass
of the template, i.e. maximizing over both total mass and
time delay as one would do in a search. In a simple
simulation which searched over various template masses
for a fixed waveform mass, it was found that the best match
is achieved when the template mass is different from the

TABLE I. The range of matches between waveforms extracted
at different angles relative to the binary and a template given by
the waveform extracted at the axis for masses 40M� <M<
200M�. The inclination, �, is the angle between the orbital
angular momentum vector and the direction from the source to
the observer. Note that the�� and		 entries are all very close
to unity. The �	 entries are close to zero indicating that the �
and	 polarizations are almost orthogonal. This suggests that the
reparametrization in Eq. (18) could be good enough for detection
purposes, with LIGO, in the equal-mass binary case.

CP h��t0; m1; m2; �� h	�t0; m1; m2; ��

� 3�=8 �=4 3�=8 �=4

� [0.980,0.995] [0.990,0.996] [0.017,0.044] [0.044,0.066]

	 [0.050,0.074] [0.046,0.069] [0.989,0.995] [0.992,0.996]

SFCB hSFCB
� �t0; m1 � m2; �� hSFCB

	 �t0; m1 � m2; ��

� 3�=8 �=4 3�=8 �=4

� [0.981,0.989] [0.993,0.996] [0.021,0.044] [0.019,0.032]

	 [0.051,0.075] [0.024,0.038] [0.995,0.989] [0.995,0.998]

SFCB hSFCB
� �t0; m1 � 1:5m2; �� hSFCB

	 �t0; m1 � 1:5m2; ��

� 3�=8 �=4 3�=8 �=4

� [0.969,0.973] [0.986,0.991] [0.042,0.056] [0.040,0.050]

	 [0.076,0.096] [0.049,0.061] [0.987,0.977] [0.989,0.993]

FIG. 6 (color online). The match between the h� waveform
polarization computed as the overlap between the waveforms
extracted from two different resolution runs. Circles indicate the
match when the waveforms are allowed to shift in time relative
to each other. The triangles indicate the match computed as the
overlap integral between waveforms without the time shift. The
highest resolution simulation is used as the reference and the
match with two coarser resolution simulations are computed.
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waveform mass, but the time shift is similar in magnitude
to that obtained when using the same mass in both the
template and the waveform.

In this concrete example, we have compared the wave-
forms from the same simulation at different resolutions.
While the waveforms generated at the finest resolution
appear to be accurate enough to use as templates in
searches for gravitational waves, the systematic differences
between the mass and t0 which maximizes the match hint
that the waveforms may not be faithful to the physical
system. That is, the map between mass of the template
and mass of the binary (in the standard Newtonian sense)
may have systematic biases. It will be important to explore
these issues by comparing waveforms from simulations
(starting from the same initial data) by different groups.
Moreover, detailed exploration of the dependence of the
waveforms on the initial data will also bring information
about the faithfulness of the waveforms [21].

D. Comparing waveforms from different simulations

In the previous section, we presented a comparison
between waveforms extracted from simulations at different
resolutions in order to gain insight into the accuracy of the
numerical solutions. Another important step in exploring
the full parameter space of compact binary inspiral for
earth-based detectors is to compare the results of different
simulations. There are two different reasons for making
these comparisons: First, comparison of waveforms repre-
senting the same physical solution carried out using differ-
ent methods will allow a deeper understanding of the
numerical issues in this very complicated simulation prob-
lem. Second, it may allow more efficient exploration of the

parameter space if multiple groups can agree on some key
test cases and then explore, in detail, other regions of
parameter space.

As an example, we compare the waveforms from the CP
simulations with those from the SFCB simulations and
between the different SFCB simulations in Fig. 8. The
results quantify the degree to which these waveforms are
different/similar as seen in Figs. 2–5. For example, the
match (maximized over time and phase) between hCP

� and
the equal-mass SFCB waveforms is greater than 0.95 for
masses M * 200:0M�. This is consistent with agreement
in both frequency spectrum [f * 200�40M�=M�] and the
waveform. The biggest difference between these wave-
forms therefore appears to come from the eccentricity of
the binary orbit when the black holes first form in SFCBs.
A similar conclusion holds for the match (maximized over
time and phase) between hSFCB

� �m1 � m2� and the SFCB
waveform for mass ratio m1=m2 � 1:5.

Finally, we note that the number of templates needed to
search for gravitational waves from nonspinning binaries
in data from earth-based detectors can be estimated as
follows. From the CP simulations, we find that the match
(maximized over time and phase) is 
 � 0:97 for two
waveforms with masses differing by 
 0:05M with
100M� <M< 400M�. Templates along the equal-mass
line would then be laid out with separations
 0:1M giving


R

400
100 dM=�0:1M� 
 14 templates. If we construct a

square grid on the m1m2-space by drawing lines through
the equal-mass template points, this gives
 105 templates
to cover the square defined by 50M� <m1; m2 < 200M�.
This formula assumes a maximum reduction in SNR of 3%

FIG. 7 (color online). The time-offset which maximizes the
match (for the same mass) between the h� waveform polariza-
tion computed as the overlap between the waveforms extracted
from two different resolution runs. The bottom (green) uses the
finest simulation as the waveform and the coarsest simulation as
the template; the top (red) uses the finest simulation as the
waveform and the next finest simulation as the template.

FIG. 8 (color online). The match between the h� waveform
polarization from one simulation with the waveforms from
another simulation maximized over both time and phase. The

match maxt

���������������������

2
� �


2
	

q
* 0:95 for masses M * 200M�. This

gives a quantitative measure of the similarities and differences
between the waveforms presented in Figs. 2–5.
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due to template mismatch. Since a single numerical simu-
lation gives all templates along a line of constant mass
ratio, this suggests that about 10 simulation runs would be
needed to cover this mass space densely enough for detec-
tion purposes. This crude estimate should be refined with
more detailed simulations with different mass ratios and
larger initial separations. It is important to stress here that
this number assumes that all the physics and numerical
issues are under complete control, that no tuning or test
runs need to be made, and that the waveforms do not get
much more complicated as the mass ratio changes. All of
these issues need to be explored before one could generate
waveform templates that could be confidently used in
gravitational-wave detection. As a result, while the final
number of templates is not very large, reaching the stage
where these runs can be made requires much greater effort.

It is important not to read too much into the estimate
stated above. As we have emphasized, it ignores spin and
many other important issues in numerical relativity. It is
also only applicable to earth-based detectors. The problem
is different for higher mass binaries in the LISA (Laser
Interferometer Space Antenna) band. Finally, it only esti-
mates the number of simulations needed to enhance detec-
tion. As we discuss later, this is the first step in using
numerical methods to extract scientific information from
gravitational-wave observations, but the larger computa-
tional task will be extracting accurate information from the
data once a detection is made.

E. Detectability of numerical templates using ringdown
filters

It is illustrative to determine how well existing methods
of searching for gravitational-wave bursts would work in
detecting numerical waveforms. In particular, we would
expect that ringdown waveform matched filters would
work well at detecting the end of the numerical waveforms
(which do correspond to black hole quasinormal mode
ringdown)—especially if it is this portion of the waveform
that is in the detector band. However, for a broad range of
masses it is the merger waveform that is in LIGO’s sensi-
tive band rather than the ringdown waveform: indeed, for
the most likely ranges of binary black hole masses, the
ringdown radiation will be at frequencies higher than the
most sensitive portion of LIGO’s band. Nevertheless, the
numerical waveforms might be well matched by a ring-
down template even at frequencies below those of the final
black hole’s quasinormal mode. Will a ringdown matched
filter template actually do well at detecting these numerical
waveforms? Also, will the presence of a preceding wave-
form bias ringdown extraction parameters? The answer to
both of these questions seems to be yes.

The match, 
, can be used to measure the ability of the
ringdown filter to detect the waveform. In the case of a
ringdown filter the relevant parameters that we must max-
imize in forming the match are the start time of the ring-

down t0, the central frequency of the ringdown f0, and the
ringdown quality factor Q which measures the decay
time of the ringdown in cycles. A ringdown waveform is
an exponentially damped sinusoid: exp���f0�=Q�	
cos�2�f0�� for � � t� t0 > 0. As before, the match is
an indication of the fraction of the signal-to-noise ratio that
a ringdown filter will obtain compared to an optimal filter.
The match will depend on the mass of the waveform as this
determines which portion of the waveform is in LIGO’s
band. From Fig. 4 it can be seen that the numerical wave-
forms do not accurately give the gravitational-wave energy
below 40 Hz for a 100M� black hole. Since 40 Hz is
roughly the low-frequency bound of LIGO’s sensitive
band, care must be taken in interpreting the match when
using low mass waveforms with a total mass less than

 100M� since a substantial contribution to the
gravitational-wave signal is missing in LIGO’s sensitive
band.
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FIG. 9. The h� numerical waveform for a total mass of 50M�
(top), the best-matching ringdown (exponentially damped sinu-
soid) filter (middle), and the result of filtering the waveform with
this filter (bottom), all as functions of time. The match, which is
the largest absolute value of the bottom plot, is 64%. The best
match clearly occurs before what we would call the ringdown
phase of the numerical simulation: this is because the ringdown
phase is not in LIGO’s sensitive band for a total mass of 50M�—
the ringdown filter therefore obtains its best match at an earlier
(and lower frequency) portion of the numerical waveform.
Although the ringdown filter does not do too badly at detecting
the numerical waveform, it could not be used to measure the
quasinormal mode frequency of the final black hole without
using information from both the ringdown and merger phases.
This serves to emphasize the importance of developing data
analysis techniques which combine information from all three
phases of binary evolution [68].
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Figures 9 and 10 illustrate the ringdown filter response to
the numerical waveforms for two masses, 50M� and
150M�. In these figures there are three panels which
show (top) the numerical strain waveform; (middle) the
best-matching ringdown template; and (bottom) the result
of filtering the waveform with the best-matching ringdown
template—the match is the maximum absolute value of
this trace. In both cases the match is substantial: 64% for
the 50M� case and 70% for the 150M� case. In the 150M�
case (Fig. 10) it is clear that the best-matching ringdown
filter is in fact matching the ringdown portion of the
numerical waveform; however, in the 50M� case (Fig. 9),
the best-matching ringdown waveform is matching the
numerical waveform considerably earlier than the ring-
down phase. For the 50M� case, the ringdown phase
is not in LIGO’s sensitive band. The ringdown filter, while
it performed reasonably well at detecting the earlier
phase of the numerical waveform, could not be used to
measure the quasinormal mode frequency of the resulting
black hole. Also note that in the 50M� case, the match
is an overestimate because the numerical waveform is
missing a portion of the late inspiral that would be in
LIGO’s band for this mass, as remarked above.

IV. DISCUSSION AND CONCLUSIONS

Recent computational and algorithmic advances in nu-
merical relativity allow the exploration of strong-field

general relativity in regimes which were hitherto inacces-
sible. In this paper, we have presented a measure of the
accuracy of these simulations adapted to the use of these
results in observational gravitational-wave astronomy. The
formalism presented in Sec. III A is just the match, defined
in Ref. [19], applied to waveforms from various numerical
simulations. By applying this metric to the equal-mass
Cook-Pfeiffer binary black hole simulations presented in
[14], we conclude that these simulations show convergence
within this measure. Nevertheless, we also sound a cau-
tionary note about the match as used in Sec. III C to
measure the convergence: it only measures the conver-
gence, not the physical relevance of the ultimate solution.
To determine the latter, one must also examine a host of
other issues including the nature of the initial data, the
method of waveform extraction, and the commonly exam-
ined issues of stability, convergence and independence on
boundary effects. Additionally, the currently available
waveforms, which cover just a fraction of the relevant
sources and analysis similar to those presented here, will
need to be carried out as other cases are treated.

In the remainder of this section we conclude by discus-
sing several outstanding issues in the use of numerical
relativity as a tool for gravitational-wave astronomy, in-
cluding faithful extraction of the waveform from the simu-
lations, what could be the most useful information that
numerical simulations of compact object interactions could
provide in the near-term to enhance the detectability of
gravitational waves, and what information from the simu-
lations could help us learn the most about compact objects
after detection.

A. Issues in numerical simulations

Numerical simulations carried out by different codes by
construction, necessity, and available computational re-
sources adopt different formulations, employ distinct co-
ordinate systems and varied discretization schemes. As a
result, care is required not only in translating the results to
data analysis, but also in comparing results from different
codes. Naturally, concentrating on physical observables, in
our particular case gravitational waves, is the sensible way
to do this. At the analytical level, a well-defined approach
to compute the radiative properties of the spacetime (under
natural assumptions) was developed in the 1960’s by tak-
ing advantage of future null infinity (I�) [22–24].
However, numerical applications dealing with black hole
spacetimes cannot yet reach I� (this awaits Cauchy-
characteristic matching or the conformal equations to be
fully implemented in the type of systems being discussed
here) although there is a strong need to compute the
radiation produced in the problem. To do so within a
numerical simulation, two approaches are routinely taken.
One is based on perturbative methods [25–28] which relies
on a suitable identification of a background spacetime, in
particular, coordinates and extracting specific quantities
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FIG. 10. The h� numerical waveform for a total mass of
150M� (top), the best-matching ringdown (exponentially
damped sinusoid) filter (middle), and the result of filtering the
waveform with this filter (bottom), all as functions of time. The
match, which is the largest absolute value of the bottom plot, is
70%.
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from the simulation. A second approach, which has be-
come the most common one, makes use of the infrastruc-
ture developed to calculate the radiation at I� but applied
at a finite distance from the source (see for instance
[10,29–35]). While in principle this approach can be
used beyond the perturbative level and is less sensitive to
identifying a correct background, quantities defined at I�

need to be translated to finite distances where they may not
be well or unambiguously defined.

Several key elements, listed below, are in general re-
quired for faithful extraction of gravitational waves a finite
distance from the source using the standard result for the
relationship between �4 and the gravitational-wave strain
(2) (we focus here on items pertaining to I�-based extrac-
tion tools, though similar comments apply to perturbative-
based methods). For the most part in present simulations it
is assumed that these conditions are satisfied with system-
atic error less than numerical truncation error—of course,
these assumptions will eventually need to be verified, and
we discuss some suggestions on how to do this in
Appendix A. The items listed below are not all indepen-
dent. Furthermore, in theory several of the items are not
strictly required if during wave extraction artifacts induced
by ‘‘bad’’ coordinates are identified and removed; addi-
tional discussion of this is also presented in Appendix A.

(i) In the extraction zone the wave travels with unit
coordinate velocity, and the amplitude decays as
1=r. If these conditions are not satisfied the extracted
waves could suffer an error in amplitude and a shift
in the frequency of the wave (signs of this kind of
gauge artifact are seen in the CP evolutions with
generalized harmonic gauge [14]).

(ii) The extraction world tube is assumed to be a geo-
metric sphere, and moreover it is assumed that the
metric of this sphere can be expressed as ds2 �
r2�d�2 � sin2�d�2�, where r is the extraction radius
and ��;�� are the usual spherical polar coordinates
mapped onto the extraction sphere. Deviations from
these assumptions could, for example, lead to artifi-
cial mixing of the spherical harmonic components of
the waveform; and of course the correct identifica-
tion of these harmonic components is an important
tool in understanding and quantifying the physics of
different merger scenarios.

(iii) Each point on the extraction world tube is assumed to
correspond to an inertial observer. Together with the
above items this is equivalent to assuming that the
lapse function � � 1�O�1=r� and the shift vector
induced at the world tube �A � 0�O�1=r�. If these
conditions are not satisfied all the problems men-
tioned in the preceding items could manifest.

(iv) Even with a perfect gauge the O�1=r� approach to
Minkowski space could induce spurious effects at
finite extraction distance; thus the extraction radius
must be far enough from the source that the O�1=r�

systematic errors in waveforms are smaller than the
numerical truncation error. This issue can be allevi-
ated in part by a judicial choice of the tetrad used to
calculate �4 [33–35].

B. Enhancing the detectability of gravitational waves

Numerical relativity has long been touted as necessary to
doing the best science with ground-based gravitational-
wave detectors since the strongest sources of gravitational
radiation involve strong gravitational fields and the full
nonlinearity of general relativity. In [36], Flanagan and
Hughes laid out the issues relating to the detection and
measurement of waves from binary black holes. They
conclude that binary black holes in the mass range
25M� & M & 700M� may be the strongest sources of
gravitational waves accessible to earth-based detectors.
In this mass range, they speculated that most of the detect-
able gravitational-wave energy would come from the
merger waves emitted between fisco and fqnr and guessed
that about 3% of the binary mass would be emitted as
gravitational waves from the ringdown of the final black
hole. Numerical relativity simulations can now provide a
wealth of information about the merger and ringdown
phases of compact binaries, even though precise connec-
tion to the inspiral phase may remain elusive for some
time.

With the cautionary note that so far numerical simula-
tions have provided input on a (small) subset of the physi-
cal parameter space and that, in particular, spin-orbit
interactions might strongly influence the modeled wave-
forms, valuable insights can be drawn with the current
knowledge. Consider the simulations of CP initial data
discussed here. We can immediately make several qualita-
tive observations about the waves (see also the relevant
discussions in [14]). First, the waves sweep smoothly up-
ward in frequency from fisco to fqnr; during this phase the
time-domain amplitude also increases monotonically.
About 3%–5% of the binary mass is radiated in the last
plunge-orbit, merger, and ringdown. The analysis in
Sec. III E suggests that upwards of �70% of the wave
energy can be attributed to the ringdown waves (though
some portion of the wave matched by the ringdown tem-
plate could be associated with the late-inspiral part of the
wave). Perhaps most important for detection of the
waves is that the bulk of the wave energy is emitted in a
time-frequency volume defined by 102:5�40M�=M� &

f & 500�40M�=M� within a time duration �t 

0:03�M=40M��. In the language of Anderson et al. [37],
the time-frequency volume of the signals is V � 12 with a
definite mass scaling for the frequency band. Figure 11
compares the sensitivity of a matched filtering search to an
excess-power search for several different time-frequency
volumes. In the context of these equal-mass, nonspinning
binaries, it suggests that a naive excess-power search
would miss about half of the signals detectable by a
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matched filtering search for the merger only. Never-
theless, this information, when carefully combined with a
search for gravitational waves from the inspiral and ring-
down phases of binary evolution could provide a near
optimal search for these sources.

Dynamical simulations of binary black holes have so far
only been carried out for a very limited number of parame-
ters (e.g. mass ratio and black hole spin), and it will be very
important to systematically investigate the dependence of
the waves on these parameters (compare [15,38]). For
example, black hole spin may effect both the amplitude
and the duration of the merger waves. For aligned black
hole spins the merger takes longer than for antialigned
black hole spins [38]. In addition, the interaction between
spin and orbital angular momentum may play a role in the
dynamics of the merger (even though the speculations of
[39] have not been confirmed by the dynamical simulations
of [40]).

An important next step in confirming these speculations
is to use the waveforms from numerical simulations as
sample signals in real detector noise and passed through
the current detection pipelines. This would be facilitated
by the development of an archive of gravitational wave-
forms in a uniform format that could be used openly by the
gravitational-wave detection community to calibrate their

searches and their pipelines. Activities in this direction are
already under way [41]; with the intention of developing
into a useful resource for gravitational-wave astronomy. As
an aside, to expedite their use in data analysis, these wave-
forms should be provided as an equally sampled time
series, with time in units of seconds and scaled to a
physical distance of 1 Mpc from the binary.

Despite recent computational and algorithmic advances,
numerical simulations are costly and will be for years to
come. In Appendix B, we present order of magnitude
estimates of the computational cost of simulations needed
to produce parameter space surveys of a given accuracy
and physical evolution time. This suggests that it will be
impossible to populate a template bank solely with the
results of numerical simulations in the near to medium
term. It is therefore interesting to devise approximate
methods which might capture the essential features of the
merger phase. One possible approach would be to use PN
methods for the early phase and close limit approximations
for the late phase with a judiciously chosen behavior in
between. Adopting such approximate methods requires a
careful understanding of the sensitivity of detection meth-
ods to differences in the approximate waveforms.

C. Learning about compact objects through
gravitational-wave observations

While the direct observation of gravitational waves will
be a huge achievement, we hope that the first detection will
only mark the beginning of gravitational-wave astronomy.
This field is built on the premise that we can decode
information about the sources of gravitational waves
from the signals observed at a detector. To achieve this
goal, we need the ability to simulate the generation of
gravitational waves by various sources. Moreover, it is
the imprint of the sources on the waves that will carry
some of the most interesting information.

1. Binary black holes

By exploring the results of merger simulations from the
perspective of data analysis we can obtain a better picture
of what we would be able to learn about compact object
interactions from future observations. Therefore it will be
very important in the near future to perform surveys of a
wide variety of initial data parameters (in particular vary-
ing mass ratios and spin vectors), not so much to build
template libraries, but to understand what the broad fea-
tures of merger look like through the lens of a
gravitational-wave detector. For example, it has long
been anticipated that the onset of the binary merger, at
which the slow and adiabatic binary inspiral changes into a
dynamical plunge, would occur at an innermost stable
circular orbit and would leave a characteristic signature
in the gravitational-wave signal, which could be measured
in gravitational-wave detectors. While the recent dynami-

FIG. 11 (color online). The relative effectiveness  of an
excess-power search with known time-frequency volume V
compared to a matched filtering search with N effectively
independent templates assuming both searches are tuned to
give a 1% false alarm probability. The relative effectiveness is
defined as  � DEP

99%=D
MF
99% where D99% is the effective distance

at which 99% of the sources are detectable in each search. Given
the estimated time-frequency volume of the merger signal from
equal-mass binaries, i.e. V ’ 12, this suggests that a suboptimal
search strategy could still detect about half the sources that could
be detected in a matched filtering search; simple enhancements
to the excess-power method should be able to do better. This data
is taken from Fig. 4 of Ref. [37].
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cal simulations of binary black holes do not reveal any
abrupt change in the waveform, there does appear to be a
break in the frequency spectrum of the waves which occurs
somewhere between the predicted ISCO frequency and the
quasinormal mode frequency—see Fig. 4 and further dis-
cussion of this in [14]. It is certainly plausible that this
break in frequency becomes more pronounced as one
moves away from the equal-mass, nonspinning regime.

Black hole coalescence has also been regarded as giving
rise to an arena where the strong-field, nonlinear regime of
general relativity will be clearly revealed to observers. The
early simulations show perhaps a disappointing lack of
such features, where except for a very short and smooth
transition between inspiral and ringdown, much of the
waveform can be understood using perturbative tech-
niques. Another way of stating this is that all waveforms
to date are dominated by the quadrupole harmonic. In
general one would expect nonlinear effects to result in
mode coupling. Again, that we do not see significant higher
order harmonics could be due to the restricted initial con-
ditions so far considered; however, at the very least this is
telling us that manifest strong-field effects are not ubiqui-
tous in this type of black hole collisions, and the commun-
ity will need to search harder to find richer regions of
astrophysically relevant parameter space. Whether this
observation remains as such in more generic cases will
have strong consequences for the simulation and analysis
sides. On one hand, deciphering the nonlinear effects
would require significantly more accurate simulations
and a considerably denser template bank for data analysis.
On the other hand, however, these templates could be
parametrized in a rather simple form like that in Eq. (18).

2. Binary neutron stars

For binary neutron stars the situation is significantly
different from that for binary black holes. Depending on
the equation of state, stellar masses and spins, the merger
of binary neutron stars may be triggered either by a plunge
after the two stars reach an ISCO, or by Roche lobe over-
flow (see, e.g. [42,43]). In either case, the merger is ex-
pected to occur at a gravitational-wave frequency of
approximately 2 kHz, outside of LIGO’s most sensitive
regime. That means that the current LIGO configuration is
more sensitive to the inspiral phase, which may be well
approximated by post-Newtonian calculations, than the
merger of binary neutron stars, which has to be modeled
with numerical relativity. Hence, the role of numerical
relativity in observing binary neutron stars is different
from its role for binary black holes. In the near term,
numerical simulations could be used to validate the post-
Newtonian approximation to the waveforms in the LIGO
frequency band; whether this is possible on current gen-
eration computing facilities remains to be seen. Fur-
thermore, numerical relativity may provide guidance for

the design of future configurations, given the astrophysical
scenarios that seem particularly promising. In the long
term, the prospect of observing gravitational radiation
from the merger of binary neutron stars is very exciting
because it is very rich in physical effects that may play an
important role. Unlike binary black holes, which are gov-
erned entirely by Einstein’s field equations, the dynamical
evolution of binary neutron stars also depends on the
equation of state, magnetic fields, radiation and neutrino
transport, and possibly other effects. Realistic, nuclear
equations of state have already been adopted in simulations
of binary neutron star mergers [44], and numerical codes
that incorporate general relativistic magnetohydrodynam-
ics have been developed (see e.g. [45,46]). Detecting a
binary neutron star merger may therefore establish impor-
tant observational constraints on these aspects, in particu-
lar, the equation of state. Clearly, this is a very exciting
prospect.

As discussed above, it is unlikely that the current
gravitational-wave detectors could observe the details of
the merger. Numerical relativity may nevertheless play an
important role for the purposes of data analysis, namely, by
identifying features in the gravitational-wave signal that
could provide particularly important information. A con-
crete example is the question whether or not the merger
remnant promptly collapses to a black hole. Depending on
the equation of state, binary neutron stars may either
collapse to a black hole on a dynamical time scale after
merger or the remnant may form a ‘‘hypermassive’’ neu-
tron star supported against collapse by virtue of differential
rotation [44,47]. For binaries with fixed masses the pre-
merger gravitational-wave signal is quite similar, but the
post-merger signal differs significantly for the two scenar-
ios. Distinguishing these post-merger signals would there-
fore provide an important constraint on the neutron star
equation of state. Unfortunately, the post-merger signal
typically has a frequency close to 4 kHz [44] and may
require advanced, perhaps specialized, detectors to extract
significant information (see also the discussion in [48]).
Investigations of these waves and the information they
carry could therefore be used to inform development of
advanced gravitational-wave detectors.

3. Black hole-neutron star binaries

For mixed black hole-neutron star binaries the situation
is different again. The inspiral can have two very different
outcomes: either the neutron star is tidally disrupted by the
black hole before it reaches the ISCO, or it reaches the
ISCO first and spirals into the black hole more or less
intact. A very crude scaling argument suggests that the
separation of tidal disruption stid is approximately

 

stid

MBH



�
MNS

MBH

�
2=3 RNS

MNS
; (27)

while the ISCO is located approximately at
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sISCO

MBH

 6: (28)

If stid > sISCO, the neutron star is disrupted before it
reaches the ISCO, and vice versa. Since most neutron stars
are expected to have a mass of slightly more than a solar
mass and ratio RNS=MNS 
 5, the outcome mostly depends
on the black hole mass MBH (see Ref. [49]).

The neutron star can only be disrupted tidally outside the
ISCO for relatively small stellar-mass black holes with
MBH & 5MNS. This regime is very interesting for a number
of astrophysical reasons. Such a disruption may act as the
central engine of short gamma ray bursts, and, as for binary
neutron stars, a detection may provide useful constraints on
the equation of state. It is also this regime that requires
numerical relativity simulations for quantitative predic-
tions. Extending the above crude estimates, the orbital
frequency at the onset of tidal disruption is approximately

 �orb 


�
MBH

s3
tid

�
1=2



�
MNS

R3
NS

�
1=2
; (29)

which is the same order as the inverse of the neutron star’s
dynamical time scale. As for the merger of binary neutron
stars, the corresponding gravitational-wave frequency is
outside of LIGO’s most sensitive wave band. The role of
numerical relativity is therefore again to explore these
scenarios and identify particularly interesting frequency
regimes.

Numerical relativity simulations of mixed black hole–
neutron star binaries are not as far advanced as those of
black hole binaries or neutron star binaries. So far, fully
relativistic, self-consistent studies exist for quasiequili-
brium models [50–52] (see also [53]). The first fully
self-consistent, dynamical simulations of the binary inspi-
ral and the tidal disruption of the neutron star have been
announced very recently [54] (see also [55] for simulations
of extreme mass-ratio binaries within the so-called Wilson-
Mathews approximation, which assumes that the spatial
metric remains conformally flat). Other groups have also
initiated studies of mixed binaries [56,57]. Clearly, more
comprehensive studies of tidal breakup in black hole–
neutron star binaries remain an important and urgent goal.

These calculations will help to address several very
important questions. One such question is whether the tidal
disruption of a neutron star in a mixed binary may lead to
an accretion disk that is large enough to power a gamma
ray burst. Another question concerns the nature of the mass
transfer, which could proceed on a dynamical or secular
time scale, or could even be episodal (see, e.g., the dis-
cussion in [55] and references therein). The nature of the
tidal disruption has great impact on the gravitational-wave
signal emitted in the process. Presumably the disruption
will leave a signature in the signal at a frequency related to
orbital frequency. As inferred from Eq. (29), this frequency
carries important information about the neutron star and its

structure. A quantitative understanding of these issues
clearly requires detailed numerical relativity simulations.
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APPENDIX A: CALCULATION OF RADIATION
AND SYSTEMATIC EFFECTS

In this section we discuss in more detail possible system-
atic effects resulting in the calculation of waveforms. We
concentrate, in particular, in the approach based on the
Newman-Penrose (spin-weighted) scalar �4 as is the most
commonly employed; however, similar issues arise in the
perturbative approach as well.

1. From the analytical to the numerical arena

�4 is a particular combination of the Weyl tensor in a
suitable frame and coordinates. Its leading order �0

4 in a
suitable Taylor expansion off future null infinity (I�)
provides the gravitational waves. From now on, as we
concentrate on the extraction of gravitational waves we
will drop the supra-index ‘‘0’’ from all related quantities,
though it must be understood that we are referring to the
leading behavior. A related quantity, the shear of the out-
going null rays 	 plays a crucial role in the calculation of
radiated momentum and angular momentum. A few key
features are trivially satisfied at I� by construction which
makes the unambiguous calculation of the radiative prop-
erties of the spacetime possible. Namely, the metric is
exactly flat, the location of the extraction world tube is
unique (up to time u translations), and a powerful structure
(like the asymptotic transformation group, asymptotic flat-
ness condition, and peeling behavior) allows for a clean
definition of the sought-after quantities. This ensures a
unique calculation of the radiative properties of the
spacetime.

Unfortunately, most codes are unable to calculate these
quantities at future null infinity and thus �4 is obtained at
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finite distances [58]. Since the extraction world tube does
not represent a flat surface, key ingredients are missing
which can have a nontrivial impact in the calculated quan-
tities, even when the suitable decay of this quantity is
materialized (i.e. peeling is satisfied). For instance, the
suitable frame allowing for the calculation of radiation at
future null infinity—known as a Bondi frame—is such
that the angular part of the metric is exactly that of the unit
sphere (i.e. the angular metric induced at any given time is
exactly that of the unit sphere), there is no induced ‘‘shift‘‘
in the coordinates of observers at I� (guA � 0) and the
observers retarded-time u is affinely parametrized (gur �
0). These conditions play a crucial role in several aspects:
(i) inertial observers maintain constant angles and clocks
that tick at a constant rate, (ii) the variation of the angular
part of the metric near I� is solely due to gravitational
waves, and (iii) the simple relation �4 � �	;uu holds (with
�	 denoting the complex conjugate of 	). This relation,
together with the Bianchi identities at future null infinity, is
employed to replace the appearance of �	 by suitable
integrals of �4.

At the numerical level, the world tube is routinely de-
fined by a Cartesian timelike world tube at x2

i � r2 inter-
secting hypersurfaces at t � const. The induced metric on
this world tube generically does not satisfy the conditions
gAB � r2qAB �O�r� (with qAB the unit sphere metric,
gtt � 1 gtA � 0). Consequently, as discussed in detail in
[59], if �4 � ��	 (with a ‘‘�’’ indicating @t), observer’s clock
rates (at different locations on the extraction world tube)
tick at dissimilar rates and do not stay at constant angular
locations. These issues can introduce systematic effects
which can affect the predicted outcome. For instance,

(i) if �4 � ��	, commonly employed formulas which
replace �	0 by integrals of �4, lack nontrivial con-
tributions from products of �	 and (time derivatives
of) the conformal factor F relating the angular met-
ric gAB to the unit sphere metric qAB—see Eq. (A1).
Recall that since gAB is the metric of a sphere, it is
conformally related to that of the unit sphere by
gAB � r2F2qAB

(ii) if gtA � 0, inertial observers suffer a rotation (from
the induced shift �A � gtA). Therefore, predictions
like the waveforms at a particular angle will be
affected as inertial coordinates are shifting around
the world tube. This will influence the extraction of
multipole contributions, since the spin-weighted
spherical harmonics employed in such a task do
not take into account the shift in the angular coor-
dinates (see [60] for a related discussion of these
issues at I�).

(iii) if gtt � 1 the radiation measured by different ob-
servers at a constant t � const slice does not corre-
spond to the same inertial time. Thus the extracted
waveforms would have to be mapped, at each angle
to the real inertial time.

It is clear that these issues can introduce systematic
effects that can be either corrected or at least estimated
within a given simulation. Notice that these issues cannot
be completely addressed with an improved tetrad choice as
any tetrad must satisfy gab � 2l�anb� � 2m�amb�. Thus, the
induced metric in all cases will be the same. Nevertheless a
convenient choice of tetrad aids, in particular, to alleviate
issues related to the proximity of the extraction world tube
to the source.

It is useful to first at least determine the magnitude of the
effects the issues discussed above might have in a given
simulation. Then, if required, these effects can be corrected
by suitably modifying the employed expressions to remove
many of the ambiguities. In what follows we describe the
first part, while a discussion of the second will be presented
elsewhere [59] and applied in relevant scenarios [61].

First and foremost is estimating the amount that the
above mentioned effects can have on �4. We will ignore
here those coming due to the extraction at finite distances
as a comparison of obtained results at different radii can be
employed to estimate this effect. Furthermore, assuming
the extraction takes place sufficiently far away, the differ-
ence between a derivative in the time labeling the timelike
hypersurfaces and null hypersurfaces—beyond gauge fac-
tors which we will discuss later—is given by the contri-
bution of spatial derivatives off the extraction world tube
times 1=r factors due to an approximate ‘‘potential’’ from
the source. This effect is also controlled by placing the
extraction sphere sufficiently far and comparing the ob-
tained results at different radii. Under these assumptions,
the main contribution to the error in assigning the radiation
to the straightforwardly calculated �4 is given by the
discrepancy of the extraction sphere being in agreement
with that of a Bondi frame. This is made evident by the
failure of the induced metric on the sphere to be that of the
unit sphere [62]. In turn one has gAB � r2SAB, which can
be reexpressed in terms of SAB � F�t; �; ��2qAB with qAB
the unit sphere metric. The correction to �4 is given by

 �0
4 � ��	� �ð2

_F
F
� �	

�F
F
� 2

�
_�	

_F
F
� �	

� _F�2

F2

�
(A1)

with ð the eth operator which is a particular combination of
derivatives on the sphere [24]. Thus, unless _F � 0, a non-
trivial correction must be considered from the fact that the
extraction sphere is not inertial. Certainly this will occur as
the very radiation one is trying to compute will be respon-
sible for accelerating the sphere. The key message is
then to estimate the role F will play. To this end two
calculations can be performed. First, a partial answer on
the value of F can be obtained by simply evaluating
~F � det�gAB�= det�r2qAB�. If ~F � 1, then F � 1 and it
can therefore play a nontrivial role. However, if ~F � 1 it
is not necessarily the case that F � 1. A more involved,
though now complete, recipe to obtain F can be easily
obtained by computing the Ricci scalar associated with gAB
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and qAB and the fact that the two metrics are conformally
related by F. This gives rise to the expression R � 2�F2 �
rArA logF�. Notice that F � 1 is a solution if gAB is the
unit sphere metric, hence, short of obtaining a solution for
F, an estimate of ignoring this fact can be obtained by
E F � jjR � 2jj. Naturally, if E F remains well below the
measured waveforms, the straightforward use of �4 would
be warranted. To simplify the numerical calculation of R
one can make use of the Gauss-Codacci relations for a two-
dimensional hypersurface S in a three-dimensional mani-
fold � and employ quantities readily available on �.
Defining the extrinsic curvature of S by �ab � hcah

d
brcsd

(with hab � �ab � sasb, the induced metric on S with
normal ŝa � raR, sa � ŝa=�ŝaŝ

a�1=2 and rc�ab � 0), a
straightforward calculation indicates

 R � �3�R� 2�3�Rabs
asb � �2 � �cd�

cd: (A2)

In addition to the conformal factor F being taken properly
into account, a Bondi frame satisfies that observers mea-
sure an affine time along I� and proceed along constant
angular coordinates. These conditions will be met unless
gtt � 1, gtA � 0. Here again norms could be defined as
EGtt � jj�gtt � 1�jj, EGtA � jjgtAjj so as to obtain an esti-
mate of the effect these issues might have in the extraction
process.

2. Coordinate conditions and extracted quantities—an
example

To illustrate some of the effects of coordinate conditions
that are not well adapted to the extraction mechanism, we
adopt a spacetime containing linearized gravitational
waves [63]. For our particular example, the spacetime is
described in terms of the following line element:
 

ds2 � �dt2 � �1� Afrr�dr2 � 2Bfr�drd�

� 2Bfr� sin���drd�� �1� Cf1
�� � Af

2
���r

2d�2

� 2�A� 2C�f��r2 sin���2d�d�

� �1� Cf1
�� � Af

2
���r

2 sin���2d�2; (A3)

where

 frr � sin���2 cos�2��; fr� � sin�2�� cos�2��=2

fr� � � sin��� sin�2��; f�� � cos��� sin�2��

f1
�� � �f

1
�� � �1� cos���2� cos�2��

f2
�� � � cos�2��; f2

�� � � cos���2 cos�2��

and

 A �
�
�3 sin�Y�

r3 �
9 cos�Y�

r4 �
9 sin�Y�

r5

�
; (A4)

 B �
�

cos�Y�

r2 �
3 sin�Y�

r3 �
6 cos�Y�

r4 �
6 sin�Y�

r5

�
; (A5)

 C �
1

4

�
sin�Y�
r
�

2 cos�Y�

r2 �
9 sin�Y�

r3 �
21 cos�Y�

r4

�
21 sin�Y�

r5

�
; (A6)

with Y � t� r and for simplicity we have adopted F �
sin�t� r� in Ref. [63]. While a detailed discussion of
problematic issues that can arise in the extraction process
as well as ways to handle them will be discussed elsewhere
[59], we here illustrate the effect that some of these will
have in a simple scenario.

Notice that the line element (A3) satisfies all the men-
tioned properties, in particular gtt � 1, gtA � 0, and gAB �
r2qAB �O�r� (with A � �, � and qAB � diag�1; sin���2�).
For clarity, we will concentrate on two very simple cases
that will violate these conditions defined by r! g�t�r and
�! ��!t. The former introduces a time-dependent
variation in the location of the extraction radius with
respect to a physically defined areal radius. The latter
induces a shift along the @a� direction. Following the
commonly used approach one obtains for �4,

 <��0
4� �

sin� ~Y��1� cos���2�
4g

cos�2���!t��; (A7)

 =��0
4� �

� sin� ~Y� cos���
2g

sin�2���!t��; (A8)

with ~Y � t� rg; clearly, while a calculation of the radi-
ated energy would be immune to the value of !, the actual
waveforms would be affected. Additionally, both would be
affected by the functional dependence of g�t�, which even
when chosen initially to be unity, it will vary as waves
propagate outwards affecting the spacetime. Clearly a
generic situation would not be as simple as the one ana-
lyzed above, though it serves to make evident how these
issues can be obscured in a nontrivial extraction of physical
quantities in an otherwise correctly obtained numerical
solution.

APPENDIX B: ESTIMATING THE
COMPUTATIONAL COST OF BINARY BLACK

HOLE MERGER SIMULATIONS

Here we present an order of magnitude estimate of the
computational cost of simulating a binary black hole
merger for a specified number of orbits, and where we
want to extract some feature of the solution to within a
given accuracy. More precisely, if the CPU run time and
estimated net solution error of a fiducial simulation are
known, we give an order of magnitude estimate for the
CPU run time that a second simulation will take to obtain a
new result with the same accuracy but from an evolution
that completes a different number of orbits before merger.

Assume the numerical error E�t; h� in some desired
property of the solution (for example the phase evolution
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of the gravitational waveform) has the following depen-
dence on physical time t and characteristic discretization
scale h:

 E�t; h� / tqhm: (B1)

Here q is a positive constant of order unity, and m is the
order of the discretization method. In general the growth of
error will be more complicated than this simple power law,
though for an order of magnitude estimate this expression
is sufficient. Note also that we have assumed the code has
been ‘‘cured’’ of any exponential growth in error. In an
adaptive code there will be several mesh spacings h,
though the scaling relationships derived below will still
be correct if all mesh resolutions are changed by the same
factor when the resolution is changed. Equation (B1) is
strictly only valid for finite-difference codes, though in the
final expression below we can take the limit as m! 1 to
get estimates for spectral codes. This will give us an idea of
the scaling of present pseudospectral codes in the regime
where the leading source of error comes from the spatial
discretization and not the finite-difference time stepper.

A more useful parameter describing the physical run
time t of the simulation is the number of orbits n completed
before coalescence, and we will assume that the inspiral
regime of the merger dominates the run time. We can use
the leading order post-Newtonian expression for equal-
mass, quasicircular inspirals to estimate n�t�:

 n�t� / t5=8: (B2)

The final ingredient in our scaling estimates will be the
manner in which computational run time T scales with
mesh spacing h for any optimal grid-based solution method
of a 3� 1-dimensional system of partial differential equa-
tions

 T�h; t� /
t

h4 : (B3)

The first question we can now answer is the following:
given that simulation A required TA CPU hours to complete
a simulation of a binary system exhibiting nA orbits before
coalescence, and from which we extracted a desired quan-
tity with error EA, how long TB will it take to run a second
simulation of a similar binary system, now with nB orbits
before coalescence but the same net error EB � EA? Using
(B1)–(B3) we find

 TB � TA

�
nB
nA

�
�8=5�32q=5m�

: (B4)

For example, assuming linear growth of error (q � 1), we
get TB � TzA, where z � 4:8; 3:2; 2:7; 2:4; . . . ; 1:6 for m �
2; 4; 6; 8; . . . ;1, respectively. Note that the difference
going from 2nd to 4th order accuracy is quite significant,

as is the jump from 4th to ‘‘spectral’’ convergence m � 1.
The same holds when estimating the accuracy achieved by
different order-of-accuracy operators in modeling modes
in the solution [64,65]. This implies that while higher order
methods are important, a significant gain is already
achieved at 4th order.

An application of the preceding expression is to the
recent survey of unequal mass inspirals presented in [9].
The 4th order accurate code (m � 4) discussed there is
quite fast by today’s standards, and they were able to
perform the survey utilizing a total of about 150 000
CPU hours (recall however that the cost of these simula-
tions is in practice further alleviated by exploiting the
problem’s symmetry). The majority of initial conditions
ran exhibited about 2 orbits before merger. Suppose the
survey were repeated (including calibration runs, etc.), but
now starting with initial conditions resulting in 4 orbits
prior to merger. Equation (B4) suggests (assuming q � 1)
it would take around 1:4	 106 CPU hours to complete
with the same level of overall accuracy. Early comparisons
of numerical versus PN waveforms [14] suggest more than
4 orbits are needed to begin to study the adequacy of
various PN approximants. Suppose 10 were sufficient,
and the survey of [9] were repeated for the purpose of
PN comparisons—(B4) then suggests 170	 106 CPU
hours would be needed. This would require a 20 000
node cluster running continuously for 1 year. Of course,
we are not suggesting that such a survey is necessary for
PN comparison purposes, we are merely illustrating (B4)
using actual data for the reference simulation ‘‘A’’ as given
in [9].

A second interesting question we can give a rough
answer to is, Given simulation A has accumulated an error
EA for an nA orbit simulation, what is the expected error for
simulation B that completes nB orbits, assuming simula-
tions A and B have identical resolution hA � hB?

 EB � EA

�
nB
nA

�
�8q=5�

: (B5)

At a first glance it might seem strange that the accumu-
lation of error is independent of the order of the discretiza-
tion scheme. Although, observe that this does not imply
that a lower order scheme is just as ‘‘fast’’ as a high order
method even if both methods exhibit similar growth factors
q, for in general it will take more resolution for a low order
method to get to the same level of error E as a higher order
method. From (B3) the ratio of run times Th1

=Th2
for two

different resolutions h1 and h2, regardless of the order of
convergence for an optimal solution method, scales as
�h1=h2�

4.
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