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We explore models of intersecting brane worlds with induced gravity terms on codimension-one branes
and on their intersection. Maximally symmetric solutions for the branes and the intersection are found. We
find new self-accelerating solutions. In a 6D spacetime, the solutions realize the seesaw modification of
gravity where the UV scale of the modification to 4D gravity is determined by 6D Planck scale given by
M6 � 10�3 eV and the IR scale of the modification is determined by M2

6=M4 �H0 � 10�42 GeV, where
H0 is the present-day Hubble scale. We find that it is increasingly difficult to construct phenomenolog-
ically viable models in higher-dimensional spacetime due to the necessity to have the lower value for the
fundamental Planck scale to realize the late time acceleration. It is found that the system also admits self-
tuning solutions where the tension at the intersection does not change the geometry of the intersection.
The induced gravity terms can avoid the necessity to compactify the extra dimensions. Finally, we discuss
the possibility to have ordinary matter at the intersection, without introducing any regularization, using the
induced gravity terms.
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I. INTRODUCTION

Brane-world models with large distance modification of
Einstein gravity are invoked in scenarios that aim to geo-
metrically describe present-day acceleration, without in-
troducing dark energy [1–3] (for a review see [4]). A
celebrated example is the Dvali-Gabadadze-Porrati
(DGP) model in a 5D spacetime [1]. The brane action
includes a quantum-induced Einstein-Hilbert (EH) term
that recovers 4D gravity on small scales. This model
realizes a so-called self-accelerating solution that features
a 4D de Sitter phase even though the 3-brane is completely
empty. However, so far, only codimension-one examples of
such solutions have been proposed and these backgrounds
are known to suffer from ghost instabilities [5]. An inter-
esting possibility would thus be to look for other such
solutions in higher codimension setups, that might lead
to ghost-free models.

On the other hand, it is known that the presence of
more than one extra dimension might offer better possibil-
ities for the solution of the (particle physics) cosmological
constant problem. In fact, codimension-two brane worlds
with finite [6–9] and infinite [10,11] volume extra space
have been extensively studied in the past few years towards
a solution of the cosmological constant problem.1 A com-
mon feature of all these models is that the energy-
momentum tensor on a codimension-two brane only
controls the global properties of the background geometry

without affecting the local structure of the brane itself
which remains flat. A realization of this idea is called
the self-tuning solution of the cosmological constant prob-
lem. Unfortunately, in the finite volume case, consistency
conditions associated to the quantization condition of a
background flux which is introduced to compactify the
extra-dimensional space are shown to be problematic
and the self-tuning mechanism in its simplest form does
not work [13]. More in general, another delicate feature of
codimension-two brane models (both with finite- and
infinite-volume) is related to the fact that only the
energy-momentum tensor of the form of pure tension can
be accommodated on a thin radially symmetric
codimension-two brane, to ensure the regularity of the
background metric at the brane position [14]. This last
problem can be ameliorated by including higher order
Gauss-Bonnet terms for gravity in the bulk [15]; however,
other difficulties arise when one tries to embed an isotropic
and homogeneous fluid on such a radially symmetric
purely conical codimension-two brane [16]. This suggests
the necessity of regularizing the brane and allowing it to
acquire some structure. For the finite volume scenario, this
approach was started by [17] that shows how normal
gravity can be recovered in this context, and it is further
developed by various other works [18].2 The regularization
of the codimension-two brane with induced gravity has
been also studied intensively [20,21].

In this paper, we take a different route to tackle this
regularization problem. We consider a system in which the
brane is a pure codimension-two object, without an internal*corradini@bo.infn.it
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2See also [19] for articles discussing gravity in higher
codimensions.
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structure, but with induced gravity terms on it. This system,
as we already mentioned at the beginning, is by itself
interesting to investigate, for finding new self-accelerating
configurations. The induced gravity terms can avoid the
necessity to compactify the higher-dimensional space, by
providing a mechanism to obtain four-dimensional gravity
in the relevant regimes with infinite-volume extra dimen-
sions. Consequently, the bulk gauge field is no more
needed, and this suggests to reconsider the self-tuning
mechanism in this context.

The model that we consider is a codimension-two brane,
that lies at the intersection of two codimension-one branes
embedded in a six-dimensional space. This system was
studied in the context of standard gravity [22] and Gauss-
Bonnet gravity [23] elaborating an idea developed in [24].3

A model with generic angle between two intersecting
branes, the so-called Origami world, was first considered
in [26]. In our case, we consider a situation in which in-
duced gravity terms are allowed on the codimension-one
branes and also at the intersection. We study various maxi-
mally symmetric configurations of branes and explore
configurations that exhibit self-tuning or self-accelerating
properties. Let us also point out that the presence of in-
duced Einstein-Hilbert terms on intersecting codimension-
one branes might allow for generic localized matter on the
intersection and thus allow for generic Friedman-
Robertson-Walker (FRW) cosmology. We discuss this pos-
sibility in conclusions, briefly summarizing the results of a
companion paper [27].

While we were preparing this work, a relevant paper [28]
appeared that studied a nested 4D brane in a 5D codimen-
sion brane in a 6D spacetime by generalizing [29]. Al-
though there are some similarities with our system, their
model is different from ours as their 4D brane behaves like
a vortex when gravity behaves as 6D while the intersection
does not.

II. MAXIMALLY SYMMETRIC
CONFIGURATIONS OF BRANES

We consider a system of two intersecting codimension-
one branes embedded in a six-dimensional spacetime.
They intersect on a four-dimensional codimension-two
brane where observers like us can be localized. We take
an Einstein-Hilbert action for gravity in the bulk and we
allow for induced gravity terms on the codimension-one
branes, as well as on the intersection. Besides gravity, we
allow for a cosmological constant term in the bulk, �B, and
for additional fields localized on the branes described by
general Lagrangians L’s. The general action assumes the
form

 S �
Z

bulk
d6x

�������
�g
p

�
M4

6

2
R��B

�

�
X2

i�1

Z
�i

d5x
�����������
�g�i�
p

�M3
5;i

2
R�i� � L�i�

�

�
Z

�\

d4x
����������
�g\
p

�
M2

4

2
R\ � L\

�
; (1)

where �\ �
T
i�i denotes a three-brane at the intersection

between all codimension-one four-branes �i. We can have
different fundamental scales in the different regions of the
space, M6, M5;i, and M4. The induced gravity terms could
be generated, as it was proposed in the original model, by
quantum corrections from matter loops on the brane. It is
also interesting to note that induced curvature terms appear
quite generically in junction conditions of higher codimen-
sion branes when considering natural generalizations of
Einstein gravity [15,19] as well as in string theory com-
pactifications [30], orientifold models, and intersecting D-
brane models [31].

In this paper, we focus on a configuration with static
codimension-one branes. They are characterized by ten-
sions �1 and �2, while the intersection has tension �. The
branes intersect with a generic angle, along the lines of
Origami-world [26]. The six-dimensional bulk is charac-
terized by a maximally symmetric geometry
 

ds2 � A2�t; z1; z2�����dx�dx� � �khdzkdzh�;

A�t; z1; z2� �
1

Ht� kizi
: (2)

Also the codimension-one branes and their intersection are
characterized by maximally symmetric geometries. We are
going to relate the Hubble parameters on the branes with
the geometrical parameters that control our system.

The parameters H and ki appearing in the warp factor A
satisfy the following relation:

 

�B

10
� H2 � k2

1 � k
2
2; (3)

in order to solve the Einstein equations in the bulk. The
branes form a generic angle and are characterized by
normal vectors

 n �1� � �sin�1;� cos�1�; (4)

 n �2� � �sin�2; cos�2�; (5)

in the two transverse space directions zi, so that the angle
between the two branes is � � ��1 � �2�. We refer to the
brane �i as orthogonal to the vector n�i�. It is useful to
define new coordinates

 ~z k � n�k� � z with z � �z1; z2�; (6)

that allow us to define the brane positions as ~zi � 0.
Following [26], we define new vectors l�k� as

3Intersecting brane models are very important in string theory,
for the possibility to build standardlike models with chiral matter
[25].
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 l �k� � n�h� � �hk !
�

l�1� � 1
sin� �cos�2;� sin�2�;

l�2� � 1
sin� �cos�1; sin�1�;

(7)

that allow us to write

 z � ~zkl�k�; (8)

so that

 

@zh

@~zk
� lh

�k� (9)

is the projection operator to the brane �k. The two branes
�1 and �2 are fixed points of Z2 symmetries acting on the
six-dimensional space. We wish to investigate the condi-
tions that their tensions must satisfy in order to solve the
Einstein equations. We will use the junction conditions
obtained from the Israel formalism. We focus on the brane
�1 and find the extrinsic curvature at its position. Recall
that the second brane �2 is also a fixed point of Z2

symmetry. To implement this information, we require the
metric to be symmetric under ~z2 ! �~z2. The transverse
space line element in the new coordinate frame changes
from

 �ijdzidzj � dz � dz (10)

to
 

l�1��l�1�d~z1d~z1 � 2l�1� � l�2� sgn�~z2�d~z1d~z2

� l�2� � l�2�d~z2d~z2 � ~�mnd~zmd~zn; (11)

with

 ~�mn �
1

sin2�
1 cos� sgn�~z2�

cos� sgn�~z2� 1

� �
: (12)

The bulk line element reads4

 ds2 � A2�t; ~z1; j~z2j�����dx�dx� � ~�mnd~zmd~zn�; (13)

 A�t; ~z1; j~z2j� �
1

Ht� C1~z1 � C2j~z
2j
; (14)

 C 1 �
k1 cos�2 � k2 sin�2

sin�
;

C2 �
k1 cos�1 � k2 sin�1

sin�
:

(15)

The inverse metric is given by

 gMN � A�2 ��� 0
0 ~�mn

� �
; (16)

where

 ~�mn �
1 � cos� sgn�~z2�

� cos� sgn�~z2� 1

� �
: (17)

In the new coordinate frame the normal vector to the
brane �1 is

 ~n �1�k �
@zh

@~zk
n�1�h � l�k� � n�1� � �1

k � �1; 0�: (18)

The normal vector that has a unit length with respect to the
bulk metric is

 ~n �1�M � A�0�; 1; 0�: (19)

The projection operator (9) allows us to define the induced
metric on the brane �1, whose �~z2; ~z2� component reads5

 g�5�~z2~z2
� lk

�~z2�
lh
�~z2�
A2�kh � A2�l�2��2 �

A2

sin2�
: (20)

Hence, the line element on the brane �1 is

 ds2
�1
� A2�t; 0; j~z2j�

�
���dx�dx� �

d~z2d~z2

sin2�

�
: (21)

Each induced brane metric corresponds to a maximally
symmetric space with a constant Hubble parameter. For the
brane �1, the Hubble parameter is given by

 H2
1 � H2 � sin2�C2

2;

from which

 sin�C2 � ��1

�������������������
H2 �H2

1

q
; (22)

where �1 is equal to plus or minus one and distinguishes
two different branches of solutions. An analogous relation
connectsH2 to C1. It is now straightforward to compute the
components of the extrinsic curvature. Then, we can apply
the formalism of the Israel junction conditions to extract
information about the energy-momentum tensor on the
brane. Particularly interesting is its �~z2; ~z2� component
that reads

 K~z2~z2
� ~r~z2

~n~z2
� �g~z2~z2

�C1 � cos�C2� � 2A��~z2�
cos�

sin2�
:

(23)

Defining w2 � ~z2= sin��1 � �2� in order to remove the
sin��1 � �2� factor from the metric (21), one obtains

 Kw2

w2 � ��C1 � cos�C2� �
2

A
��w2�

cos�
sin�

; (24)

where we take into account the Jacobian in the delta
function ��~z2� � ��w2�= sin�.

It is important to realize that only this component of the
extrinsic curvature contains a singular term ��w2�, so that

4We emphasize that we are imposing a Z2 symmetry at the
point ~z2 � 0, while at this level we are not imposing a similar
reflection symmetry at ~z1 � 0. This last symmetry will be
applied later at the end of this section, when using Israel formal-
ism to find the junction conditions.

5The induced metric is invariant under bulk diffeomorphisms.
Using the bulk frame �~z1; ~z2�, one simply gets g�5�~z2~z2

�
�m~z2
�n~z2
A2�mn � A2�~z2~z2

that obviously agrees with the result
obtained in the original �z1; z2� frame.
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Ka
b � �a

bK has a singular contribution only along the
four-dimensional coordinates that characterize the inter-
section. It must be compensated by the energy-momentum
tensor of matter localized at the intersection itself. The
maximally symmetric metric at the intersection reads

 ds2 int
4 � A2�t; 0; 0����dx

�dx�; (25)

with Hubble parameter H.
The Israel junction conditions relate the components of

the extrinsic curvature to the energy-momentum tensor on
the branes. A straightforward calculation using the relation
between the Ci functions and the induced Hubble parame-
ters leads to the following conditions:6

 �1 � 6M3
5;1H

2
1 �

8M4
6

sin�
��2

�������������������
H2 �H2

2

q
� �1 cos�

�������������������
H2 �H2

1

q
�; (26)

 �2 � 6M3
5;2H

2
2 �

8M4
6

sin�
��1

�������������������
H2 �H2

1

q
� �2 cos�

�������������������
H2 �H2

2

q
�; (27)

 

� � 3M2
4H

2 � 6��1M
3
5;2

�������������������
H2 �H2

1

q
� �2M

3
5;1

�������������������
H2 �H2

2

q
�

� 4M4
6

cos�
sin�

: (28)

It is important to recognize that the induced gravity terms
on the codimension-one branes provide contributions that
are similar to the ones that appear in the DGP brane worlds
in five dimensions. At the intersection, we find that local-
ized gravity terms on the codimension-one branes induce
contributions proportional to M5;i which are again similar
to the ones in the DGP models in five dimensions. Note
that, by allowing the different 5D Newton constant on
different codimension-one branes, the parts of the
Friedmann equation proportional to M5;i reproduce the
asymmetric 5D model with induced gravity considered in
Ref. [32]. In addition, we find a term inherited from the six-
dimensional bulk that vanishes in the limit in which the
branes form a right angle [26].

The angle between the branes can be determined by (3).
In terms of the H’s and the � it becomes

 �B � �
10

sin2�
	H2�1� cos2�� �H2

1 �H
2
2

� 2�1�2 cos�
�������������������
H2 �H2

1

q �������������������
H2 �H2

2

q

; (29)

that can be easily solved in terms of the angles:

 cos��
�1�2

������������������������������������������
�H2�H2

1��H
2�H2

2�
q

�
���������������������������������������
�H2

1�
�B
10 ��H

2
2�

�B
10 �

q
H2��B

10

:

(30)

III. SELF-ACCELERATING CONFIGURATIONS

Potentially interesting configurations in our system are
self-accelerating solutions. It is well known that induced
gravity terms may provide accelerating cosmological so-
lutions in which acceleration is induced by gravity itself
and is independent of the presence of matter or cosmologi-
cal constant in the system. This very important observation
[2,3] has received much attention, since it can provide a
model for dark energy without cosmological constant.
However, it has also been realized that this scenario has a
serious drawback. The most interesting branch of solutions
in the standard DGP brane world (the one that contains the
self-accelerating configuration) is plagued by ghosts [5]. It
would be interesting to study how generic this conclusion
is in higher codimensional models. In order to investigate
this issue, we start from seeking new self-accelerating
solutions in higher codimensions.

A. New self-accelerating solutions in 6D spacetime

We consider now self-accelerating solutions for our
system. Let us then choose �1 � �2 � � � 0, while the
induced gravity terms (parametrized by M4 and M5;i) do
not vanish. For simplicity we assume M5;1 � M5;2. It is
then possible to solve our system of equations (26)–(29).
Taking the difference between (26) and (27), one obtains
 

��1

�������������������
H2 �H2

1

q
� �2

�������������������
H2 �H2

2

q
�

�
1� cos�

sin�

�
6M3

5

8M4
6

��1

�������������������
H2 �H2

1

q
� �2

�������������������
H2 �H2

2

q
�

�
� 0; (31)

so that we have two possible types of solutions that we now
describe.

(i) Symmetric solution: H1 � H2 and �1 � �2.—The
flat-bulk condition (29) yields

 H2
1 �

H2

2
�1� cos��: (32)

From the codimension-one equation (26), one thus
gets either the trivial solution H � 0, or

 H �
8�1

3 sin�
M4

6

M3
5

��������������������
1� cos�

2

s
; (33)

which, along with (32), can be plugged into the
intersection equation (28) to give

 4� 3 cos� �
8M4

6M
2
4�1� cos��

3M3
5 sin�

; (34)

6Notice that the six-dimensional terms proportional to M6
have different coefficients with respect to the results in [26].
This discrepancy is due to a different prescription for manipu-
lating distributional functions during the calculations. It does not
qualitatively affect the physical consequences of the results.
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that sets the value for the angle between the
codimension-one branes. Notice that this last rela-
tion forces the angle � to be positive. Then, in order
to have a positive H, for Eq. (33) we must choose a
positive �.

(ii) Asymmetric solution: H1 � H2.—Defining

 D � �
6M3

5

8M4
6 sin�

��1

�������������������
H2 �H2

1

q
� �2

�������������������
H2 �H2

2

q
�;

(35)

we get

 D �
1

cos�� 1
; (36)

from (31). Then the sum of (26)–(28) gives

 

�������������������
H2

1 �H
2
2

q
�

4M4
6

3M3
5

; (37)

 H2 �
4M4

6

3M2
4

2� cos�
sin�

; (38)

respectively. Finally from the condition (29) we get
the relation

 sin��2� cos�� �
4M4

6M
2
4

3M6
5

: (39)

From this condition, we learn that � is positive and
then, from the previous relations, that at least one of
the �’s must be positive as well.

B. Scales of gravity

A simple manipulation of the previous formulas shows
that, in both cases, the resulting Hubble parameter is of the
order

 H ’
M3

5

M2
4

; (40)

that is, the same result as in the five-dimensional DGP
models. In order to explain the late time acceleration H �
10�42 GeV, we should require M5 � 10�2 GeV with
M4 � 1018 GeV. For �� 	=2, the six-dimensional
Newton constant is roughly given by

 M4
6 ’

M6
5

M2
4

’ M2
4H

2: (41)

Thus, M6 must be M6 � 10�3 eV to explain the late time
acceleration. With these parameters we find that the cross-
over scales are given by

 rc;5 � rc;6 �H
�1; rc;5 �

M2
4

M3
5

; rc;6 �
M4

M2
6

: (42)

We should note that these scales are exactly the seesaw
scale of [33]. For large distance, r > rc;5, rc;6, gravity is
five-dimensional or six-dimensional. The laws of four-
dimensional gravity are valid all the way down to the
distances of the order M�1

6 . Below this length scale, the
effective theory of gravity breaks down. As a result, there is
a lower bound on the scale M6 which comes from accel-
erators, astroparticle, and cosmological data, that is M6 >
10�3 eV [34]. This is exactly the scale we need to explain
the present-day acceleration of the Universe. Note that, for
a small angle �� 1, M6 is given by M4

6 � �M6
5=M

2
4.

Hence, the constraint becomes difficult to satisfy.
However, one realizes that, in order to have H positive,

we must choose at least one of the �i with the positive sign.
Then, we are in the same class of self-accelerating solu-
tions of [2], that are notoriously plagued by ghosts. It is
then likely that our codimension-one branes contain ghost
excitations. There is a suggestion that, if there is no matter
on the self-accelerating universe, it is possible to quantize
the theory without having the ghost instability. In our
model, we do not need matter on codimension-one brane.
It would be interesting to study at what level the ghost
couples with matter on the brane at the intersection.

C. More self-accelerating solutions in higher
codimensions

In this section we show that the methods previously
described can be easily generalized to a system of N
codimension-one branes that intersect in a (4� N)-
dimensional spacetime, along the lines of [35]. Their com-
mon intersection—a four-dimensional, codimension-N
brane—should correspond to the spacetime we observe.
We consider an Einstein-Hilbert action in the bulk, with the
addition of a bulk Lagrangian L, and we allow for induced
gravity terms on all the branes, and at the intersections.

The action for the system is then the following:

 

S �
Z

bulk
d4�Nx

�������
�g
p

�
M2�N

4�N

2
R� L

�

�
XN
i�1

Z
�i

d3�Nx
�����������
�g�i�
p

�
M1�N

3�N

2
R�i� � L�i�

�

�
X
i�j

Z
�i\�j

d2�Nx
�������������
�g�ij�
p

�
MN

2�N

2
R�ij� � L�ij�

�

� � � � �
Z
\
d4x

����������
�g\
p

�
M2

4

2
R\ � L\

�
; (43)

where \ �
T
i�i denotes the three-brane at the intersection

between all codimension-one branes. Here we concentrate
on the case where the Lagrangians are simply tensions and
the codimension-one branes intersect to form right angles.
We also describe an empty ‘‘self-accelerated’’ scenario
where all the branes undergo a de Sitter phase with no
cosmological constant nor tensions in the system. The bulk
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geometry is again a maximally symmetric one: ds2 �
A2�t; z1; . . . ; zN��MNdx

MdxN with A�t; z1; . . . ; zN� �
1=Ht�

PN
i�1 kijzij and each static codimension-one brane

�i is defined by the subspace fzi � 0g. The bulk Einstein
equation gives the relation

 H2 �
XN
i�1

k2
i �

2

�2� N��3� N�
�; (44)

whereas the equation of motion for the codimension-one
branes �i can be computed by means of the Israel junction
condition. Assuming Z2 symmetry across the branes

 �i�Km
n � �

1

2M2�N
4�N

�
�i�Tmn �

1

2� N
�mn �i�T

���������smooth
;

(45)

where �i�Tmn includes a regular ‘‘matter’’ part���i��
m
n and

a part from the smooth part of the induced EH term,
namely �M1�N

3�N
�i�Gm

n � M1�N
3�N

�1�N��2�N�
2 �H2 �

P
i0k

2
i0 ��

m
n .

Hence,

 

�i�Tmnjsmooth �

�
���i� �M

1�N
3�N

�1� N��2� N�
2

�

�
H2 �

X
i0
k2
i0

��
�mn : (46)

Taking the normal vector to the brane to be pointing into
the bulk n�M � A�ziM, we get �i�Km

n � gmrrrnn �
�mn A

�2@iAj�i
� ��mn ki. Then Eq. (45) gives

 

�i � M1�N
3�N

�1� N��2� N�
2

�
H2 �

X
‘�i

k2
‘

�
� 2�2� N�M2�N

4�Nki; (47)

which in the special case N � 2 simply reduces to (26) for
a right angle between the branes. The process can be
iterated. In fact each brane �i is intersected by other N �
1 branes. From the point of view of an observer sitting on
�i, each of these intersections separate the brane itself in
two half parts whose boundaries are given by that inter-
section. Consider for definiteness the intersection �i \ �j:
we will then have a contribution to the singular part of the
Einstein tensors associated to R�i� localized at zj � 0 and a
contribution to the singular part of the Einstein tensors
associated to R�j� localized at zi � 0. Such contributions
can be evaluated by computing the extrinsic curvatures
associated to the intersection �i \ �j as measured from
the �i and �j point of view. Namely,

 

�ij�Km
n �

�ji�Km
n � ��mn �ki � kj�; (48)

and (47) thus generalizes as

 

��ij� � MN
2�N

N�1� N�
2

�
H2 �

X
l�i;j

k2
l

�

� 2�1� N�M1�N
3�N�ki � kj�; (49)

and so on. In particular, for the 3-brane intersection of all
the codimension-one branes, we haveN contributions from
the induced EH terms localized on the N � 1-codimension
N intersections. Hence,

 �\ � 3M2
4H

2 � 6M3
5

XN
i�1

ki: (50)

It is thus clear from the previous setup that the presence of
induced EH terms on the branes allows for localized matter
on the branes themselves, at least in the form of tension.

We then concentrate on a special case of the previous
results that gives rise to a de Sitter solution in the absence
of any form of matter in the system, namely, a self-
accelerated solution. We set ki � �Hi: the bulk equation
of motion simply requires H2 �

P
iH

2
i , whereas from the

junctions conditions (47) one obtains

 M1�N
3�N

�1� N�
4

�
H2 �

X
‘�i

H2
‘

�
� M2�N

4�NHi; (51)

that, using the bulk equation of motion, reduces to

 Hi �
M1�N

3�N

M2�N
4�N

1� N
4

H2
i (52)

which fixes

 K � Hi �
4

1� N
M2�N

4�N

M1�N
3�N

; 8 i: (53)

The process can again be iterated all the way down to
codimension-N. At the last level, we have N contributions
to the extrinsic curvature on the 3-brane, from N possible
intersections ofN � 1 codimension-one branes. Using (50)
and (53) and the bulk equation of motion, one obtains the
4D Hubble scale and a relation between all the masses in
the system:

 H �
����
N
p

K �
����
N
p

2
M3

5

M2
4

; (54)

 2
M3

5

M2
4

�
4

3

M4
6

M3
5

�
M5

7

M4
6

� � � � �
4

1� N
M2�N

4�N

M1�N
3�N

: (55)

Let us also stress that all the branes (codimension-one and
intersections) undergo a de Sitter phase. As to the
codimension-one branes �i, the rate is simply Hi � K,

and similarly for �i \ �j one has Hij �
�������������������
H2
i �H

2
j

q
����

2
p
K: for a generic codimension-n intersection, one ob-

tains H�n� �
���
n
p
K.
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Note that if we require the de Sitter rate H to be equal to
today’s Hubble rate H0 � 10�42 GeV, from (54) and (55),
and using M4 � 1018 GeV, we get the following values for
the mass scales involved in the system:
 

M5 � 10�2 GeV; M6 �M5

�
M5

M4

�
1=2
� 10�12 GeV;

M7 �M6

�
M6

M5

�
3=5
� 10�18 GeV . . . ; (56)

Hence the higher is the codimension, the lower the funda-
mental scale must be. This requirement contradicts the
constraints on the fundamental scale M4�N < 10�3 eV,
and it is impossible to realize the self-accelerated scenarios
in higher codimensional spacetime with N > 2.

IV. SELF-TUNING CONFIGURATIONS

The system of equations (26)–(29) relates the bulk
cosmological constant and brane tensions with the brane
Hubble parameters and the angle between the branes. Since
we have induced gravity terms on the branes, it is possible
that they are enough to ensure that four-dimensional grav-
ity is obtained in the relevant regimes at the intersection,
with no need to compactify the extra dimensions. Then, the
angle between the branes is a free parameter; it is natural to
ask whether the self-tuning solutions exist where, by
changing the tension at the intersection �, only the angle
� between the branes changes and all the other quantities
are fixed.

The following is an example of such solutions:

 �1 � 6M3
5;1H

2
1 ; (57)

 �2 � 6M3
5;2H

2
2 ; (58)

 H2 � H2
1 � H2

2 �
�B

10
; (59)

 cos 2� �
��� 3M2

4H
2�2

��� 3M2
4H

2�2 � 16M8
6

: (60)

The Hubble parameter at the intersection is independent of
the tension �. The tension only controls the angle between
the branes. Then, if we localize standard model physics at
the intersection, any contribution to the four-dimensional
cosmological constant, that is, the brane tension �, does
not curve the four-dimensional spacetime. Instead, it only
changes a parameter in the higher dimensional spacetime
that is the angle between the branes, realizing the desired
self-tuning mechanism.

It is important to point out the similarity and difference
between this idea and the self-tuning scenarios in six
dimensions using brane worlds on conical singularities
[7,9] where two extra dimensions are compactified by a
magnetic monopole. In these cases, the self-tuning mecha-
nism suffers from a quantization condition for the magnetic

monopole responsible for compactifying the extra space
and we need a fine-tuning between the cosmological con-
stant and other parameters of the models. Our case is
different because in principle we do not need to compactify
the extra dimensions. In our model, the induced gravity is
supposed to recover 4D behaviors of gravity on scales
smaller than the crossover scales rc;5 or rc;6.
Furthermore, note that in [7,9] and in their infinite-volume
counterparts [11,15] (which are more like the present
configuration), the vacuum energy density has a finite
critical value that corresponds to the maximum of the
deficit angle of the cone that characterizes the 6D space-
time near the location of the brane. Our solution is topo-
logically different from a vortex and there is no critical
value for the brane tension. This would have an important
implication for the existence of the ghost. It has been
shown that there appears a ghost if we consider a 4D vortex
with induced gravity in a 6D spacetime depending on the
regularizations [20]. In our model, we should carefully
reexamine this issue as the intersection behaves differently
from the vortex. It would be interesting to study this topic
in more detail.

V. CONCLUSIONS AND OPEN ISSUES

In this paper, we studied maximally symmetric solutions
for intersecting brane worlds with induced gravity terms.
We found new classes of the self-accelerating solutions
that realize de Sitter solution without any cosmological
constant in the system. In a 6D spacetime, this realizes the
seesaw modification of the gravity. The 6D Planck scale
must be M6 � 10�3 eV to explain the late time accelera-
tion H � H0 � 10�42 GeV. This scale determines the IR
scale where 4D gravity is modified M2

6=M4 �H0. On the
other hand, M6 defines the UV scale where 4D gravity is
modified. It was shown that the lower bound for the fun-
damental Planck scale is roughly 10�3 eV from various
constraints which is consistent in the 6D case. The small
angle between the two branes makes it difficult to satisfy
this constraint. We have shown that the construction of the
self-accelerating universe with right angles between the
branes can be naturally extended to N-dimensional space-
time. However, it was shown that, in order to realize the
observed late time acceleration, the higher-dimensional
Planck scale is increasingly lower and violates the lower
bound for the fundamental scale. We should mention that
the problem of the ghost instability would exist even in
these new solutions. It would be important to study at what
level the ghost couples with matter on the brane at the
intersection.

It is also possible to find the self-tuning solution where
the cosmological constant on the intersection only depends
on the angle between the branes. Unlike other examples, in
principle we do not need to compactify the extra dimen-
sions, since the induced gravity terms may be sufficient to
provide four-dimensional gravity in the relevant regimes.
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Then, the angle between the branes is a free parameter that
does not have to satisfy any constraint. We also showed
that a brane world at the intersection behaves differently
from the brane world on a vortex. In the vortex case, it is
shown that a regularization is needed to remove the diver-
gence of 6D propagator and a ghost can appear depending
on the regularization. It is vital to reexamine these issues
for our intersecting branes.

Finally, let us briefly discuss the problem of obtaining
consistent four-dimensional gravity at the intersection in
this setup. The first simple step toward the understanding
of this issue is to generalize the maximally symmetric
solutions to the case of FRW cosmological configurations
on the branes. Then, by studying Israel junction conditions,
one can derive the effective cosmological equations on the
codimension-one and codimension-two brane worlds. By
obtaining the Hubble equation on the codimension-two
brane world at the intersection, it is possible to determine
on which scales standard four-dimensional cosmological
expansion can be obtained at the intersection. The resulting

cosmological system presents many interesting features. It
is possible to show that the preferred energy-momentum
tensor can be localized at the intersection, although in the
case in which it is different from pure tension, there is
normally an exchange of energy density between the
codimension-one branes and the intersection. The details
of the induced cosmology, as well as their consequences,
are going to be analyzed in a companion paper [27].
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