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A maximally rotating Kerr black hole is said to be extremal. In this paper we introduce the
corresponding restrictions for isolated and dynamical horizons. These reduce to the standard notions
for Kerr but in general do not require the horizon to be either stationary or rotationally symmetric. We
consider physical implications and applications of these results. In particular we introduce a parameter e
which characterizes how close a horizon is to extremality and should be calculable in numerical
simulations.
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I. INTRODUCTION

It is well known that there is a limit on the maximum
allowed angular momentum for a Kerr black hole. If such a
hole has mass M then the angular momentum J must
satisfy J � M2. Solutions which saturate this bound are
known as extremal while Kerr spacetimes with J >M2

contain naked singularities rather than black holes. Given
this constraint on stationary solutions it is natural to con-
sider whether there is a similar restriction for astrophysical
black holes. In contrast to the Kerr holes which sit alone in
an otherwise empty universe, real black holes do not exist
solely in isolation and can, for example, be surrounded by
accretion disks or be components of binary systems.

For this reason, it is interesting to investigate whether
extremality conditions can be formulated and applied to
interacting black holes. This is of particular interest during
black hole collisions. It is widely accepted that following a
merger, the final black hole will settle down to one of the
known stationary solutions. However, during the highly
dynamical merger phase, it is not clear whether the black
hole’s angular momentum is bounded. The existence or
lack of an extremality condition may help us to understand
the physics of black hole mergers, and provide insight into
whether binary black holes will necessarily ‘‘hang up’’ in
orbit, emitting excess angular momentum prior to forming
a common horizon. Similar questions arise for black holes
forming from the gravitational collapse of matter.

Away from the Kerr-Newmann family of solutions there
are some recent results that either support or cast doubt on
the possible existence of such a bound. In support, Dain [1–
3] has shown that for a large class of asymptotically flat,
axially symmetric, vacuum black holes JADM � M2

ADM

where the subscripts indicate that these are the ADM
mass and angular momentum as measured at spatial infin-
ity. By contrast Petroff and Ansorg [4–6] have recently
generated numerical examples of black holes surrounded
by rotating rings of matter for which the Komar mass and
angular momentum violate the bound JKomar � M2

Komar.
Clearly in considering these issues one needs to be

careful about how the physical quantities are defined. In
particular, in formulating a bound one would like to dis-
tinguish between the mass and angular momentum directly
associated with the black hole versus any matter or gravi-
tational waves surrounding it. This is, of course, easier said
than done. Mass and energy are notoriously ambiguous
quantities in general relativity. They are well-defined for
entire asymptotically flat spacetimes but in general it is not
possible to assign mass and energy to more localized
regions of spacetime (see, for example, the discussion in
[7]). Similar problems arise for angular momentum and
away from axisymmetry it is not at all clear that angular
momentum can be described by a single number.

Distinguishing between local and global properties of
black holes is one of the main motivations for the recent
interest in quasilocal characterizations of horizons, includ-
ing trapping [8–11], isolated [12–16], and dynamical
[17,18] horizons. In this paper we apply the machinery
developed in the study of quasilocal horizons to investigate
local characterizations of extremality.

We will argue that the ambiguities in defining mass and
angular momentum mean that, in general, the usual Kerr
extremality bound is not well formulated for quasilocal
horizons. Thus we will examine alternative characteriza-
tions of extremality and show that they do apply. For
isolated horizons these arise from (1) the non-negativity
of the surface gravity and (2) the idea that there should be
trapped surfaces just inside the horizon. For dynamical
horizons only the second these characterizations is appli-
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cable since the surface gravity is only meaningful for
slowly evolving dynamical horizons (in the sense of [19–
21]).

Both the surface gravity and trapped surface character-
izations of extremality give rise to an alternative, local
extremality condition. This condition is similar in spirit
to the Kerr extremality bound, and involves contributions
from both the black hole’s angular momentum and horizon
matter fields. However, it can be written locally on the
horizon and angular momentum ambiguities are avoided
by making use of the square of an ‘‘angular momentum
density’’ integrated over the horizon rather than the angular
momentum relative to any particular axis. With this defi-
nition of extremality, we show that generic dynamical
horizons, in the sense of [22], are necessarily subextremal.
Isolated horizons can obtain extremality (in which case the
local geometry must be that of the Kerr horizon [23]). We
discuss how this local extremality compares to the standard
Kerr relation, and argue that in those cases where both are
well formulated it may still be possible for a black hole to
violate the Kerr bound.

The paper is laid out as follows. We begin in Sec. II with
a discussion of extremality for stationary black holes and
recall the three notions of extremality already mentioned:
maximum angular momentum, vanishing surface gravity,
and coincidence of the inner and outer horizons. The next
section shows how these notions may be adapted to iso-
lated horizons, examines conditions under which they are
equivalent, and considers situations under which one or
more of them might be violated. In Sec. IV we use this
experience to study the equivalent notions for dynamical
horizons and show that these horizons are always subex-
tremal. Finally, Sec. V provides a brief summary. An
appendix shows how the various notions apply to the
Kerr (anti-)deSitter family of solutions.

II. STATIONARY BLACK HOLE HORIZONS

Let us begin by reviewing the notion of extremality for
stationary, asymptotically flat black hole spacetimes. In
Einstein-Maxwell theory, the uniqueness theorems tell us
that the class of such solutions is restricted to the Kerr-
Newman spacetimes. Furthermore, these spacetimes are
characterized by only three quantities; their mass M, an-
gular momentum J and electric charge Q. Black hole
solutions exist for all values of M, J and Q which satisfy
the inequality:

 a2 �Q2 � M2 where a � J=M: (1)

If this inequality is violated the resulting spacetimes are
still solutions of the Einstein equations, however they
contain a naked singularity in lieu of a black hole. The
first notion of extremality arises from Eq. (1). Solutions for
which the equality is satisfied, namely

 a2 �Q2 � M2 (2)

are said to be extremal as they contain the maximum
allowed angular momentum/charge for a given mass.

Since the Kerr-Newman solutions are stationary and
axisymmetric, they have both a time-translation Killing
vector field ta and a rotational Killing vector field �a.
The event horizon is a nonexpanding null surface whose
null normal is

 �a � ta ���a; (3)

where � is interpreted as the angular velocity of the
horizon. It is then straightforward to calculate the accel-
eration of � at the horizon:

 �brb�
a � ��a: (4)

The quantity � is known as the surface gravity. Since � is
defined in terms of Killing vectors which are appropriately
normalized at infinity, there is no ambiguity in its normal-
ization and by direct calculation

 � �
�M2 � a2 �Q2�1=2

2M�M� �M2 � a2 �Q2�1=2� �Q2
: (5)

The second notion of extremality comes from this sur-
face gravity. It is clear from Eqs. (1) and (5) that the surface
gravity is only well-defined for black hole (as opposed to
naked singularity) solutions and is necessarily non-
negative. Furthermore, for an extremal black hole satisfy-
ing (2), the surface gravity vanishes, i.e. � � 0. Thus,
vanishing surface gravity is often taken as the defining
property of an extremal horizon.

Finally, we can understand extremality from the geo-
metric structure of spacetime—one of the fundamental
properties of a black hole is that it contains trapped sur-
faces which are defined in the following way. Any space-
like two-surface has two future-pointing null normals,
which we will denote ‘ and n. Then, the expansion of these
null vectors is defined as:

 ��‘� � ~qabra‘b and ��n� � ~qabranb; (6)

where ~qab is the metric of the two-surface. On a trapped
surface, the expansions of both null vector fields are nega-
tive. This is in contrast to a typical (convex) two-surface in
flat space which will have one positive and one negative
expansion. For asymptotically flat spacetimes, the exis-
tence of a trapped surface is sufficient to imply the exis-
tence both an event horizon enclosing the surface and a
spacetime singularity somewhere in its interior [24].

For typical charged or rotating black holes, there are two
horizons, the event horizon and the inner Cauchy horizon.
These are null, foliated by two-dimensional marginally
trapped surfaces (��‘� � 0 and ��n� < 0), and split the
spacetime into distinct regions. It is only in the region
between the horizons that trapped surfaces exist. If the
charge or angular momentum is increased towards the
extremal value, the trapped region between the horizons
shrinks, until, at extremality, the inner and outer horizons
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coincide, the trapped region vanishes and only the margin-
ally trapped surfaces of the horizon remain. It is this notion
of extremality which is used in Israel’s proof that a non-
extremal black hole cannot achieve extremality in a finite
time [25].

Thus, we see that for event horizons in stationary space-
times, there are three notions of horizon extremality which
all coincide:

First characterization: The angular momentum and
charge of a black hole are restricted according to Eq. (1).
For an extremal black hole, a2 �Q2 � M2.

Second characterization: The surface gravity � of a
black hole must be greater than or equal to zero. The
surface gravity vanishes if and only if the horizon is
extremal.

Third characterization: The horizon of the black hole is
a marginally trapped surface. For nonextremal black holes,
the interior of the black hole must contain trapped surfaces,
while for extremal black holes, the inner and outer hori-
zons coincide and there are no trapped surfaces.

In the remainder of this paper, we will argue that the
second and third definitions can be extended to isolated and
dynamical horizons. Furthermore, we will obtain a horizon
relation similar in spirit, though not identical, to the one
appearing in the first definition above. We start with iso-
lated horizons.

III. ISOLATED HORIZONS

Isolated horizons have been introduced to capture the
local physics of the horizon of a black hole in equilibrium
[12–16]. These are null surfaces and so form causal
boundaries. However, unlike event horizons, they are de-
fined (quasi-)locally. Specifically, a null surface � of to-
pology S2 	 R with (degenerate) metric qab, derivative
Da, and normal ‘a is an isolated horizon if:

(1) � is nonexpanding: ��‘� � 0,
(2) an energy condition holds at the horizon:�Tab‘

b is
future-directed and causal, and

(3) the null vector ‘a is scaled such that

 �L‘; D� � 0: (7)

The energy condition is weaker than and implied by any
of the standard energy conditions. Together with the first
condition and the Raychaudhuri equation it follows both
that the intrinsic geometry of � is invariant in time:
L‘qab � 0 and that there is no flux of matter through the
horizon: Tab‘a‘b � 0. The third condition fixes the scaling
of ‘a up to an overall constant and ensures that the extrinsic
geometry is similarly invariant in time.

To make all of this a little more concrete, note that one
can always find functions v on � that are compatible with ‘
(so that L‘v � 1) and which have spacelike level surfaces
Sv with topology S2. For such a function, na � �Dav is
not only normal to these surfaces of constant v but is also

null and satisfies ‘ 
 n � �1. The spacelike metric on the
Sv can be written as ~qab � gab � ‘anb � na‘b.

With these additional structures the invariance of the
intrinsic geometry can be written as

 L ‘~qab �
1
2��‘�~qab � �

�‘�
ab � 0; (8)

so that both the expansion ��‘� and shear ��‘�ab of the two-
surfaces vanish. Further, the third condition implies that
the corresponding expansion ��n� and shear ��n�ab in the
n-direction are also invariant in time

 L ‘��n� � 0 and L‘�
�n�
ab � 0; (9)

as is the connection

 ~!a � �~qbancrb‘c (10)

on the normal bundle to the foliation two-surfaces:

 L ‘ ~!a � 0: (11)

Finally, one can use the axioms to prove a zeroth law. For
the allowed scalings of the null vectors, the surface gravity
�, defined in a similar manner to that on the event horizon
(4),

 ‘brb‘a � �‘a (12)

is constant on the horizon: Da� � 0 [14].
On an isolated horizon, the scaling of the null vectors is

only fixed up to an overall positive multiplicative constant.
Under allowed rescalings ‘! c‘ and n! n=c, the con-
nection ~!a is invariant while �! c�. Thus, while � is
constant over �, its exact value is only fixed up to sign (ie.
positive, negative, or zero).

Derivations of these facts can be found in the already
cited references or in [26] which focuses on the geometry
of horizons.

A. Extremality from Q, a, and M?

We begin with the first notion of extremality: the horizon
of a Kerr-Newman black hole is extremal if and only if
a2 �Q2 � M2. Let us attempt to extend this to isolated
horizons. The prerequisite to this is to obtain a satisfactory
definition of each of these quantities and, except for the
electric charge, that is where problems arise. Given a two-
dimensional cross section Sv of the horizon, the charge is
well-defined by Gauss’ law:

 Q �
1

4�

Z
Sv
d2x

���
~q

p
Fab‘anb �

1

4�

Z
Sv
d2x

���
~q

p
E?; (13)

where ~q is the determinant of the two-metric ~qab on Sv and
Fab is the electromagnetic field tensor. Equivalently, we
rewrite Fab‘anb � Fabû

aŝb �: E? where û and ŝ respec-
tively are orthogonal timelike and spacelike unit normal
vectors to Sv. E? is the flux of the electric field through Sv
as observed by a timelike observer with evolution vector
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ûa. Since the horizon is isolated, this is independent of the
cross section [14].

Next, we consider angular momentum. In classical, non-
relativistic, physics angular momentum is defined relative
to an axis of rotation. For isolated horizons the analogue of
an axis of rotation is a rotational vector field. Following
[19,21,27] this is given by �a 2 TSv whose flow foliates
the Sv into closed integral curves of parameter length 2�
plus two fixed points (the poles of the rotation). A vector
field of this type is necessarily divergence-free and the
canonical example is a horizon with a rotational Killing
vector field �a so that

 L �~qab � 0: (14)

The angular momentum relative to a rotational vector
field �a is then [15,16]

 J��� �
1

8�G

Z
S
d2x

���
~q

p
�a ~!a �

1

4�G

Z
S
d2x

���
~q

p
�aAaE?;

(15)

where ~!a is the connection of the normal bundle that we
have already encountered in Eq. (10), and Aa is the elec-
tromagnetic connection. It is immediate that on an isolated
horizon this quantity is independent of the choice of cross
section Sv.

This is closely related to other standard measures of
angular momentum such as the Brown-York [28] or dy-
namical horizon [18] measures. In particular, as is dis-
cussed in more detail in [14]

 Da‘
b � ���na � ~!a�‘

b (16)

is the Weingarten map and is analogous to the standard
extrinsic curvature, although tailored to the null surface of
the horizon. Then, it is not surprising that the geometric
part of the angular momentum (15) agrees with usual
extrinsic curvature formula. To see this, consider the case
where the isolated horizon is an apparent horizon found in
a numerical simulation. In this case, the Sv are each con-
tained in spacelike three-surfaces �t, ûa is the future
directed unit normal to the �t and ŝa 2 T�t is the
outward-pointing spacelike unit normal to the Sv. Then,
for a divergence-free rotational vector field �a it is
straightforward that the isolated horizon angular momen-
tum can be rewritten as

 J��� �
1

8�G

Z
Sv
d2x

���
~q

p
��aŝbKab � 2�aAaE?�; (17)

where Kab � hcah
d
brcûd is the extrinsic curvature of �t

(with hab the induced three-metric on �t). In stationary
black hole spacetimes, this measure also agrees with the
Komar and ADM angular momenta evaluated at infinity.

Thus, given a rotational vector field �a the angular
momentum of the horizon is well defined. Unfortunately,
in the absence of axisymmetry there is no obvious way to
uniquely select a geometrically preferred rotational vector

field. Indeed, for highly distorted horizons, it is by no
means clear that one should always expect such an ‘‘axis
of rotation’’ to exist. For nonaxisymmetric horizons it
seems unlikely that the angular momentum can be charac-
terized by a single number (though see [29–33] for alter-
native viewpoints).

Even if we restrict our attention to axially symmetric
horizons, in order to define extremality by Eq. (1) we
would still need a definition of horizon mass M and here
the greatest difficulties arise. While local definitions of
angular momentum for a surface are readily available
and tend to agree, the issue of a local energy or mass is
much more difficult [7,14,27]. In particular, the rescaling
freedom of ‘ precludes the identification of a preferred
energy associated with evolution along ‘. A common
solution to this is to simply define the mass of a horizon
with area A and angular momentum J to be equal to the
value it would take in the Kerr spacetime. Then by the
Christodoulou formula [34]

 M2 :�
�R2

H �Q
2�2 � 4J2

4R2
H

(18)

where RH �
���������������
a=�4��

p
is the areal radius of the horizon.

With this mass, it is straightforward to show that jJj is less
thanM2. However this is simply a property of the definition
and the physical relevance of (18) for highly distorted
black holes is, at best, unclear.

Given the difficulties with the definition of mass, it
probably makes more sense to rephrase any characteriza-
tion of type (1) entirely in terms of quantities such as RH,
Q, and J which can be locally measured on the horizon.
Then, this bound may be rewritten as

 Q4 � 4J2 � R4
H: (19)

Thus defining Q, J, and RH as we have above, this is the
first possible characterization of extremality, at least for
axisymmetric horizons. There is no general derivation that
this bound must hold outside of the Kerr-Newman family.
Indeed, the inequality in Eq. (19) can be violated for non-
asymptotically flat spacetimes (Appendix A). Similarly, in
higher dimensional asymptotically flat spacetimes the
original bound (1) can also be violated [35,36]. Despite
this, Ansorg and Pfister have demonstrated that (19) holds
(with equality) for a class of extremal configurations of
black holes surrounded by matter rings. Furthermore, they
have conjectured that the inequality will hold for station-
ary, axially and equatorially symmetric black hole-matter
ring solutions [37].

B. Extremality from �

The second notion of extremality for Kerr black holes
says that the surface gravity is positive for subextremal
holes and zero for extremal holes. It is never negative. We
now consider this characterization for isolated horizons
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and see that in many ways it is more satisfactory than that
considered in the previous section.

The surface gravity for an isolated horizon was given in
Eq. (12), where it was noted that a zeroth law holds so that
� � �o everywhere on � for some (fixed) �o 2 R. The
scaling of the null vectors is only fixed up to a positive
multiplicative constant so rescalings of the form ‘! c‘,
c 2 R� are allowed. For such rescalings �! c� and so
the formalism only allows us to say whether an isolated
horizon has a surface gravity that is positive, negative, or
zero. This is sufficient for our purposes; an isolated horizon
is subextremal if and only if � > 0, extremal if � � 0, and
superextremal if � < 0.

Such a definition is more than just nomenclature. For
� � 0 there is a local uniqueness theorem for isolated
horizons; the intrinsic geometry of an extremal isolated
horizon must be identical to that of the Kerr-Newmann
horizon with the same area, charge and angular momentum
[23]. Further, subextremal horizons must obey bounds on
their electric charge and the angular momentum one-form
~!a. To see this, note that the evolution of ��n� is given by
[14,21]:

 L ‘��n� � ���n� � ~R=2 � ~da ~!a � ~!a ~!a

� �8�G�Tab‘
anb; (20)

where ~R is the two-curvature of the cross sections of the
horizon, ~d is the spacelike two-metric compatible covariant
derivative and Tab is the energy-momentum tensor.

The standard definition of an isolated horizon does not
restrict the sign of the inward expansion ��n�. However,
since we are interested only in black hole horizons1, it is
reasonable to impose the extra requirement that there be
trapped surfaces ‘‘just inside’’ the horizon. Thus, by con-
tinuity we restrict our attention to horizons with ��n� < 0.

Now, consider Eq. (20) evaluated on a subextremal
isolated horizon. On the left-hand side, the first term will
vanish since the geometry is time independent. The second
term is necessarily nonpositive: by assumption surface
gravity is non-negative, and we have restricted to black
hole horizons where ��n� < 0. Finally, although the ~R itself
can vary in sign, we know that since the cross sections of
the horizon have topology S2,

R
Sv

���
~q
p ~R � 8�.

Thus, integrating (20) over any Sv gives

 e :�
1

4�

Z
Sv
d2x

���
~q

p
�8�GTab‘

anb � jj ~!jj2� � 1; (21)

(the integral of the exact derivative ~da ~!a vanishes). This
gives an alternative characterization of extremality for
isolated horizons: � vanishes if and only if e � 1 and is
positive if and only if e < 1. This expression provides a
local extremality condition for isolated horizons expressed
in terms of the horizon angular momentum (encoded in the
one-form ~!) and matter fields. As such, it is similar in
spirit to the standard Kerr bound. However, this condition
is applicable to all isolated horizons, and does not require
either axisymmetry or asymptotic flatness.

The exact interpretation of the matter term depends on
the matter present at the horizon, but for electromagnetism
it is related to the electric and magnetic charge of the hole:

 8�GTab‘
anb � �E2

? � B
2
?�: (22)

The first term is the square of the electric flux density,
while the second is the square of the corresponding mag-
netic flux—the integral of B? is the magnetic charge
contained by Sv.

The second term of (21) is associated with angular
momentum. It sidesteps the problems of defining an axis
of rotation by working with the square of the angular
momentum density integrated over the horizon as a mea-
sure of the total angular momentum. To gain some insight
into this quantity, consider an axisymmetric horizon. On
such a horizon, the angular momentum can be decomposed
into its multipole moments [40]. Based on this decompo-
sition, J can be interpreted as the dipole angular momen-
tum of the horizon. Then the quantity appearing in our
extremality condition (21) can, at least intuitively, be
thought of as the sum of the squares of all the angular
momentum multipoles of the horizon.

These associations can be made concrete by calculating
e for the known black hole solutions. First for Reissner-
Nordström spacetimes (where ~!a vanishes) it is straight-
forward to show that

 e � Q2=R2
H (23)

where Q is the charge and RH is the areal radius of the
horizon. Thus e � 1 corresponds to the extremality condi-
tion Q � RH�� M� while e < 1 implies that Q< RH.

Moving on to the Kerr-Newman solutions the functional
form of e becomes considerably more complicated and so
instead of stating it explicitly, we plot it in Fig. 1 as a
function of the angular momentum and electric charge.
Recall from Eq. (19) that the standard extremality condi-
tion for Kerr-Newman solutions can be written as Q4 �
4J2 � R4

H. Then from the figure, we see that for these
extremal solutions e � 1 while for nonextremal solutions
e < 1. Therefore, the local extremality quantity behaves as
expected for stationary, asymptotically flat black holes.

1The defining conditions for isolated horizons are intended to
be necessary conditions that a null surface should meet in order
to be considered as the boundary of a noninteracting black hole
region. However, they are not sufficient to distinguish black hole
horizons from white hole or cosmological horizons.
Furthermore, there are examples of isolated horizons which
either do not correspond to black holes (in [38] there are no
trapped surfaces) or their black hole status is unclear (in [39] it is
not known whether the ‘‘black holes’’ all contain trapped
surfaces).
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C. Trapped surfaces

Finally we consider the third characterization of extrem-
ality: a horizon is subextremal if there are trapped surfaces
‘‘just inside’’ the horizon and extremal (or superextremal)
if there are no such surfaces. For this notion we need to
understand how the properties of a ��‘� � 0 surface change
under infinitesimal deformations. Continuing to assume
that ��n� < 0 on the horizon (and so by continuity remains
negative for sufficiently small deformations), we are then
interested in cases where there exists an inward deforma-
tion so that ��‘� also becomes negative. The equations
governing such deformations have been derived and reder-
ived many times and in many ways over the years
[8,21,41–45]. Here we follow [21].

There it is shown that given a spacelike two-surface S
and a transverse deformation vector field Xa,

 �X��‘� � �~d2B� 2 ~!a ~daB� B�n��‘� � A�‘��‘�; (24)

where A and B are the components of deformation vector
relative to the null normals so that Xa � A‘a � Bna.
Furthermore,

 �‘��‘� � �jj�
�‘�jj2 � �8�G�Tab‘

a‘b (25)

(the Raychaudhuri equation with ��‘� � 0) and

 �n��‘� � � ~R=2� jj ~!jj2 � ~da ~!a � �8�G�Tab‘anb;

(26)

are the variations of ��‘� under the deformations generated
by the null vectors. One way of calculating these deforma-
tions is to construct a coordinate system on the manifold

for which S is parametrized by two-coordinates [say
��;��] and is a level surface with respect to the other
two. The deforming vector (be it X, ‘, or n) should be a
tangent vector field to one of these other coordinates. For
such a construction, quantities such as ~!a can be defined
on level surfaces of the non-��;�� coordinates in a neigh-
borhood of S. Then the �s are Lie derivatives. In fact we
have already seen an example of this type of construction
in this paper; Eq. (20) could equally well be written as
�‘��n�. Indeed, Eq. (26) can be obtained from (20) by
simply switching ‘ and n and noting that ��‘� � 0.

Inward deformation vector fields will necessarily take
the form r � A‘� Bn where B> 0. For simplicity, we
can rescale the null vectors such that B � 1. Let us denote
these rescaled vectors as �‘, �n. Then

 �r��‘� � � �n�� �‘�; (27)

since on an isolated horizon � �‘�� �‘� � 0 regardless of the
scaling on the null vectors [note that this result is indepen-
dent of Eq. (7)]. Thus, slices of the horizon may be de-
formed inwards into fully trapped surfaces if and only if
there is a scaling of the null vectors such that � �n�� �‘� < 0.

By this measure we characterize an isolated horizon as
subextremal if there exists a scaling of the null vectors such
that � �n�� �‘� < 0, extremal if there exists a scaling such that
� �n�� �‘� � 0, and superextremal if there exists a scaling such
that � �n�� �‘� > 0. It is important to keep in mind that each of
these conditions must hold everywhere on � and that it will
usually be nontrivial to find the correct scaling needed for
the classification.

The Kerr solutions themselves provide an example of
these difficulties. For rapidly rotating Kerr black holes with
the usual (Killing vector) scaling of the null vectors, �n��‘�
varies in sign over Sv. However, this does not indicate that
these horizons lie outside the classification system. Instead
it suggests that a different scaling of the null vectors is
needed. Such a rescaling is considered explicitly in
Appendix C of [21], however here we generalize that
calculation to prove a more general result: for axisymmet-
ric isolated horizons with ��n� < 0 the surface gravity and
trapped surface classifications of extremality are equiva-
lent. That is
 

Subextremal: � > 0, e < 1, � �n�� �‘� < 0;

Extremal: � � 0, e � 1, � �n�� �‘� � 0 and

Superextremal: � < 0, e > 1, � �n�� �‘� > 0;

where �‘a and �na are appropriate rescalings of the null
vectors.

We prove this result by explicitly constructing these
rescalings. To this end we first note the following key
fact: On a topologically spherical two-surface embedded
in spacetime there is always a scaling of the null vectors so
that the angular momentum one-form is divergence-free:

FIG. 1. Plot of the extremality parameter, e, for a Kerr-
Newman horizon as a function of the scaled angular momentum
J=R2

H and electric charge Q=RH. For nonspinning black holes,
J � 0 and e � Q2=R2

H. The extremal Kerr-Newman solutions
which satisfy �Q=RH�4 � 4�J=R2

H�
2 � 1 all have an extremality

parameter e � 1.
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�da ~!a � 0 (this result ultimately follows from the Hodge
decomposition theorem [26]). The scaling is unique up to
the usual multiplicative constant. Thus, taking such a pair
of vectors �‘ao; nao� as a reference, we can write any other
scaling of the null vectors as

 ‘a � f‘ao and na �
1

f
nao; (28)

for some scalar function f over Sv. Then we can define the
inverse scaling

 

�‘ a �
1

f
‘ao and �na � fnao (29)

and using Eqs. (20) and (26) it is straightforward to see that
on an isolated horizon:

 � �n�� �‘� � ���n� � 4 ~!a
o

�da lnf: (30)

For an axisymmetric horizon the dual requirements that ~!a
o

respect the symmetry and that jj ~!ojj not diverge at the
poles of rotation imply that ~!a

o must be parallel to the
rotation vector. Then the last term of (30) vanishes and we
find that

 � �n�� �‘� � ���n�: (31)

The result is established. As a corollary, the value of the
extremality parameter e is the same evaluated for either the
constant surface gravity scaling of the null vectors or the
corresponding inverse scaling.

In more general situations, deciding on the classification
of a horizon will amount to studying the properties of a
second order elliptic partial differential operator. In par-
ticular, again taking �‘o; no� as reference scalings we have

 �n��‘� � �~d2 lnf� 2 ~!a
o

~da lnf� jj~d lnfjj2 � �no��‘o�
(32)

where

 �no��‘o� � jj ~!ojj
2 � ~R=2� 8�GTab‘aonbo; (33)

and we wish to find functions f for which (32) is every-
where negative (or zero or positive).

We will not investigate this equation in detail in this
paper but instead content ourselves with proving that, in
general, the classification is well defined. That is, given a
scaling of the null vectors so that �n��‘� is everywhere
negative, it is impossible to rescale the vectors so that the
horizon becomes extremal or superextremal. Physically
this is equivalent to saying that there cannot be both
trapped and untrapped surfaces ‘‘just inside’’ the horizon.

To see this, we reuse Eq. (32) though this time take
�‘o; no� as any scaling of the null vectors and �‘; n� as some
rescaling by f. Let us assume for a moment that f is
analytic. Then if it is not constant it must have maximum
and a minimum. At each of these ~d lnf vanishes while
�~d2 lnf is, respectively, greater or less than zero. Thus at

fmax: �n��‘� > �no��‘o� while at fmin: �n��‘� < �no��‘o� and
it is clear that if �no��‘o� � 0 then �n��‘� will have a mixed
sign. Similarly if �no��‘o� is everywhere positive (or nega-
tive) then it cannot be rescaled to be everywhere negative
(or positive). These results extend to nonanalytic rescalings
with the help of the maximum principle (see for example
[21]) and so it is clear that rescalings cannot change the
classification of a horizon.

Finally, note that we have not eliminated the possibility
that some isolated horizons might exist which do not fall
into any of the three categories. That is, there may be
horizons for which no rescaling will cause �n��‘� to either
vanish or be positive/negative everywhere. A source of
potential examples are the distorted horizons discussed in
[39].

D. A bound on angular momentum

With these two notions of extremality established let us
now return to the first: is there a maximum angular mo-
mentum for rotationally symmetric isolated horizons? In
answer to this question we now show that the allowed
angular momentum is bound by the intrinsic geometry of
the horizon and in particular for a large class of horizons,
that bound is exactly the local version of the Kerr bound,
Eq. (19). For simplicity, in this section, we restrict our
attention to uncharged black holes, i.e. horizons for which
the second term in (15) vanishes.

First, applying the Cauchy-Schwarz inequality to the
definition of J���, we have

 J���2 � e	
1

16�

Z
S
d2x

���
~q

p
jj�jj2; (34)

and so with e � 1 we immediately have a bound on the
angular momentum determined by the intrinsic geometry
of the horizon two-surfaces.

To better understand this bound we rewrite it as

 J���2 � e�R4
H; (35)

where

 � �

R
S d

2x
���
~q
p
jj�jj2

16�R4
H

: (36)

The properties of � are more easily studied by introducing
a canonical coordinate system on S. First use the symmetry
vector �a to generate a foliation of S into circles (plus two
poles). Next, choose a point on one of the circles and
construct a perpendicular geodesic from that point. This
curve runs from pole to pole and also perpendicularly
intersects each of the other circles. Then the first coordi-
nate s labels the slices by the proper distance measured
along this geodesic from one of the poles. Thus 0 � s � L
where L is the distance between the poles. The second
coordinate is the usual rotational coordinate � defined so
that the geodesic is a curve of constant� and�ara� � 1.

EXTREMALITY CONDITIONS FOR ISOLATED AND . . . PHYSICAL REVIEW D 77, 084005 (2008)

084005-7



For this system the metric takes the form

 dS2 � ds2 � 	�s�2d�2; (37)

where 2�	�s� is the circumference of the circle of coor-
dinate radius s and 	�0� � 	�L� � 0.

Then (36) becomes

 � �

R
L
0 	

3ds

2�
R
L
0 	ds�

2 ; (38)

and it is clear that for arbitrary 	 there is no bound on �—
given a horizon whose geometry is described by the func-
tion 	 and a constant k we can define a new horizon
geometry described by 	0 � k	 for which �0 � k�.
Thus, � can be made arbitrarily large.

However this class of rescalings is only possible if
d	=ds is also allowed to become arbitrarily large and, at
least in some circumstances, it is reasonable to bound this
quantity. For example, if S can be embedded in Euclidean
R3 then d	=ds � 1; the maximum rate at which the cir-
cumferential radius can increase is d	=ds � 1 (for a flat
disc).

Given a bound jd	=dsj � m for some positive constant
m, it can be shown that the maximum value of � arises for
the curve that increases with slope m as s runs from 0 to
L=2 and then decreases with slope�m from L=2 to L (see
appendix B). In this case � � m=4 and so (34) becomes

 

J���2

R4
H

�
m
4
: (39)

With m � 1, the angular momentum is bounded by the
standard (Kerr) value [Eq. (19)]. Unfortunately not all
surfaces of interest satisfy jd	=dsj � 1. For example it is
well known that sufficiently rapidly rotating Kerr horizons
cannot be embedded in Euclidean R3. This is precisely
because in this situation jd	=dsj> 1 near the poles. For
extremal Kerr it achieves a maximum value of 3

���
3
p
=4 �

1:299 and � � �=4� 1=2 � 0:285. Therefore, the local
extremality condition (21) cannot be used to infer J �
R2
H=2 even though this condition still holds. Interestingly,

as shown in Appendix A, for the Kerr-AdS black holes J �
R2
H=2 may be violated by an arbitrary amount. In such

cases e � 1 and the new bound (39) still holds although
with m � jd	=dsjmax > 1.

In summary the allowed angular momentum for a rota-
tionally symmetric isolated horizon is bound by the intrin-
sic geometry of the surface. For surfaces that can be
embedded in Euclidean R3 this is exactly the usual Kerr
bound. However for more exotic horizon cross sections the
intrinsic geometry can be similarly exotic and so the
numerical factor m in (39) can become arbitrarily large.

IV. DYNAMICAL HORIZONS

Let us now turn our attention to local, interacting hori-
zons. There are several formulations describing these hori-

zons, but here we choose to use the dynamical horizon
framework of Ashtekar and Krishnan [17,18]. The results
are equally applicable, with minor modifications, to the
other formulations, including Hayward’s trapping horizons
[9–11].

We begin by recalling a few basic properties of dynami-
cal horizons. A dynamical horizon H is a spacelike three-
surface, uniquely [22] foliated by two-surfaces which are
marginally trapped, namely ��‘� � 0 and ��n� < 0. Given a
foliation label v we can write the evolution vector field
V a, defined so that it is normal to the two-surfaces and
LVv � 1, as

 V a � A‘a � Bna (40)

for some functions A and B. Since V a is tangent to the
spacelike H, neither A nor B can vanish anywhere. Further
if we choose the orientation of the labelling so that A> 0 it
follows that B> 0 as well. From this and the assumption
that ��n� < 0, it immediately follows that, like event hori-
zons, dynamical horizons always expand in area:

 LV

���
~q

p
� �

���
~q

p
B��n�: (41)

We now consider the possible characterizations of ex-
tremality. The ambiguities in defining a mass or energy are
even greater than for isolated horizons so we do not pursue
that characterization. There are also difficulties in using
surface gravity. While this can be defined analogously to
the surface gravity on an isolated horizon:

 � � �V anbra‘
b; (42)

it is generally not constant on a dynamical horizon. This is
to be expected as, taking the analogy between black holes
and thermodynamics, it is equivalent to the statement that
the temperature will not normally be constant for a system
away from equilibrium. Thus, for dynamical horizons we
have little control over the value of the surface gravity, and
hence cannot use it in constructing an extremality
condition.

A partial exception to this statement occurs if the hori-
zon is slowly evolving as defined in [19–21]. In this case it
is in quasiequilibrium and ‘‘almost’’ isolated and one can
show that the surface gravity almost constant. It changes
slowly both across the two-surface cross sections and in
evolving up the horizon. In this case it would be feasible to
state that the horizon is nonextremal, at least to the order
for which � is constant.

More generally we are left to consider the implication of
the existence of fully trapped surfaces just inside the
horizon. Here, we restrict attention to ‘‘generic dynamical
horizons’’ in the sense of [22], in order that we are dealing
only with black hole horizons and not cosmological hori-
zons or horizons arising in other spacetimes, such as those
in [46]. The genericity condition requires that �‘��‘� does
not vanish at any point on the horizon. As has been shown
previously, for example see Refs. [8,18], this guarantees
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that there will be trapped surfaces inside the horizon. Here
we briefly repeat the argument.

First, scale the null vectors so that

 ‘
 
/ dv; (43)

or equivalently

 ‘a � f�v��r̂a � 
̂a�; (44)

where f�v� is a positive function, 
̂a is the future-pointing
timelike normal to the horizon and r̂a is the in-horizon
spacelike normal to the slices that points in the direction of
increasing area. For such a scaling, B in Eq. (40) is constant
on cross sections of the horizon whence Eq. (24) simplifies
to

 LV��‘� � A�‘��‘� � B�n��‘�: (45)

Thus, with ��‘� zero everywhere on H,

 �n��‘� �
�
A
B

�
�‘��‘�: (46)

Finally if the null energy condition holds and we assume
that �‘��‘� nowhere vanishes, then by Eq. (25) we have

 �n��‘� < 0: (47)

Since trapped surfaces must exist inside a dynamical
horizon, we can immediately apply the results of
sections III C and III D to them. In particular, it follows
that the extremality parameter e introduced in Eq. (21)
cannot exceed unity. Further, by Eq. (47) it must be strictly
less than one—dynamical horizons must be subextremal.
Thus, for example, in Einstein-Maxwell theory the angular
momentum one-form and electric and magnetic fluxes are
bound on a dynamical horizon by

 

1

4�

Z
Sv
d2x

���
~q

p
�jj ~!jj2 �G�E2

? � B
2
?��< 1; (48)

and for an axisymmetric horizon whose cross sections can
be embedded in Euclidean R3:

 J���2 <R4
H=4: (49)

While dynamical horizons cannot violate the trapped
surface extremality condition, they can transform into a
new type of structure that does not contain trapped surfaces
inside. In [47], it is demonstrated that marginally trapped
tubes (foliated three-surfaces which satisfy ��‘� � 0 and
��n� < 0) in Tolman-Bondi spacetimes may transform from
being spacelike (and so dynamical horizons with �n��‘� <
0) to timelike (with �n��‘� > 0). The change in behavior
occurs when the dust density 	 becomes greater than 1=a
where a is the area of the horizon cross sections. Intuitively
one can think of this as occurring when the matter density
becomes high enough to form a new horizon outside the
old and then the timelike section of the horizon is charac-

teristic of a horizon ‘‘jump.’’ Such a behavior is shown in
Fig. 2 (which is adapted from [47]).

Similarly, Schnetter, Krishnan, and Florian [30] have
studied various numerical simulations including the colli-
sion of spinning black holes. They find that before the
holes collide, an outer spacelike horizon forms. At the
same time, an inner horizon forms which is part spacelike,
part timelike. Although they were unable to follow the
evolution far enough, they conjecture that the horizons
will form a continuous three-surface, only some fraction
of which is spacelike. The results presented here suggest a
criterion for determining when these jumps are about to
occur—the transition between the spacelike and timelike
sections of the horizon will occur as e! 1. Note however
that in general this transition may be complicated and
include horizon cross sections whose evolution may be
spacelike in some areas and null or timelike in others.
For a detailed understanding of the transition one would
need to track �n��‘� and/or the signature of the evolution
vector point-by-point. However while the evolution is still
purely spacelike, e should provide a good estimate of the
proximity to extremality.

With a view towards tracking either e or �n��‘� in a
simulation, let us reformulate the expressions above in
terms of spacelike/timelike unit normals. First, in terms
of the unit tangent (r̂a) and normal (
̂a) vectors to the
horizon, the angular momentum one-form and stress-
energy component can be rewritten as

 ~!a � ~qbar̂
cK�
̂�bc and Tab‘

anb � Tab�
̂
a
̂b � r̂ar̂b�

(50)

for the preferred scaling (44) where K�
̂�bc is the extrinsic
curvature of the horizon relative to 
̂.

FIG. 2. A schematic of a horizon ‘‘jump.’’ Matter falls into an
isolated horizon causing it to expand as a dynamical horizon.
However at a certain point the density of the matter is such that a
new horizon forms outside the old resulting in a jump which
geometrically corresponds to a timelike membrane (a timelike
three-surface with ��‘� � 0, ��n� < 0) connecting two dynamical
horizons. In this figure 45 lines are null, time increases in the
vertical direction, and surface area increases to the right.
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Alternatively we can consider an apparent horizon, with
unit normal ŝ, in a three-slice �t, with unit timelike normal
û. The horizon evolution vector field V can be expressed
as

 V a � N�ûa � v?ŝ
a� (51)

where N is the lapse and v? is the velocity of the horizon
relative to the foliation. Then, following [48], we can write

 �n��‘� � �
1

2

�
v? � 1

v? � 1

�
�jj��‘�jj2 � 8�GTab‘a‘b� (52)

where ‘a � ûa � ŝa and so ��‘�ab � ~qca~qdb�Kcd �Dcŝd�.
We obtain a similar expression for the extremality parame-
ter e as:
 

e � 1�
1

4�G

Z
St
d2x

���
~q

p
�n��‘�

� 1�
1

8�G

Z
St
�d2x

���
~q

p �
v? � 1

v? � 1

�

	 �jj��‘�jj2 � 8�GTab‘a‘b�: (53)

See Ref. [48] for further details of these calculations.
Thus, thanks to the preferred scaling of the null normals

we have an unambiguous definition of e on each slice of
any dynamical horizon. Things are, however, slightly more
complicated in more general situations. First, keep in mind
that the scalings (44) are defined by the timelike normal to
H and the spacelike normal to Sv in H. Thus one cannot
use this form of the definition if H becomes null (either as
an isolated horizon or while transitioning to become a
timelike membrane). In such cases one must return to the
original definition Eq. (21).

There is also a second situation where it is not feasible to
use Eq. (53) to calculate e. An apparent horizon S in a set
of initial data can evolve into many different dynamical
horizons depending on how the data itself is evolved—that
is apparent horizons are foliation dependent. From the
point of view of Eq. (53) the various potential horizons
will generate different scalings of the null normals to S and
so different values of e. This ambiguity can be more easily
understood by switching back to the original definition of
the extremality parameter given in Eq. (21). Then, if ‘0 �
f‘ and n0 � n=f the ambiguity in e under rescalings of the
null vectors is given by

 e0 � e�
1

4�

Z
S
d2x

���
~q

p
�2 ~!a ~da lnf� jjd lnfjj2� (54)

while

 �n0��‘0� � �n��‘� � ~d2 lnf� jjd lnfjj2 � 2 ~!a ~da lnf:

(55)

That said, it should be kept in mind that by the trapped
surface classification presented in Sec. III C, S is defined as
subextremal, extremal, or superextremal based on possible

rather than any particular scalings of the null vectors.
Though e may vary for various choices of scalings, the
ultimate classification of S is invariant. For dynamical
horizons a suitable scaling is defined by the normals to
H, but if one only has a single surface, then one must go
back to an analysis of the elliptic operator defined by
Eq. (55).

Interestingly, in the context of trapping horizons,
Hayward [8] has introduced an alternative expression for
surface gravity which is proportional to

�����������������
��n��‘�

p
. Such a

definition explicitly ties together the nonvanishing of sur-
face gravity with the existence of trapped surfaces inside
the horizon, i.e. the second and third characterizations of
extremality necessarily coincide. Furthermore, making use
of Eq. (20) he has obtained a zeroth law for trapping
horizons which has many similarities with the extremality
condition introduced in this paper.

V. SUMMARY

In this paper, we have considered three characterizations
of extremality. The first is the standard Kerr bound on
angular momentum relative to mass. We have argued that
in general it is not well-posed due to the difficulties in
defining mass and angular momentum in general relativity.
Even when the Kerr bound is reformulated in terms of
horizon area and angular momentum, it can only be mean-
ingfully evaluated on axisymmetric horizons. Furthermore,
while we have not provided an explicit violation of this
bound in asymptotically flat spacetimes, we have argued
that it is likely that it can be violated. In particular Kerr-
AdS solutions can violate the bound by an arbitrary
amount. These results do not violate the recent theorems
of Dain which only apply to asymptotically flat vacuum
spacetimes.

A more satisfactory characterization of extremality for
isolated horizons arises from the surface gravity. For iso-
lated horizons, a subextremal horizon will have positive
surface gravity, while the surface gravity for an extremal
horizon vanishes. Furthermore, non-negativity of surface
gravity leads to a bound on the integrated square of the
angular momentum density and the matter stress-energy at
the horizon.

Alternatively, we can characterize nonextremality as the
requirement that there should be fully trapped surfaces just
inside a black hole horizon. This notion is then applicable
to both isolated and dynamical horizons. In addition, this
condition again leads to a bound on the integrated square of
the angular momentum density and the matter stress-
energy at the horizon. The surface gravity and trapped
surface characterizations of extremality for isolated hori-
zons are very closely related, and indeed in axisymmetry
are entirely equivalent.

The local extremality condition is also sufficient to place
a restriction on the maximum allowed angular momentum
relative to the intrinsic geometry of the horizon. For hori-
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zons whose cross sections can be embedded in Euclidean
R3 this is sufficient to imply the standard Kerr bound 4J2 <
R4
H, however for more exotic intrinsic geometries we can

only show that 4J2 <mR4
H for some constantmwhich may

be made arbitrarily large in, for example, Kerr-AdS.
Thus, the notion of extremality extends beyond the Kerr

solutions though in a nontrivial way. The spirit of the
bounds remains. The angular momentum of the horizon
is bounded relative to the intrinsic geometry of the horizon.
In general, when no axis of rotation exists, it is the square
of the angular momentum density which is bounded.
Equivalently, one can think of this as a bound on the sum
of the multipole moments of the angular momentum rather
than the dipole itself. The extremality quantity e, which we
have introduced should be calculable on apparent horizons
occurring in numerical relativity simulations and would
provide an interesting characterization of how close to
extremality a black hole is immediately following a
merger.
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APPENDIX A: KERR ANTI-DESITTER BLACK
HOLES

The Kerr-(anti)deSitter family of solutions are described
by the metric:
 

ds2 � �
�

	2

�
dt�

a
�

sin2�d�
�

2
�
	2

�
dr2 �

	2

��
d�2

�
��sin2�

	2

�
adt�

r2 � a2

�
d�

�
2

(A1)

where

 � � �
�

3
r4 �

�
1�

�

3
a2

�
r2 � 2Mr� a2;

�� � 1�
�

3
a2 cos�2;

� � 1�
�

3
a2 and 	2 � r2 � a2cos2�:

(A2)

� is the cosmological constant (and so is positive for
deSitter and negative for anti-de Sitter), M is the mass
parameter, and a is the rotation parameter.

We are interested in the black hole sector of the solution
space. The various horizons occur at the roots of � � 0.
For �> 0, � has four roots in the black hole sector. In
increasing order they are a (negative) unphysical solution,
inner black hole horizon, outer black hole horizon, and the

cosmological horizon. For �< 0 there are just two roots:
the inner and outer black hole horizons. Our interest is in
the outer black hole horizon which we label r�. The
coordinate representation (A1) of the metric diverges at
r� but for our purposes we can work around this by
considering appropriate limiting cases which are well-
defined. Then, one can show (see for example [49]) that
the areal radius and angular momentum of the horizon are,
respectively,

 R2
H �

r2
� � a

2

�
and J��� �

Ma

�2 : (A3)

Here, for definiteness, we focus on the extremal horizons
of this family where the inner and outer horizons coincide
and so � has a degenerate root (the second and third roots
are degenerate for �> 0). Such cases are most easily
identified by examining where the discriminant of � van-
ishes (the expression is a quintic in a2 and quartic in � but
may be dealt with easily enough with the help of a com-
puter algebra system).

For a given value of the massM, there is a finite range of
� for which extremal solutions exist. The lower bound is
�min � �7:1=M2 where � � 0 (this is a lower bound as
for �< 0 the signature of the � coordinate changes and
becomes timelike close to 0 and �). The maximum value
�max � 0:18=M2 occurs when the inner and outer black
hole horizons and the cosmological horizon all coincide in
a triply degenerate root.

Given the range of values of � which permit an extremal
horizon, we can plot J=R2

H and see whether the extremality
bound (19) is violated. This is shown in Fig. 3 and it is clear
that the bound J � R2

H=2 is violated for all extremal Kerr-
AdS solutions. To understand this in light of the discussion
in Section III D, first note that in the presence of a cosmo-
logical constant Eq. (21) becomes:

FIG. 3. 2J=R2
H versus � for the extremal Kerr-(A)dS family of

black holes. For � � 0, 2J=R2
H � 1, as expected for the ex-

tremal, asymptotically flat Kerr solution. For �> 0, 2J=R2
H < 1

while for �< 0, J=R2
H > 1=2 and it diverges as � approaches its

minimum allowed value. Therefore, for extremal Kerr anti-
de Sitter black holes, the local reformulation of the Kerr bound
(19) is violated.
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 e :�
Z
Sv
d2x

���
~q

p �
2GTab‘anb �

1

4�
jj ~!jj2 ��

�
� 1;

(A4)

Thus for �< 0, the contribution from the cosmological
constant is positive and so we still have J2=R4

H � m=4. In
this case however m becomes arbitrarily large as we ap-
proach � � 0. Specifically, the induced metric on a cross
section of the horizon is

 dS2 �
	2

��
d�2 �

���r
2 � a2�2sin2�

	2�2 d�2: (A5)

Then the circumferential radius is

 R �

������
��

p
�r2 � a2� sin�
	�

(A6)

and

 m � max
� ������

��

p
	

dR
d�

�
: (A7)

It is easy to see that this quantity diverges as �! 0.
For simplicity we only considered extremal horizons

here, but it is clear (by continuity) that these violations of
the bound will also extend into parts of the nonextremal
sector.

Finally, it is perhaps interesting to note that on inserting
a �> 0 into Eq. (A4), we see that the upper bound on the
integral of jj ~!jj2 increases with increasing �. However, at
least for Kerr-dS this does not provide enough freedom to
violate J2 � R4

H as there is a concomitant tightening of m.

APPENDIX B: SURFACE OF MAXIMUM �

Let R be the set of continuous functions 	�s�: �0; L� !
R that satisfy

(i) 	�s� � 0
(ii) 	�0� � 	�L� � 0

(iii) d	=ds�0�> 0 and d	=ds�L�< 0 and
(iv) jd	=dsj � m for some m> 0.

Thinking back to the two-surfaces defined by these 	, the
first condition guarantees a non-negative ‘‘radius,’’ the
second and third require that the surfaces close exactly at
0 and L, and the fourth is the assumed bound on the
maximum rate of change of the radius relative to the
arclength.

Further define

 � �

R
L
0 	

3ds

2
�R

L
0 	ds

�
2
:

Then in this appendix we show that of all 	 2 R, the
triangular function

 	4�s� �
�
ms 0 � s � L=2
m�L� s� L=2 � L

; (B1)

shown in Fig. 4 maximizes �.
This is slightly more complicated than a basic varia-

tional problem. As noted in the text, if one generalizes to
the set of all non-negative functions then � is unbounded.
Thus, our goal is to show that � is globally maximized over
R by the ‘‘boundary’’ curve 	4.

To prove this we first show that 	4 gives a local maxi-
mum. To this end, we calculate the first variation of � in 	
as

 �� �
�3
R
	2�	ds��

R
	ds� � 2�

R
�	ds�

2�
R
	ds�3

; (B2)

where all integrals are from 0 to L. For variations around
	4 this becomes

 ��4 �
8

L4

Z L=2

0
�12s2 � L2���	�s� � �	�L� s��ds:

(B3)

Now by the restriction on the maximum slope, all allowed
�	 � 0 and further �	 is nonincreasing from 0 to L=2.
Thus taking so � L=�2

���
3
p
� (the zero of 12s2 � L2) as a

dividing point, we have j�	�s�j � �	�so� for s 2 �0; so�
and j�	�s�j � �	�so� for s 2 �so; L=2�. Similar results
apply for �	�L� s� which is also nonincreasing on this
interval. Then, keeping in mind that �	 must be zero at
least somewhere we find ��4 < 0. That is, all allowed
variations decrease the value of � and so 	4 provides at
least a local maximum for our problem.

We complete the proof by showing for any other 	 2 R
we can find a �-increasing variation �	. It will be suffi-
cient to restrict our attention to the subset of variations for
which

R
��	ds � 0. For such variations (B2) simplifies

and we find

s

ρ

ρ

ρ +
δρ

c de

FIG. 4. Several 	 that appear in the text. 	4 is the maximizing
curve, 	 is a typical ‘‘saw-toothed’’ curve, and 	� �	 (which
appears as a dotted line where it does not coincide with 	) is a
variation of that curve which increases the value of �.
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 �� > 0,
Z
�	2�	ds > 0: (B4)

Intuitively these inequalities can be satisfied by construct-
ing variations which increase 	 where it is larger and
balancing this off by decreasing it where it is smaller.

First consider the case where there is an interval �a; b�
over which 	 is monotonically increasing but d	=ds < m
and construct a variation

 �	 �

8><
>:

0 0 � s < a
�� sin�2��s�ab�a�� a � s � b
0 b < s � b

; (B5)

where � is arbitrarily small; in particular, it is sufficiently
small to ensure that 	� �	 > 0 and jd�	� �	�=dsj<m.
By the monotonicity 	�s�< 	��a� b�=2� for s 2 �a; �a�
b�=2� and 	�s�>	��a� b�=2� for s 2 ��a� b�=2; b�, so
by (B4) it is straightforward to see that �� > 0. Thus any 	
that contains an increasing region over which d	=ds < m,
cannot maximize �. A nearly identical argument shows
that an 	 with a decreasing region over which �m<
d	=ds cannot provide a maximum.

In fact the same variation (B5) can also be used to
eliminate all 	 which contain a constant section �a; b�
over which 	 � 	o > 0. In that case �� vanishes but a
straightforward calculation of the second variation shows
that this is because such a 	 is a local minimum with
respect to these variations.

Thus a 	 which maximizes � must have slope �1
everywhere—that is either 	4 or a (possibly broken)
‘‘saw-toothed’’ curve such as that shown in Fig. 4. There
are several special cases to consider here but while details
differ, the basic variation is the same: we increase a higher

peak while decreasing a lower one and so increase �. In the
interests of saving space we consider only the case of two
immediately adjoining peaks as shown in the figure.

Then, with the higher peak at c, lower at d and the valley
in between at e we consider variations of the following
type:

 �	 �

8>>>>>>>><
>>>>>>>>:

2m�s� c� c � s � c� �=2
m� c� �=2 � e
m�� 2m�s� e� e � s � e� �
�m�s� e� e� � � s � e� �
�m� e� � � s � d
�m�� 2m�s� d� d � s � d� �=2

:

(B6)

� is the usual small parameter and � is chosen so thatR
�	ds � 0. To first order (which is all that is needed for a

variational calculation) it is

 � �
�
e� c
d� e

�
�: (B7)

Then a direct calculation with (B4) shows that if the first
peak is higher than the second, �� > 0. If they are equal
then �� � 0 but going to the second order variation, it can
be seen that this is because it is a local minimum under
such variations. Similarly ponderous calculations can be
performed to show that no other ‘‘saw-toothed’’ 	 is a
maximum.

Thus in summary we have shown that 	4 is a local
maximum for curves in R while there exist variations of
all other curves that increase �. Thus, 	4 is the global
maximum as claimed.
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