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In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which
contains all the information about the thermodynamics of black holes. The curvature of this thermody-
namic metric becomes singular at those points where, according to the analysis of the heat capacities,
phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and,
therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.
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I. INTRODUCTION

According to the no-hair theorems of Einstein-Maxwell
theory, electro-vacuum black holes are completely de-
scribed by three parameters only: mass M, angular mo-
mentum J, and electric charge Q. The corresponding
gravitational field is described by the Kerr-Newman metric
which in Boyer-Lindquist coordinates can be expressed as
[1]
 

ds2 � �
�� a2sin2�

�
dt2 �

2asin2��r2 � a2 ���

�
dtd’

�
�r2 � a2�2 � a2sin2��

�
sin2�d’2 �

�

�
dr2

� �d�2; (1)

 � � r2 � a2cos2�; � � �r� r���r� r��;

r� � M�
�������������������������������
M2 � a2 �Q2

q
;

(2)

where a � J=M is the specific angular momentum.
Bekenstein [2] discovered in 1973 that the horizon area
A of a black hole behaves as the entropy S of a classical
thermodynamic system. This was the beginning of what is
now called thermodynamics of black holes [3–5].
Although its statistical origin is still very unclear, black
hole thermodynamics has been the subject of intensive
research for the past three decades, due in part to its
possible connection to a hypothetical theory of quantum
gravity.

It has been established that the physical parameters of
the Kerr-Newman black hole satisfy the first law of black
hole thermodynamics [3]

 dM � TdS��dQ��HdJ; (3)

where T is the Hawking temperature which is proportional
to the surface gravity on the horizon, S � A=4 is the
entropy, �H is the angular velocity on the horizon, and
� is the electric potential. As in ordinary thermodynamics,
all the thermodynamic information is contained in the
fundamental equation which was first derived by Smarr [6]

 M �
�
�J2

S
�

S
4�

�
1�

�Q2

S

�
2
�

1=2
: (4)

In the entropy representation, this fundamental equation
can be rewritten as

 S � ��2M2 �Q2 � 2
�������������������������������������
M4 �M2Q2 � J2

q
�: (5)

Davies [5] argued that black holes undergo a second order
phase transition at the points where the heat capacity
diverges. This argument is supported by the result that
some critical exponents related to the singular points
obey scaling laws [7–12]. Following Davies, we assume
in this work that the structure of the phase transitions of the
Kerr-Newman black hole is determined by the correspond-
ing heat capacity C � T�@S=@T�:

 CQ;J � �
4TM3S3

2M6 � 3M4Q2 � 6M2J2 �Q2J2 � 2�M4 �M2Q2 � J2�3=2
: (6)

On the other hand, differential geometric concepts have
been applied in ordinary thermodynamics since the seven-
ties. First, Weinhold [13] introduced on the space of equi-
librium states a metric whose components are given as the

Hessian of the internal thermodynamic energy. Later,
Ruppeiner [14,15] introduced a metric which is defined
as minus the Hessian of the entropy, and is conformally
equivalent to Weinhold’s metric, with the inverse of the
temperature as the conformal factor. One of the aims of the
application of geometry in thermodynamics is to describe
phase transitions in terms of curvature singularities so that
the curvature can be interpreted as a measure of thermody-
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namic interaction. This turns out to be true in the case of
the ideal gas, whose curvature vanishes, and the
van der Waals gas for which the curvature of Weinhold’s
and Ruppeiner’s metric becomes singular at those points
where phase transitions occur. This is an encouraging
result that illustrates the applicability of geometry in ther-
modynamics. It is then natural to try to describe the phase
transitions of black holes in terms of curvature singularities
in the space of equilibrium states. Unfortunately, the ob-
tained results are contradictory. For instance, for the
Reissner-Nordström black hole the Ruppeiner metric is
flat [16], whereas the Weinhold metric with the mass as
thermodynamic potential presents a curvature singularity
only in the limit of an extremal black hole. None of these
results reproduces the phase transitions as predicted by
Davies using the heat capacity. Nevertheless, a simple
change of the thermodynamic potential [17] affects
Ruppeiner’s geometry in such a way that the resulting
curvature singularity now corresponds to a phase transi-
tion. A dimensional reduction of Ruppeiner’s curvature
seems to affect its properties too [18]. The situation is
similar in the case of the Kerr black hole: Weinhold’s
metric is flat [16], and the original Ruppeiner metric does
not present curvature singularities at the points of phase
transitions of the Kerr black hole. Nevertheless, with a
change of thermodynamic potential [17], Ruppeiner’s met-
ric reproduces the structure of the phase transitions of the
Kerr black hole. These results seem to indicate that, in the
case of black holes, geometry and thermodynamics are
compatible only for a very specific thermodynamic poten-
tial. However, it is well known that ordinary thermody-
namics does not depend on the thermodynamic potential.
We believe that a geometric description of thermodynam-
ics should preserve this property, i.e., it should be invariant
with respect to Legendre transformations.

Recently [19], the formalism of geometrothermodynam-
ics (GTD) was proposed as a geometric approach that
incorporates Legendre invariance in a natural way, and
allows us to derive Legendre invariant metrics in the space
of equilibrium states. Since Weinhold and Ruppeiner met-
rics are not Legendre invariant, one of the first results in the
context of GTD was the derivation of simple Legendre
invariant generalizations of these metrics and their appli-
cation to black hole thermodynamics. It turned out [20]
that the thermodynamics of the Reissner-Nordström black
hole is compatible with both Weinhold and Ruppeiner
generalized metric structures. However, in the case of the
Kerr black hole both generalized geometries are flat and,
therefore, cannot reproduce its thermodynamic behavior.
This was considered as a negative result for the use of
geometry in black hole thermodynamics.

In the present work we use GTD to derive a Legendre
invariant metric which completely and consistently repro-
duces the thermodynamic behavior of black holes, includ-
ing the Kerr-Newman black hole. This result finishes the

controversy regarding the application of geometric struc-
tures in black hole thermodynamics. The phase transition
structure contained in the heat capacity of black holes
becomes completely integrated in the scalar curvature of
the Legendre invariant metric so that a curvature singular-
ity corresponds to a phase transition.

This paper is organized as follows. In Sec. II we intro-
duce the general formalism of GTD for black holes. A
particular Legendre invariant metric is given in the ther-
modynamic phase space which is the starting point of our
analysis. In Sec. III we apply 2-dimensional GTD in its
entropy representation to the Reissner-Nordström and Kerr
black holes. The analysis of the Kerr-Newman black hole
requires 3-dimensional GTD and it is presented in Sec. IV.
Finally, Sec. V is devoted to discussions of our results and
suggestions for further research. Throughout this paper we
use units in which G � c � kB � @ � 1.

II. GEOMETROTHERMODYNAMICS OF BLACK
HOLES

The starting point of GTD is the thermodynamic phase
space T which in the case of Einstein-Maxwell black holes
can be defined as a 7-dimensional space with coordinates
ZA � fM;S;Q; J; T;�;�Hg, A � 0; . . . ; 6. In the cotan-
gent space T �, we introduce the fundamental one-form

 �M � dM� TdS��dQ��HdJ; (7)

which satisfies the condition �M ^ �d�M�
3 � 0.

Furthermore, in T we introduce a nondegenerate metric
G. The triplet �T ;�M;G� is said to form a Riemannian
contact manifold. Let E be a 3-dimensional subspace of T
with coordinates Ea � fS;Q; Jg, a � 1, 2, 3, defined by
means of a smooth mapping ’M: E ! T . The subspace E
is called the space of equilibrium states if ’�M��M� � 0,
where ’�M is the pullback induced by ’M. Furthermore, a
metric structure g is naturally induced on E by applying the
pullback on the metric G of T , i.e., g � ’�M�G�. It is clear
that the condition ’�M��M� � 0 leads immediately to the
first law of thermodynamics of black holes as given in
Eq. (3). It also implies the existence of the fundamental
equation M � M�S;Q; J� and the conditions of thermody-
namic equilibrium

 T �
@M
@S

; � �
@M
@Q

; �H �
@M
@J

: (8)

Legendre invariance is an important ingredient of GTD.
It allows us to change the thermodynamic potential without
affecting the results. If we denote the intensive thermody-
namic variables as Ia � fT;�;�Hg, then a Legendre trans-
formation is defined by [21]

 fM;Ea; Iag ! f ~M; ~Ea; ~Iag; (9)

 M � ~M� �ab ~Ea~Ib; Ea � �~Ia; Ia � ~Ea: (10)

It is easy to see that the fundamental one-form �M is
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invariant with respect to Legendre transformations.
Furthermore, if we demand that the metric G be
Legendre invariant, it can be shown [19] that the induced
metric g � ’�M�G� is also Legendre invariant.

Another advantage of the use of GTD is that it allows us
to easily implement different thermodynamic representa-
tions. The above description is called the M-representation
because the fundamental equation is given as M �
M�S;Q; J�. However, one can rewrite this equation as S �
S�M;Q; J�, Q � Q�S;M; J� or J � J�S;M;Q�, and rede-
fine the coordinates in T and the smooth mapping ’ in
such a way that the condition ’���� � 0 generates on E
the corresponding fundamental equation in the S-, Q-, or
the J-representation, respectively. As an example of this
procedure we will present the S-representation which
turned out to be the most appropriate for the description
of black hole thermodynamics. It must be emphasized,
however, that the results obtained with different represen-
tations of the same fundamental equation are completely
equivalent.

For the S-representation we consider the fundamental
one-form

 �S � dS�
1

T
dM�

�
T
dQ�

�H

T
dJ; (11)

so that the coordinates of T are ZA � fS; Ea; Iag �
fS;M;Q; J; 1=T;��=T;��H=Tg. The space of equilib-
rium states E can then be introduced with the smooth
mapping

 ’S: fM;Q; Jg� fM;S�M;Q; J�; Q; J; Ia�M;Q; J�g; (12)

which, from the condition ’�S��S� � 0, generates the first
law of thermodynamics of black holes (3) and the equilib-
rium conditions

 

1

T
�
@S
@M

;
�
T
� �

@S
@Q

�H

T
� �

@S
@J
: (13)

In this representation the fundamental equation is given as
in Eq. (5).

Consider now the following metric on T :
 

G �
�
dS�

1

T
dM�

�
T
dQ�

�H

T
dJ
�

2

�

�
M
T
�
Q�
T
�
J�H

T

�

�

�
dMd

�
1

T

�
� dQd

�
�
T

�
� dJd

�
�H

T

��
: (14)

It is easy to show that this metric is invariant with respect to
Legendre transformations (10). The first term of this metric
can be written in the form �S 	�S so that its projection on
E vanishes, due to the condition ’�S��S� � 0. Never-
theless, this term is necessary in order for the metric G to
be nondegenerate. For the metric induced on E by means of
g � ’�S�G�, only the second term of G is relevant. A

straightforward computation leads to

 g � �MSM �QSQ � JSJ��SMMdM2 � SQQdQ2

� SJJdJ
2 � 2SQJdQdJ�; (15)

where for simplicity we introduced the notation that a
subindex represents partial derivative with respect to the
corresponding coordinate. This metric is Legendre invari-
ant and nondegenerate and therefore can be used to intro-
duce a Legendre invariant, Riemannian metric structure in
the space of equilibrium states E. This turns E into a well-
defined Riemannian submanifold of the thermodynamic
phase space T . In the next sections we will show that
metric (15) correctly reproduces the thermodynamic be-
havior of Einstein-Maxwell black holes.

III. BLACK HOLES WITH TWO DEGREES OF
FREEDOM

From the above description of GTD, it follows that the
dimension of the phase space is 2n� 1, where n is the
number of thermodynamic degrees of freedom which co-
incides with the dimension of the subspace E. The case n �
1 corresponds to the Schwarzschild black hole with the
mass M as the only nonvanishing thermodynamic degree
of freedom. In this case the Riemannian structure of E is
trivial. For n � 2 the geometric structure of E is nontrivial
and corresponds to the Reissner-Nordström black hole
�J � 0� or to the Kerr black hole �Q � 0�. Notice that in
this case the metric g on E becomes diagonal and that
drastically simplifies the calculations. The general Kerr-
Newman black hole corresponds to a 3-dimensional mani-
fold E with a nondiagonal metric g. It requires a separate
analysis that will be performed in Sec. IV.

A. The Reissner-Nordström black hole

The Reissner-Nordström metric can be obtained from
Eq. (1) by imposing the condition J � 0. It describes a
static, spherically symmetric black hole with two horizons
situated at

 r� � M�
�������������������
M2 �Q2

q
: (16)

We assume that Q 
 M in order to avoid naked singular-
ities. The thermodynamic information of this black hole is
contained in the fundamental equation which, in the en-
tropy representation we are using in this work, becomes

 S � ��M�
�������������������
M2 �Q2

q
�2: (17)

According to Davies [5], the phase transition structure of
the Reissner-Nordström black hole can be derived from the
heat capacity
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 CQ �
4TM3S3

�2M6 � 3M4Q2 � 2�M4 �M2Q2�3=2

� �
2�2r2

��r� � r��
r� � 3r�

: (18)

For our geometric approach to black hole thermodynamics
all that is needed is the fundamental equation as given in
(17) from which we can calculate the thermodynamic
metric

 gRN
ab � �MSM �QSQ�

SMM 0
0 �SQQ

� �

�
8�2r3

�

�r� � r��3
2r��r� � 3r�� 0

0 r2
� � 3r2

�

� �
: (19)

Notice that this metric is singular in the extremal limit
r� � r�. It could indicate a breakdown of our geometric
approach. However, the analysis of the corresponding sca-
lar curvature

 RRN �
�r2
� � 3r�r� � 6r2

���r� � 3r���r� � r��
2

�2r3
��r

2
� � 3r2

��
2�r� � 3r��

2 (20)

shows that in the extremal limit the space of equilibrium
states becomes flat. This means that there must exist a
different coordinate system in which the metric (19) does
not diverge in the extremal limit. Moreover, we see from
the expression for the scalar curvature that the only singu-
lar point corresponds to the value r� � 3r� which is
exactly the point where a phase transition occurs in the
heat capacity (18).

B. The Kerr black hole

The Kerr metric corresponds to the limit Q � 0 of the
Kerr-Newman metric (1). It describes the gravitational
field of a stationary, axially symmetric, rotating black
hole with two horizons situated at the radial distances

 r� � M�
���������������������������
M2 � J2=M2

q
: (21)

The corresponding thermodynamic fundamental equation
in the entropy representation becomes

 S � 2��M2 �
������������������
M4 � J2

p
�: (22)

Furthermore, second order phase transitions occur at the
points where the heat capacity

 CJ �
4TM3S3

6M2J2 � 2M6 � 2�M4 � J2�3=2

�
2�2r��r� � r��2�r� � r��

r2
� � 6r�r� � 3r2

�

(23)

diverges. We assume values of the mass in the range M2 �
J, the equality being the extremal limit of the Kerr black
hole in which the two horizons coincide.

The Legendre invariant metric reduces in this case to

 gKab � �MSM � JSJ�
SMM 0

0 �SJJ

� �

�
16�2r2

��r� � r��

�r� � r��4

�
r��r

2
� � 6r�r� � 3r2

�� 0
0 r� � r�

� �
: (24)

We obtain again a metric that becomes singular at the
extremal limit r� � r�. The scalar curvature for the ther-
modynamic metric of the Kerr black hole can be expressed
as

 RK �
�3r3
� � 3r2

�r� � 17r�r2
� � 9r3

���r� � r��3

2�2r2
��r� � r��

4�r2
� � 6r�r� � 3r2

��
2 :

(25)

This shows that the metric singularity at r� � r� is only a
coordinate singularity. On the other hand, the curvature
singularities are situated at the roots of the polynomial
equation r2

� � 6r�r� � 3r2
� � 0. According to the ex-

pression for the heat capacity (23), these are exactly the
roots that determine the critical points where phase tran-
sitions take place.

IV. THE GENERAL KERR-NEWMAN BLACK
HOLE

The Kerr-Newman metric (1) describes the gravitational
field of the most general rotating, charged black hole. It
possesses an outer horizon at r� and an inner horizon at r�,
with r� given as in Eq. (2). According to our results of
Sec. II, the space of thermodynamic equilibrium states is 3-
dimensional and the corresponding Legendre invariant
metric can be written as

 gKN
ab � �MSM �QSQ � JSJ�

SMM 0 0
0 �SQQ �SQJ
0 �SQJ �SJJ

0
B@

1
CA:
(26)

Inserting here the expression for the entropy (5) we obtain
a rather cumbersome metric which cannot be written in a
compact form. Moreover, the scalar curvature can be
shown to have the form

 

RKN �
N
D
;

D � 4�MSM �QSQ � JSJ�
3�S2

QJ � SQQSJJ�
3S2

MM

(27)

so that replacing the entropy formula we obtain
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D / �2M4 � 2M2Q2 � J2 � �2M2 �Q2�

� �M4 �M2Q2 � J2�1=23�M4 � �M2 �Q2�

� �M4 �M2Q2 � J2�1=23�2M6 � 3M4Q2 � 6M2J2

�Q2J2 � 2�M4 �M2Q2 � J2�3=22: (28)

The first two terms in squared brackets can be shown to be
always positive in the range M4 � M2Q2 � J2, which is a
condition that guarantees the nonexistence of naked singu-
larities. The third term in squared brackets is exactly the
denominator of the heat capacity (6). This proves that the
curvature singularities of the thermodynamic metric gKN

are situated at those points where phase transitions can
occur. Moreover, it can be shown that the curvature van-
ishes in the case of an extremal black hole, M4 � M2Q2 �
J2. This resembles the behavior of the curvature of the
thermodynamic metrics of the Reissner-Nordström and
Kerr black holes presented in the last section.

V. DISCUSSION AND CONCLUSIONS

Using the formalism of GTD, in this work we derived a
metric for the space of equilibrium states of black holes
which reproduces the thermodynamic behavior of
Reissner-Nordström, Kerr, and Kerr-Newman black holes.
The thermodynamic metric is derived from a Legendre
invariant metric which is introduced in the thermodynamic
phase space. In contrast to other metrics used previously in
the literature, the curvature singularities of our metric
reproduce in a unified manner the phase transitions of
black holes, if we assume that phase transitions correspond
to divergences of the heat capacity. This result shows that
the curvature of our thermodynamic metric can be used as
a measure of thermodynamic interaction for black holes.

For all black holes of Einstein-Maxwell theory, the
space of equilibrium states, equipped with our thermody-
namic metric, becomes singular at those points where
phase transitions occur, and it is flat in the limit of extreme
black holes, i.e. when the two horizons coincide. This
indicates that our thermodynamic metric is well defined
in the region M4 �M2Q2 � J2 � 0, except at the phase

transition points where it becomes singular. Outside this
region, our thermodynamic metric is not well defined
because the fundamental equation becomes complex and
cannot be used to generate the geometric Riemannian
structure of the space of equilibrium states. This is an
indication that the thermodynamic description of black
holes cannot be extended into the region of naked singu-
larities. This is also an indication that classical thermody-
namics cannot be used for black holes of the size of the
Planck length, which is the extremal limit of applicability
one would expect for classical thermodynamics.

We assumed in this work Davies’ formulation of phase
transitions for black holes. However, the interpretation of
divergences in specific heats as phase transitions is not
definitely settled and is still a subject of debate [22–25].
In fact, what is really needed is a microscopic description
which would couple to the macroscopic thermodynamics
of black holes. However, such a macroscopic description
must be related to a theory of quantum gravity which is
still far from being formulated in a consistent manner. In
the meantime, we can only use the intuitive interpretation
of phase transitions as it is known in classical
thermodynamics.

The thermodynamic metric we propose in this work is
intuitively simple, it can be written in a compact form, and
it satisfies the mathematical compatibility conditions of
GTD. However, we do not have whatsoever any interpre-
tation of its components in terms of any physical theory.
We believe that Ruppeiner’s metric is the only know ther-
modynamic metric with a specific physical interpretation
in the context of thermodynamic fluctuation theory. It
would be interesting to investigate the stability of the
metric derived in this work, especially the different scenar-
ios available in black hole thermodynamics [26].

The computer algebra system REDUCE 3.8 was used for
most of the calculations reported in this work.
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