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Big bang nucleosynthesis requires a fine balance between equations of state for photons and relativistic
fermions. Several corrections to equation of state parameters arise from classical and quantum physics,
which are derived here from a canonical perspective. In particular, loop quantum gravity allows one to
compute quantum gravity corrections for Maxwell and Dirac fields. Although the classical actions are
very different, quantum corrections to the equation of state are remarkably similar. To lowest order, these
corrections take the form of an overall expansion-dependent multiplicative factor in the total density. We
use these results, along with the predictions of big bang nucleosynthesis, to place bounds on these
corrections and especially the patch size of discrete quantum gravity states.
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I. INTRODUCTION

Much of cosmology is well described by a space-time
near a spatially isotropic Friedmann-Robertson-Walker
model with line elements

 d s2 � �d�2 � a���2
�

dr2

1� kr2 � r
2�d#2 � sin2#d’2�

�
;

(1)

where k � 0 or �1, sourced by perfect fluids with equa-
tions of state P � w�. Such an equation of state relates the
matter pressure P to its energy density � and captures the
thermodynamical properties in a form relevant for iso-
tropic space-times in general relativity. Often, one can
assume the equation of state parameter w to be constant
during successive phases of the evolving universe, with
sharp jumps between different phases such as w � �1
during inflation, followed by w � 1

3 during radiation domi-
nation and w � 1 during matter domination.

Observationally relevant details can depend on the pre-
cise values ofw at a given stage, in particular, if one uses an
effective value describing a mixture of different matter
components. For instance, during big bang nucleosynthesis
(BBN) one is in a radiation dominated phase mainly de-
scribed by photons and relativistic fermions. Photons, ac-
cording to Maxwell theory, have an exact equation of state
parameter w � 1

3 as a consequence of conformal invariance
of the equations of motion (such that the stress-energy

tensor is trace-free). For fermions the general equation of
state is more complicated and nonlinear, but can in rela-
tivistic regimes be approximately given by the same value
w � 1

3 as for photons. In contrast to the case of Maxwell
theory, however, there is no strict symmetry such as con-
formal invariance which would prevent w from taking a
different value. It is one of the main objectives of the
present paper to discuss possible corrections to this value.

For big bang nucleosynthesis, it turns out, the balance
between fermions and photons is quite sensitive. In fact,
different values for the equation of state parameters might
even be preferred phenomenologically [1]. One possible
reason for different equations of state could be different
coupling constants of bosons and fermions to gravity, for
which currently no underlying mechanism is known. In this
paper we will explore the possibility of whether quantum
gravitational corrections to the equations of state can pro-
duce sufficiently different values for the equation of state
parameters. In fact, since the fields are governed by differ-
ent actions, one generally expects different, though small,
correction terms which can be of significance in a delicate
balance. Note that we are not discussing ordinary quantum
corrections of quantum fields on a classical background.
Those are expected to be similar for fermions and radiation
in relativistic regimes. We rather deal with quantum grav-
ity corrections in the coupling of the fields to the space-
time metric, about which much less is known a priori.
Thus, different proposals of quantum gravity may differ at
this stage, providing possible tests.
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An approach where quantum gravitational corrections
can be computed is loop quantum cosmology [2], which
specializes loop quantum gravity [3–5] to cosmological
regimes. In such a canonical quantization of gravity, equa-
tions of state must be computed from matter Hamiltonians
rather than covariant stress-energy tensors. Quantum cor-
rections to the underlying Hamiltonian then imply correc-
tions in the equation of state. This program was carried out
for the Maxwell Hamiltonian in [6], and is done here for
Dirac fermions. There are several differences between the
treatment of fermions and other fields, which from the
gravitational point of view are mainly related to the fact
that fermions, in a first-order formulation, also couple to
torsion and not just the curvature of space-time. After
describing the classical derivation of equations of state as
well as steps of a loop quantization and its correction
terms, we use big bang nucleosynthesis constraints to see
how sensitively we can bound quantum gravity parameters.

We have aimed to make the paper nearly self-contained,
and included some of the technical details. Section III on
the canonical formulation of fermions, Sec. IVon quantum
corrections from loop quantum gravity, and Sec. V on the
analysis of big bang nucleosynthesis can, however, be read
largely independently of each other by readers only inter-
ested in some of the aspects covered here. We will start
with general remarks on the physics underlying the
problem.

II. THE PHYSICAL SETTING

Big bang nucleosynthesis happens at energy scales
EBBN �MeV which are large, but still tiny compared to
the Planck energy MP. Also, the universe has already
grown large compared to the Planck length ‘P at this stage,
and space-time curvature is small. One may thus question
why quantum gravity should play any role. There is cer-
tainly a fine balance required for successful big bang
nucleosynthesis, but the expected quantum gravity terms
of the order E=MP, obtained based on dimensional argu-
ments, would have no effect.

However, dimensional arguments do not always work, in
particular, if more than two parameters LI of the same
dimension, or any large dimensionless numbers are in-
volved. Then, precise calculations have to be done to
determine which geometric means

Q
IL

xI
I with

P
IxI � 0

may appear as coefficients, or which powers of dimension-
less numbers occur as factors of correction terms. In loop
quantum gravity, we are in such a situation: there is the
macroscopic length scale L, which in our case we can take
as the typical wave length of fields during nucleosynthesis,
and also the Planck length ‘P �

�������
G@
p

, which arises due to
the presence of Newton’s constant G and Planck’s constant
@. In addition, there is a third and, in general, independent
scale ‘ given by the microscopic size of elementary spatial
patches in a quantum gravity state. This is a new feature of

the fundamentally discrete theory, for which the precise
state of quantum gravity plays an important role. Although
‘ must be proportional to the Planck length, its specific
value for a given state can differ numerically. Then, a
detailed calculation must show how L, ‘, and ‘P appear
in quantum gravity corrections and which numerical values
may arise.

Alternatively, one can work with only two length scales,
L and ‘P, but one has to deal with a large dimensionless
parameter N given by the number of discrete patches of
the underlying state in the volume considered, for instance,
a volume of the size L3 such that N � L3=‘3. Examples
of cosmological phenomena are known where this does
play a role for quantum gravity corrections [7,8], and here
we analyze which features arise in the presence of fermions
and especially for big bang nucleosynthesis.

There are precedents where such considerations have
played important roles. Best known is the evidence for the
atomic nature of matter derived by Einstein from the
phenomenon of Brownian motion. Also here, there are
several orders of magnitude between the expected size of
molecules and the resolution of microscopes at that time.
However, there is also a large number of molecules which
by their sheer number can and do leave sizable effects on
much larger suspended particles. There is, of course, never
a guarantee that something analogous has to happen else-
where. But this is to be checked by calculations and cannot
always be ruled out based only on dimensional arguments.

We can use the result of corrections to the equation of
state of radiation derived in [6], but a new analysis is
required for fermions and their specific action. Even in
relativistic regimes, the coupling of fermions to gravity
differs from other fields, e.g. by torsion contributions
which arise already from the kinetic term of the Dirac
action. One could thus expect that quantum corrections
for fermions differ from those to radiation and thus, by
throwing off the balance during nucleosynthesis, possibly
enhance the effect of quantum gravity corrections.
Whether or not this happens cannot be decided without
detailed calculations as they are reported and applied here.

III. CANONICAL FORMULATION OF DIRAC
FERMIONS

For fermions, one has to use a tetrad eI� rather than a
space-time metric g��, which are related by eI�eI� � g��,
in order to formulate an action with the appropriate cova-
riant derivative of fermions. This naturally leads one to a
first-order formalism of gravity in which the basic configu-
ration variables are a connection one-form and the tetrad.
In vacuum the connection would, as a consequence of field
equations, be the torsion-free spin connection compatible
with the tetrad. In the presence of matter fields which
couple directly to the connection, such as fermions, this
is no longer the case and there is torsion [9–11].
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A. Nonminimally coupled Einstein-Dirac action

A canonical analysis of gravity minimally coupled to
fermions is presented in detail in [11]. In [10], a non-
minimally coupled action is proposed in order to eliminate
violations of parity. Here, we first present a general ca-
nonical analysis providing a consistent canonical formula-
tion for all coupling parameters. At the end of this section,
we briefly comment on parity which plays a role in this
context.

The basic configuration variables in a Lagrangian for-
mulation of fermionic field theory are the Dirac bispinor
� � � ;��T and its adjoint �� � ����T�0 with �� being
the Minkowski Dirac matrices. The 2-component SL�2;C�
spinors  and � will be used later on in a Hamiltonian
decomposition of the action. Being interested in applica-
tions to highly relativistic regimes, we only deal with
massless fermions. Their nonminimal coupling to gravity
can then be expressed, in the notation of [10], by the total
action
 

S	e;!;�
 � SG	e;!
 � SF	e;!;�


�
1

16�G

Z
M

d4xee�I e
�
JP

IJ
KLF��

KL�!�

�
1

2
i
Z
M

d4xe
�

���Ie�I

�
1�

i
�
�5

�
r��

�r��
�
1�

i
�
�5

�
�Ie�I �

�
; (2)

where � is the parameter for nonminimal coupling and
minimal coupling is reproduced for �! 1. The action is
composed of the matter contribution SF resulting from the
fermion field and the gravitational contribution SG ex-
pressed in terms of
 

PIJKL � 		IK	
J

L �

1

�

IJKL

2
;

P�1
IJ
KL �

�2

�2 � 1

�
		KI 	

L

J �

1

�

IJ

KL

2

� (3)

where � is the Barbero-Immirzi parameter [12,13].
The specific form of the gravitational action is the one

given by Holst [14], formulated in terms of a tetrad field e�I
with inverse eI�, whose determinant is e. (Thus, the space-
time metric is g�� � eI�eI�. For all space-time fields,
I; J; . . . � 0; 1; 2; 3 denote internal Lorentz indices and
�; �; . . . � 0; 1; 2; 3 space-time indices.) The Lorentz con-
nection !IJ

� in this formulation is an additional field inde-
pendent of the triad, and FKL�� �!� � 2@	�!

IJ
�
 � 	!�;!�


IJ

is its curvature. It also determines the covariant derivative
r� of Dirac spinors by

 r� � @� �
1
4!

IJ
� �	I�J
; 	r�;r�
 �

1
4F

IJ
���	I�J


(4)

in terms of Dirac matrices �I (which will always carry an

index such that no confusion with the Barbero-Immirzi
parameter � can arise).

B. Dirac Hamiltonian

As usual, a Hamiltonian formalism of gravity requires a
space-time foliation �t: t � const such that one can intro-
duce fields and their rates of change, which will provide
canonical variables. This is done by referring to a time
function t as well as a time evolution vector field t� such
that t�r�t � 1. Rates of change of spatial fields will then
be associated with their derivatives along ta.

For convenience, one decomposes t� into normal and
tangential parts with respect to �t by defining the lapse
function N and the shift vector Na such that t� � Nn� �
N� with N�n� � 0. Here, n� is the unit normal vector
field to the hypersurfaces �t. The space-time metric g��
induces a spatial metric q���t� on �t by the formula g�� �
q�� � n�n�. This is one of the basic fields of a canonical
formulation, and its momentum will be related to _qab
defined as the Lie derivative of qab along ta. Since con-
tractions of q�� and N� with the normal n� vanish, they
give rise to spatial tensors qab and Na.

In our case, we are using a tetrad formulation, where eI�
provides a map from the tangent space of space-time to an
internal Minkowski space. The space-time foliation thus
requires an associated space-time splitting of the
Minkowski space. This takes the form of a partial gauge
fixing on the internal vector fields of the tetrad: the direc-
tions (or rather boosts) of tetrad fields can no longer be
chosen arbitrarily. Instead, we decompose the tetrad into a
fixed internal unit timelike vector field and a triad on the
space �t. We choose the internal vector field to be con-
stant, nI � �	I;0 with nInI � �1. Then, we allow only
those tetrads which are compatible with the fixed nI in the
sense that na � nIeaI is the unit normal to the given folia-
tion. This implies that eaI � EaI � n

anI with EaI na �
EaI n

I � 0 so that EaI is a spatial triad.
Now, using eaI � EaI � n

anI with nI � �	I;0 and na �
N�1�ta � Na�, we can decompose the nonminimally
coupled Dirac action and write it in terms of spatial fields
only:

 

SDirac �
i
2

Z
M

d4xN
���
q
p

�
���I�EaI � N

�1�ta � Na��

�

�
1�

i
�
�5

�
ra��ra�

�
1�

i
�
�5

�

� �I�EaI � N
�1�ta � Na���

�
; (5)

where the space-time determinant is factorized as e �
N

���
q
p

with the determinant q of the spatial metric. These
terms can be decomposed into several terms containing the
SL�2;C� spinors  and � instead of the Dirac spinor �:
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i
2
N

���
q
p
na� ���0ra�� c:c:� �

i
2
NEai � ���ira�� c:c:�

�
���
q
p

�
�

1

2
i� y _ � �y _�� c:c:� �

1

4

mnk!t

mnJk
�
�

���
q
p
Na
�
�

1

2
i� y@a � �

y@a�� c:c:� �
1

4

mnk!a

mnJk
�

� N
���
q
p

Eai

�
�

1

2
i�� y�i@a � �y�i@a�� c:c:� �

�
1

4

imn!a

mn� y � �y�� �
1

2

imn!a

m0Jn
��
; (6)

and similarly an expansion of the terms involving the nonminimal coupling parameter � in the action (5) gives

 

1

2�
���
q
p
��ta � Na�� ���0�5ra��ra��5�

0�� � NEai � ���i�5ra��ra��5�
i���

�
1

2�
���
q
p
�ta � Na�� y@a � �y@a�� �@a y� � �@a�y���!a

j0Jj�

�
N
2�

���
q
p

Eai � 
y�i@a � �

y�i@a�� �@a 
y��i � �@a�

y��i��!a
ikJk �!a

i0J0�; (7)

where c.c. denotes complex conjugation and we have in-
troduced the fermion current Jk :�  y�k � �y�k� and
the time component J0 :�  y � �y�. Details of this
calculation as well as the corresponding canonical decom-
positions of the gravitational part can be found in [11].

We also refer to [11] for the definition of canonical
gravitational variables as they appear also in the matter
action. In terms of the connection components !IJ

� in
Eq. (4), we define

 �ib :� �1
2

i
jk!

jk
b ; Ki

b :� �!b
i0 (8)

and the Ashtekar-Barbero connection [12,15]

 Aia :� �ia � �K
i
a � �

1
2

i
kl!a

kl � �!a
i0 (9)

with the Barbero-Immirzi parameter � [13]. This connec-
tion is important because it provides a convenient canoni-
cal structure with Poisson brackets

 fAia�x�; E
b
j �y�g � 8��G	ba	

i
j	�x� y� (10)

with the densitized triad Ebj :�
���
q
p

Ebj . Moreover, following
the steps presented in [11], it is straightforward to show
that the torsion contribution to the spin connection � is
given by

 Cja :�
��

4�1� �2�

��
1�

�
�

�

jkle

k
aJ

l �

�
��

1

�

�
ejaJ0

�
:

(11)

One can then show that �ia � ~�ia � Cia, with ~�ia being the

torsion-free spin connection compatible with the cotriad
eia.

For a fixed value of �, the above equation for torsion
reduces to that for minimal coupling as �! 1. As noted
in [10], based on a Lagrangian analysis, another interesting
case is � � �, which reduces Cja to � �

4 e
i
aJ0, making

torsion � independent. The nonminimal coupling is im-
portant for the behavior of the action under parity reversal,
and it is the value � � � which provides parity invariance
of the combined system of gravity and fermions. This may
seem surprising because neither vacuum gravity nor the
minimal Dirac action on a fixed background violate parity,
and thus the extra term of nonminimal coupling seems to
introduce parity violation. As [10] in the Lagrangian pic-
ture and [11] in the Hamiltonian picture show, however,
the torsion introduced by coupling fermions to gravity
also introduces parity violation in the Holst action, which
has to be canceled by the additional term of nonminimal
coupling. (The action with minimal coupling was called
‘‘not fully consistent’’ in [10], while our analysis is
consistent for any value of �. To avoid potential confusion,
one should first note that [10] starts from the Einstein-
Cartan action with minimal coupling, not directly from
a Holst action as here. Parity properties are different in
both cases, and the observation of [10] refers only to
this behavior. The Holst action with minimal coupling
would indeed be inconsistent with parity preservation,
but it does not present an inconsistency of the overall
framework unless one explicitly requires parity preserva-
tion. In fact, parity violation is expected at the onset of
BBN due to weak interactions. Anyway, the following
discussion in our paper can remain unchanged for different
values of � and thus applies directly to the parity preserv-
ing case.)

Upon inserting (11) in (6) and (7), the action (5) takes
the form
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���
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y�iDa �Da��
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R��

y�iDa��Da �
i ��
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1

2
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��

1

�

�
Eai K

i
aJ0 �

1

2

lknKl

aEak

�
1�

�
�

�
Jn
��
; (12)

where 
L :� 1
2 �1�

i
��, 
R :� 1

2 �1�
i
��, and we have used the covariant derivatives, Da � @a � A

l
a�l, related to the

Ashtekar-Barbero connection, and �l � �
1
2 i�l. The first part of the action in this form shows that momenta of the fermion

field are �� � �i�y of � �
���
q4
p
 and �� � �i�y of � �

���
q4
p
�. Here, we are using half-densitized spinor fields to avoid

complex-valued canonical variables [16].
Moreover, the action provides the Hamiltonian H �

R
d3xN�x�	S=	N. Together with fermion-dependent terms

resulting from the gravitational action, this provides derivative terms and self-interaction terms in the Hamiltonian,

 

HDirac �
Z

�t

d3xN
�
�
�Eai���
q
p Da��T��

i���T��i��� i
2Eia���
q
p �
L�T��

iDa�� 
R�T��iDa�� c:c:�

�
���

2
���
q
p
�1��2�

�
3�

�
�
� 2�2

�
��T��l���

T
��l����T��

l���T��l���
3��

8�

���
q
p ��T����

T
�����T����

T
���

�
(13)

with � :� �� 1
� and 
 :� 1� �

� . The top line of this
expression is the most important one because its derivative
terms are dominant in relativistic regimes. In addition to
those, we highlight the presence of four-fermion interac-
tions in the second line, which we summarize as
 

B :�
���

2�1� �2�

�
3�

�
�
� 2�2

�
��T��l�� �

T
��l��

� ��T��
l�� �T��l�� �

3��

8�
��T��� �

T
���

� ��T��� �
T
��� (14)

multiplying q�1=2.

C. Equation of state

From the Hamiltonian we can determine energy and
pressure and formulate the equation of state. The matter
Hamiltonian is directly related to energy density by

 � �
1���
q
p

	HDirac

	N
(15)

and thus, from (13), the energy density is
 

� �
2Eai
q

�
�
�
2
Da��T��

i�� �T��i��

� i��
L�T��
iDa�� 
R�T��iDa�� c:c:�

�
�
B
q
:

(16)

The canonical formula for pressure is

 P � �
2

3N
���
q
p Eai

	HDirac

	Eai
(17)

as shown by a straightforward adaptation of the calculation
done in [6] for metric variables. Now using the functional
derivative

 

	
���������
q�x�

p
	Eai �y�

�
1

2
eia	�x� y�; (18)

and thus

 

	

	Ebj �y�

�
2Eai �x����������
q�x�

p �
�

1���
q
p �2	ab	

j
i � e

a
i e
j
b�	�x� y�; (19)

and inserting (19) in (17), we obtain the pressure
 

P �
2Eai
3q

�
�
�
2
Da��T��

i�� �T��i�� � i��
L�T��
iDa�

� 
R�
T
��

iDa�� c:c:�
�
�
B
q
: (20)

This results in an equation of state

 wDirac �
P
�
�

1

3
�

2B
3�
: (21)

In relativistic regimes, the kinetic term involving partial
derivatives @a contained in Da is dominant, which leaves
us with an equation of state

 w �
P
�
�

1

3
� 
 (22)

whose leading term agrees with the parameter for a
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Maxwell field. But there are clearly correction terms for
fermions already in the classical first-order theory. They do
not arise for the Maxwell field, implying a difference in the
coupling to gravity due to torsion, which is present even in
relativistic regimes. The order of magnitude of the addi-
tional term depends on the fermion current density and is
thus not expected to be large unless regimes are very dense.
We will not consider this correction further in this article,
but highlight its role as a consequence of torsion.

In addition, the canonical analysis performed here pro-
vides the stage for a quantization of the theory, resulting in
further correction terms from quantum gravity as they
occur even for the Maxwell field [6]. Their magnitudes
must also be extracted and then compared for the different
fields.

IV. QUANTUM CORRECTIONS

We are now in a position to derive the form of quantum
gravity corrections for fermion fields in an explicit scenario
of quantum gravity, completing the program of Sec. II. We
will not require the quantized dynamics of gravity, which
makes our aim feasible. But we do need to know how the
triad is quantized because it appears in the Dirac
Hamiltonian. It appears as a basic variable in the Poisson
relations (10), together with the Ashtekar-Barbero connec-
tion Aia. Loop quantum gravity [3–5] proceeds by forming
a quantum representation of these basic fields which turns
holonomies he�A� � P exp�

R
e dt _eaAia�i� along arbitrary

spatial curves e into creation operators of geometrical
excitations along these curves. Many such creations then
excite a discrete state based on the graph formed by all
curves used. On such a state, Eai is quantized through the
fluxes FS�E� �

R
S d2yEai na�

i through surfaces Swith con-
ormal na. Resulting operators have eigenvalues obtained
by counting intersections of the surface and the graph in
the state, weighed by multiplicities of overlapping curves.

This structure is important for a background-
independent representation which replaces the usual Fock
representation of quantum fields on a curved background
space-time. The Fock representation requires a metric to
define basic concepts such as a vacuum state or creation
and annihilation operators, which can thus not be used for
the nonperturbative gravitational field itself. This mathe-
matical property has important physical implications be-
cause extended objects, namely, the integrated holonomies
and fluxes, are used as basic quantities. In this way, there is
nonlocality and other implications which affect quantum
gravity corrections.

In loop quantum gravity, there are three main effects
which imply correction terms in effective matter equations.
Any Hamiltonian contains inverse powers of triad compo-
nents such as 1=

���
q
p

in (13), which for fermions is a con-
sequence of the fact that they are quantized through half-
densities [16]. The loop quantization, however, leads to
triad operators which have discrete spectra containing zero,

thus lacking inverse operators. A proper quantization,
along the lines of [17], does give a well-defined operator
with the correct semiclassical limit. But there are devia-
tions from the classical behavior on small length scales,
which are the first source of correction terms. As in the case
of the Maxwell field [6], this is the main effect we include
here.

In addition, there are qualitatively different correction
terms. First, loop quantum gravity is spatially discrete,
with states supported on spatial graphs. Quantizations of
Hamiltonians thus lead to a discrete representation of any
spatial derivative term as they also occur for fermions. The
classical expression arises in a continuum limit, but for any
given state the discrete representation implies corrections
to the classical derivatives as the leading terms in an
expansion. Second, the connection is quantized through
holonomies rather than its single components. Thus, the
quantum Hamiltonians are formulated in terms of expo-
nentials of line integrals of the connection, which also give
the leading classical term plus corrections in an expansion.
Finally, whenever a Hamiltonian is not quadratic, there are
genuine quantum effects occurring in typical low energy
effective actions. They can be computed in a Hamiltonian
formulation as well [18,19], contributing yet another
source of corrections.

One certainly needs to know the relative magnitude of
all corrections in order to see which ones have to be taken
into account. For all of them, the magnitude depends on
details of the quantum state describing the regime. Here,
properties of states have to be taken into account, and
dimensional arguments are no longer sufficient. For in-
stance, discretization and curvature corrections depend
on the patch size occurring in the discrete state underlying
quantum gravity. This patch size is typically small com-
pared to scales on which the matter field changes, even in
relativistic regimes assumed here. Thus, such corrections
can be ignored in a first approximation. What remains are
corrections from inverse powers. While other corrections
shrink in the continuum limit where the patch size becomes
small, inverse corrections actually grow when the patch
size approaches the Planck length. The regimes where the
two classes of corrections are dominant are thus neatly
separated, and we can safely focus on inverse triad correc-
tions only. The relevant formulas are collected in the
Appendix; see also [20]. A detailed and complete deriva-
tion is not yet available since precise properties of a
quantum gravity state would be required. Still, many gen-
eral qualitative insights can be gained in this way.

In the Dirac Hamiltonian (13) the factor to be quantized
containing inverse powers of the densitized triad is

 

2Eai
‘0

���
q
p � 
abc
ijk

ejbe
k
c

‘0
���
q
p 
 
abc
ijk

‘2
0e
j
be
k
c

Vv

in terms of the volume Vv 
 ‘3
0

����������
q�v�

p
of one discrete patch

at a point v. We can already notice the close resemblance
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to the Maxwell Hamiltonian, where the corresponding
expression is qab=‘0

���
q
p
� eiae

i
b=‘0

���
q
p

which differs only
by the additional 
 tensors. This close relation will, in the
end, lead to quite similar quantum corrections for photons
and fermions.

We proceed using (A6) for r � 1=2, and write

 

2Eai
‘0

���
q
p �

�
‘0

2�G�

�
2

abc
ijkfA

j
b; V

1=2
v gfAkc; V

1=2
v g; (23)

which can then be quantized by turning Poisson brackets
into commutators of operators. This results in

 

d2Eai
‘0

���
q
p � 
KIJ
ijk

d
�‘0V

�1=2
v ejI�

d
�‘0V

�1=2
v ekJ�

� 
KIJ
ijkĈ
�1=2�
v;I Ĉ�1=2�

v;J 	j
�I�	

k
�J� (24)

with Ĉ1=2
v;I defined in (A7). As explicit calculations in the

Appendix show, eigenvalues (A9) of the operator Ĉ�1=2�
v;I , or

its expectation values in semiclassical states, do not follow
precisely the behavior expected for the classical function it
quantizes. Deviations become larger for small values of the
triad components, which can be captured in a correction
function �	pI�v�
 multiplying the classical expression. In
particular, such a correction function will appear in a
Hamiltonian operator, thus also correcting expressions
for energy density and pressure or the equation of state.
The functional form follows from Eqs. (A9) and (A10).

Thus the general expression one can expect for a phe-
nomenological Dirac Hamiltonian including corrections
from inverse powers of the triad is
 

Hphen �
Z

�t

d3xN
�
Eai���
q
p ��Ebj ����Da��

T
��

i�� �T��
i��

� 2i�
L�
T
��

iDa�� 
R�
T
��

iDa�� c:c:��

�
��Ebj ����
q
p B

�
(25)

with two possibly different correction functions � and 
.
This also affects the energy density and pressure terms,
derived by the general expressions (15) and (17). We are
mainly interested in the correction to the factor of one-third
in the equation of state (21), so we focus on the first term in
(25) in what follows. Moreover, for a nearly [21] isotropic
background geometry, � only depends on the determinant
q of the spatial metric and thus qab	�=	qab �
�3qd�=dq � � 1

2 ad�=da with the scale factor a related
to q by q � det�qab� � a6. In this case the quantum gravi-
tational expectation for ��q�, as per Eqs. (A9) and (A10),
simplifies. To use these expressions, we have to relate the
scale factor to quantum gravitational excitation levels as
they occur in calculations of loop quantum gravity. In the
notation of the Appendix, an elementary discrete patch in a
nearly isotropic space-time has, on the one hand, an area of
‘2

0a
2 if ‘0 is the coordinate diameter of the patch. This can

be expressed as ‘2
0a

2 � �VV =N V �
2=3 where N V is the

number of patches in a box V of volume VV . On the other
hand, using (A2) the quantum gravity state assigns a value
of 4��‘2

P�v to this patch via the flux operator, where�v is
the quantum number of the geometrical excitation of this
patch. Thus, we obtain

 �v �
V2=3
V

4��‘2
PN

2=3
V

�:
a2

a2
disc

where

 adisc � 2
�������
��
p

‘P

�
N V

V0

�
1=3

(26)

with the coordinate volume V0 of the box V . The numeri-
cal value of adisc depends on coordinates via V0, or on the
normalization of the scale factor. (It does not depend on the
choice of the box V because a change would multiply
N V and V0 by the same factor.) But it is important to note
that adisc is not just determined by the Planck length ‘P,
which appears for dimensional reasons, but also depends
on the large number N V of discrete patches per volume as
given by the quantum gravity state. This is a parameter
exactly as expected in the discussion of Sec. II. Replacing
�v in the equations of the Appendix, we obtain
 

��a� � 8
���
2
p
�a=adisc�

2��2�a=adisc�
2 � 1�1=4

� j2�a=adisc�
2 � 1j1=4�2 (27)

where adisc appears, influencing the size of quantum grav-
ity corrections.

The function is plotted in Fig. 1. One can easily see that
��a� approaches the classical value � � 1 for a�
adisc=

���
2
p

, while it differs from 1 for small a. For a >
adisc=

���
2
p

, the corrections are perturbative in a�1,

1
a/adisc

0

1

α(
a/

a d
is

c)

FIG. 1. The correction function (27) as a function of the scale
factor (solid line). The asymptotic form (28) for large a is shown
by the dashed line. [The sharp cusp, a consequence of the
absolute value appearing in (27), is present only for eigenvalues
as plotted here, but would disappear for expectation values of the
inverse volume operator in coherent states. This cusp will play
no role in the analysis of this paper.]
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 ��a� � 1�
7

64

�
adisc

a

�
4
� � � � : (28)

This is the first correction in an asymptotic expansion for
eigenvalues. If semiclassical states rather than volume
eigenstates are used, powers of a�1 in the leading correc-
tions can be smaller. Moreover, via N V the discreteness
scale adisc is expected to be not precisely constant but a
function of a itself because the underlying spatial discrete-
ness of quantum gravity can be refined dynamically during
cosmological evolution [22,23]. (Indeed, dynamical refine-
ment is also required for several other phenomenological
reasons [24–28].) In our following analysis we will thus
assume a functional form

 ��a� � 1� c�a=a0�
�n (29)

where we traded the fundamental normalization by adisc for
normalization with respect to the present-day value of the
scale factor a0. From the derivation, n is likely to be a
small, even integer and c is known to be positive. The
constant c depends on adisc and inherits the N V factor. It
can thus be larger than of order 1. We will treat this
parameter as phenomenological, and in the end, formulate
bounds on c as bounds for N V .

Energy density and the pressure then are, ignoring the
classical interaction term B,

 �eff �
2Eai
a6

��a����Da��T��
i�� �T��i��

� i��
L�
T
��

iDa�� 
R�
T
��

iDa�� c:c:�� (30)

and
 

3Peff �
2Eai
a6

��a�
�
1�

d log�
d loga

�
���Da��

T
��

i�� �T��
i��

� i��
L�T��
iDa�� 
R�T��iDa�� c:c:��: (31)

From this, the equation of state w can easily be computed:

 weff �
1

3

�
1�

d log�
d loga

�
: (32)

This quantum gravity correction is independent of the
specific matter dynamics as in the classical relativistic
case. It results in an equation of state which is linear in
�, but depends on the geometrical scales (and the Planck
length) through �. This is the same general formula de-
rived in [6] for radiation. Thus, on an isotropic background,
radiation and relativistic fermions are not distinguished by
the form of quantum corrections they receive.

With the equation of state and the continuity equation

 _�� 3
_a
a
��� P� � 0; (33)

where a is the scale factor and the dot indicates a proper
time derivative, we can determine energy density as a
function of the universe size. We first obtain

 

d log��a�
d loga

� �3�1� w�a��; (34)

explicitly showing the dependence of the equation of state
on the scale factor. The solution is

 ��a� � �0 exp
�
�3

Z
�1� w�a��d loga

�
; (35)

where �0 is the integration constant. Inserting an equation
of state of the form (32), we obtain

 ��a� � �0��a�a�4: (36)

For � � 1, we retrieve the classical result ��a� / a�4, but
for � � 1 loop quantum gravity corrections induced by the
discreteness of flux operators are reflected in the evolution
of energy density in a Friedmann-Robertson-Walker
universe.

V. EFFECT ON BIG BANG NUCLEOSYNTHESIS

The production of elements in the early universe is
highly sensitive to the expansion rate, given by

 

_a
a
�

�
8

3
�G�

�
1=2
; (37)

where � is the total density, thus including radiation and
fermions. As we have seen here for fermions and in [6] for
radiation, the effect of loop quantum gravity corrections is
to multiply the effective ��a� by a factor ��a�. Most
importantly, we find that ��a� is the same for both bosons
and fermions (up to possible quantization ambiguities), so
a separate treatment of the two types of particles in the
early universe (as in Ref. [1]) is unnecessary here.

In the standard treatment of the thermal history of the
universe, the density of relativistic particles (bosons or
fermions) is given by

 � �
�2

30
g�T

4; (38)

where g� is the number of spin degrees of freedom for
bosons and 7=8 times the number of spin degrees of free-
dom for fermions, and T is the temperature, which scales as

 T / a�1: (39)

The equation of state parameter is

 w � 1=3: (40)

Clearly, Eqs. (38)–(40) are inconsistent with Eqs. (32) and
(36). There is some ambiguity in determining the correct
way to modify the expressions for ��T� and w. We have
chosen to assume that the modifications are contained in
the gravitational sector, so that the density is given by

 � � ��a�
�2

30
g�T

4; (41)

with the temperature scaling as in Eq. (39), and the equa-
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tion of state w is given by Eq. (32). This guarantees that the
standard continuity equation (33) continues to hold. Note
that this is not the only way to incorporate Eq. (36) into the
calculation, but it seems to us the most reasonable way.
This issue requires a consideration of thermodynamics on a
quantum space-time, which is a fascinating but not well-
studied area. Instead of entering details here, we note that
we interpret the � correction as a consequence of a quan-
tum gravity sink to energy and entropy. Thus, quantum
gravity implies a nonequilibrium situation which would
otherwise imply that � must be proportional to T4 without
any additional dependence on a / T�1.

With these assumptions, we can simply treat ��a� as an
effective multiplicative change in the overall value of G.
Note that this simplification is only possible because we
explicitly derived by our canonical analysis that, unexpect-
edly, quantum corrections of radiation and fermions appear
in similar forms. This makes possible a comprehensive
derivation of implications for BBN, bearing on earlier
work. In fact, a great deal of work has been done on the
use of BBN to constrain changes in G (see, e.g., Refs. [29–
33]). The calculation is straightforward, if one has a func-
tional form for the time variation in G. For the loop
quantum gravity corrections considered here, the most
reasonable functional form is (29). Note that this expres-
sion is by construction valid only in the limit where ��a� �
1� 1. In terms of the effective gravitational constant, G,
one can then write

 G�a� � G0	1� c�a=a0�
�n
; (42)

where G0 is the present-day value of the gravitational
constant.

In order to constrain the values of c and n, we calculate
the predicted element abundances with the indicated
change in G and compare with observational constraints.
Big bang nucleosynthesis proceeds first through the weak
interactions that interconvert protons and neutrons:

 n� �e $ p� e�; n� e� $ p� ��e;

n$ p� e� � ��e:
(43)

When T * 1 MeV, the weak-interaction rates are faster
than the expansion rate, _a=a, and the neutron-to-proton
ratio (n=p) tracks its equilibrium value exp	��m=T
,
where �m is the neutron-proton mass difference. As the
universe expands and cools, the expansion rate becomes
too fast for weak interactions to maintain weak equilibrium
and n=p freezes out. Nearly all the neutrons which survive
this freeze-out are converted into 4He as soon as deuterium
becomes stable against photodisintegration, but trace
amounts of other elements are produced, particularly deu-
terium and 7Li (see, e.g., Ref. [34] for a review).

In the standard model, the predicted abundances of all of
these light elements are a function of the baryon-photon
ratio, �, but any change in G alters these predictions. Prior
to the era of precision cosmic microwave background

(CMB) observations (i.e., before WMAP), big bang nu-
cleosynthesis provided the most stringent constraints on �,
and modifications to the standard model could be ruled out
only if no value of � gave predictions for the light element
abundances consistent with the observations. However, the
CMB observations now provide an independent estimate
for�, which can be used as an input parameter for big bang
nucleosynthesis calculations.

Copi et al. [32] have recently argued that the most
reliable constraints on changes in G can be derived by
using the WMAP values for � in conjunction with deute-
rium observations. The reason is that deuterium can be
observed in (presumably unprocessed) high-redshift qua-
sistellar object (QSO) absorption line systems (see
Ref. [35] and references therein), while the estimated
primordial 4He abundance, derived from observations of
low metallicity HII regions, is more uncertain (see, for
example, the discussion in Ref. [36]). While we agree
with the argument of Copi et al. in principle, for the
particular model under consideration here it makes more
sense to use limits on 4He than on deuterium, in conjunc-
tion with the WMAP value for�. The reason is that the 4He
abundance is most sensitive to changes in the expansion
rate at T � 1 MeV, when the freeze-out of the weak inter-
actions determines the fraction of neutrons that will even-
tually be incorporated into 4He. Deuterium, in contrast, is
produced in big bang nucleosynthesis only because the
expansion of the universe prevents all of the deuterium
from being fused into heavier elements. Thus, the deute-
rium abundance is most sensitive to the expansion rate at
the epoch when this fusion process operates (T �
0:1 MeV). The importance of this distinction with regard
to modifications of the standard model was first noted in
Ref. [37], and a very nice quantitative analysis was given
recently in Ref. [38]. Note that our estimate for the behav-
ior of G�a�=G0 � 1, Eq. (42), is a steeply decreasing
function of a. Thus, the change in the primordial 4He
abundance will always be much larger than the change in
the deuterium abundance. Therefore, we can obtain better
constraints on this model by using extremely conservative
limits on 4He, rather than by using the more reliable limits
on the deuterium abundance. For the same reason, we can
ignore any effect on the CMB, since the latter is generated
at a much larger value of a, and any change will be minus-
cule. Hence, we can confidently use the WMAP value for
�.

WMAP gives [39]

 � � 6:116�0:197
�0:249 � 10�10: (44)

Because the estimated errors on � are so small, we simply
use the central value for �; the bounds we derive on c in
Eq. (29) change only slightly when � is varied within the
range given by Eq. (44). Since c in Eqs. (29) and (42) is
thought to be positive, the effect of loop quantum gravity
corrections is to increase the primordial expansion rate,
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which increases the predicted 4He abundance. We there-
fore require an observational upper bound on the primor-
dial 4He abundance. As noted earlier, this is a matter of
some controversy. We therefore adopt the very conserva-
tive upper bound recommended by Olive and Skillman
[36]:

 YP � 0:258; (45)

where YP is the primordial mass fraction of 4He. For a fixed
value of n in Eq. (42), we determine the largest value of c
that yields a primordial 4He abundance consistent with this
upper limit on YP. Since we are essentially bounding the
change in G at a=a0 � 10�10, it is convenient to rewrite
Eq. (29) as

 � � 1� ~c=an10 (46)

where a10 � 1010�a=a0�. This upper bound on ~c as a
function of n is given in Fig. 2. For the special case n �
4, we can use these results to place a bound on adisc in
Eq. (28). We obtain

 

adisc

a0
< 2:4� 10�10: (47)

This is not a strong bound for the parameters of quantum
gravity, but clearly demonstrates that quantum corrections
are consistent with successful big bang nucleosynthesis.

In terms of more tangible quantum gravity parameters,
we have

 N 1=3
V
<

1:2� 10�10�������
��
p

a0V
1=3
0

‘P
(48)

for the number of patches at the time of big bang nucleo-
synthesis. In terms of the volume VV � �10�10a0�

3V0 at
this time, we have N V < 3VV =‘

3
P with the value � 


0:24 of the Barbero-Immirzi parameter as derived
from black hole entropy calculations. More meaningfully,
if we view 2

�������
��
p

‘P as the basic length scale as it appears in
the spectrum (A2) of loop quantum gravity, the
bound becomes more interesting: This gives N 1=3

V
<

2:4V1=3
V
=�2

�������
��
p

‘P�. This upper limit is already quite close
to what one expects for elementary patch sizes in loop
quantum gravity, which would provide N 1=3

V
<

V1=3
V
=�2

�������
��
p

‘P� as a fundamental upper limit. Given that
these values are close to each other, we see a clear potential
of improvements by more precise observational inputs.
Moreover, other correction terms from quantum gravity
could be used to obtain a lower bound for N V such that
the allowed window would be reduced to a smaller size.

VI. CONCLUSIONS

Big bang nucleosynthesis is a highly relativistic regime
which, to a good approximation, implies identical equa-
tions of state for fermions and photons. There are, however,
corrections to the simple equation of state w � 1

3 for fer-
mions, even classically. One observation made here is that
the interaction term derived in [40] leads to such a correc-
tion and might be more constrained by nucleosynthesis
than through standard particle experiments [41]. We have
not analyzed this further here because more details of the
behavior of the fermion current would be required.

A second source of corrections arises from quantum
gravity. Remarkably, while quantum gravity effects on an
isotropic background do correct the equations of state, they
do so equally for photons and relativistic fermions.
Initially, this is not expected for both types of fields due
to their very different actions. Thus, quantum gravity ef-
fects do not spoil the detailed balance required for the
scenario to work, and bounds from big bang nucleosynthe-
sis obtained so far are not strong. But there are interesting
limits for the primary parameter, the patch size of a quan-
tum gravity state. It is dimensionally expected to be pro-
portional to the Planck length ‘P but could be larger. In
fact, current bounds derived here already rule out a patch
size of exactly the elementary allowed value in loop quan-
tum gravity. With more precise estimates, these bounds can
be improved further.

We have made use of quantum gravity corrections in a
form which does not distinguish fermions from radiation.
Although the most natural implementation, quite unexpect-
edly, provides equal corrections as shown here, there are
several possibilities for differences which suggest several

FIG. 2. The solid curve gives an upper bound on ~c as a function
of n, for the assumed form for �: � � 1� ~c=an10, where a10 is
the value of the scale factor in units for which a10 � 1010 at
present.
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further investigations. Small deviations in the equations of
state and thus energy densities of fermions and radiation
are possible. First, there are always quantization ambigu-
ities, and so far we tacitly assumed that the same basic
quantization choice is made for the Maxwell and Dirac
Hamiltonians. Such ambiguity parameters can be explicitly
included in specific formulas for correction functions; see
e.g. [20,42,43]. Independent consistency conditions for the
quantization may at some point require one to use different
quantizations for both types of fields, resulting in different
quantum corrections and different energy densities. Such
conditions can be derived from an analysis of anomaly
freedom of the Maxwell field and fermions coupled to
gravity, which is currently in progress. As shown here, if
this is the case it will become testable in scenarios sensitive
to the behavior of energy density such as big bang nucleo-
synthesis. Moreover, assuming the same quantization pa-
rameters leads to identical quantum corrections for photons
and fermions only on isotropic backgrounds. Small-scale
anisotropies have different effects on both types of fields
and can thus also be probed through their implications on
the equation of state.

For this, it will be important to estimate more precisely
the typical size of corrections, which is not easy since it
requires details of the quantum state of geometry. The
crucial ingredient is again the patch size of underlying
lattice states. On the other hand, taking a phenomenologi-
cal point of view allows one to estimate ranges for patch
sizes, which would leave one in agreement with big bang
nucleosynthesis constraints. Interestingly, corrections
studied here provide upper bounds to the patch size, and
other corrections from quantum gravity are expected to
result in lower bounds. A finite window thus results, which
can be shrunk with future improvements in observations.
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APPENDIX: ELEMENTS OF LOOP QUANTUM
GRAVITY

We collect the basic formulas required to compute quan-
tum corrections in loop quantum cosmology, referring to
[6,20] for further details. We can restrict our attention to
perturbative regimes around a spatially flat isotropic solu-
tion where one can choose the canonical variables to be
given by functions �~pI�x�; ~kJ�x�� which determine a densi-
tized triad by Eai � ~p�i��x�	ai and extrinsic curvature by

Ki
a � ~k�i��x�	ia. This diagonalization implies strong sim-

plifications in the explicit evaluation of formulas [44,45].
Any state is associated with a spatial lattice with U(1)

elements �v;I attached to its links ev;I starting at a vertex v
and pointing in a direction along a translation generator XaI
of the homogeneous background. In our context of pertur-
bations around Friedmann-Robertson-Walker space-times,
this can be seen as a definition of the quantum gravity state
on which the quantized Eai and Ki

a act. The U(1) elements
�v;I appear as matrix elements in SU(2) holonomies hv;I �
Re�v;I � 2�I Im�v;I and represent the connection, while
fluxes Fv;I are used as independent variables for the mo-
menta. An orthonormal basis of the quantum Hilbert space
is given by functionals j . . . ; �v;I; . . .i �

Q
v;I�

�v;I
v;I , for all

possible choices of �v;I 2 Z. Together with basic opera-
tors, which are represented as holonomies

 �̂ v;Ij . . . ; �v0;J; . . .i � j . . . ; �v;I � 1; . . .i (A1)

for each pair �v; I�, and fluxes
 

F̂ v;Ij . . . ;�v0;J; . . .i � 2��‘2
P��v;I��v;�I�j . . . ;�v0;J; . . .i;

(A2)

this defines the basic quantum representation. Here, ‘P ��������
@G
p

is the Planck length and a subscript�I means that the
edge preceding the vertex v in the chosen orientation is
taken.

For quantum corrections to classical equations, one
important step in addition to computing expectation values
of operators is the introduction of a continuum limit. This
relates holonomies

 �v;I � exp
�
i
Z
ev;I

dt�~kI=2
�

 exp�i‘0�~kI�v� I=2�=2�

(A3)

to continuum fields ~kI through midpoint evaluation (de-
noted by v� I=2), and similarly for fluxes

 Fv;I �
Z
Sv;I

~pI�y�d2y 
 ‘2
0 ~pI�v� I=2�: (A4)

Here, ‘0 is the coordinate length of lattice links,
which enters the continuum approximation since we are
integrating classical fields in holonomies and fluxes. From

flux operators one defines the volume operator V̂ �P
v
Q3
I�1

�������������
jF̂ v;Ij

q
, using the classical expression V �R

d3x
�������������������
j~p1 ~p2 ~p3j

p


P
v‘

3
0

�������������������
j~p1 ~p2 ~p3j

p
�
P
v

�������������������
jp1p2p3j

p
.

With (A2), its eigenvalues are

 V�f�v;Ig� � �2��‘
2
P�

3=2
X
v

Y3

I�1

������������������������������
j�v;I ��v;�Ij

q
: (A5)

The volume operator is central for inverse triad correc-
tions because inverse densitized triads, or a cotriad, can be

DIRAC FIELDS IN LOOP QUANTUM GRAVITY AND BIG . . . PHYSICAL REVIEW D 77, 084003 (2008)

084003-11



quantized using relations such as

 fAia; V
r
vg � 4��GrVr�1

v eia (A6)

for 0< r< 2. Even though an inverse power of volume,
together with a cotriad, occurs on the right-hand side, the
left-hand side can be quantized directly in terms of the
volume operator, using holonomies for connection compo-
nents, and turning the Poisson bracket into a commutator
[17,46]. Such a quantization leads to
 dVr�1
v eiI �

�2

8�ir�‘2
P‘0

X
�2f�1g

� tr��ihv;�I	h
�1
v;�I; V̂

r
v
�

�
1

2‘0
�B̂�r�v;I � B̂

�r�
v;�I�	

i
�I� �:

1

‘0
Ĉ�r�v;I	

i
�I� (A7)

where, for symmetry, we use both edges touching the
vertex v along direction XaI , and B̂�r�v;I is, after taking the
trace in (A7),

 B̂ �r�v;I :�
1

4�i�G@r
�sv;IV̂

r
vcv;I � cv;IV̂

r
vsv;I� (A8)

with

 cv;I �
1

2
��v;I � ��v;I� and sv;I �

1

2i
��v;I � ��v;I�:

As in [20] effects of the quantization of triad (metric)
coefficients are included by inserting correction functions
in the classical Hamiltonian which follow, e.g., from the
eigenvalues [20]
 

C�1=2�
v;I �f�v0;I0 g� � 2�2��‘2

P�
�1=4j�v;J ��v;�Jj

1=4j�v;K

��v;�Kj
1=4�j�v;K ��v;�K � 1j1=4

� j�v;K ��v;�K � 1j1=4� (A9)

(where indices J and K are defined such that 
IJK � 0) of
operators Ĉ�1=2�

v;I .

Classically, we expect qIJ=
���
q
p
�

�������������������
jp1p2p3j

p
=pIpJ for

this quantity, with a densitized triad Eai � p�i�	ai and using
the relation (A2) between labels and flux components.
Although for large �v;I the eigenvalues indeed approach
the function

 C�1=2�
v;I �f�v0;I0 g�C

�1=2�
v;J �f�v0;I0 g� � �2��‘2

P�
�1=2

�

Q3
K�1

��������������������������������
j�v;K ��v;�Kj

q
j�v;I ��v;�Ijj�v;J ��v;�Jj

from the classical expectation, they differ for values of�v;I

closer to 1. This deviation can, for an isotropic background,
be captured in a single correction function

 �v;K �
1

3

X
I

C�1=2�
v;I �f�v0;I0 g�

2 �

���������������
2��‘2

P

q
��v;I ��v;�I�

2

Q3
J�1

�������������������������������
j�v;J ��v;�Jj

q ;

(A10)

which would equal 1 in the absence of quantum correc-
tions. This is indeed approached in the limit where all
�v;I � 1, but for any finite values there are corrections.
If all �v;I > 1 one can directly check that corrections are
positive, i.e. �v;K > 1 in this regime. Expressing the labels
in terms of the densitized triad through fluxes (A2) results
in functionals

 �	pI�v�
 � �v;K�4��‘2
P�v;I� (A11)

which enter quantum corrections.
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