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What happened to the central cores of tidally destructed dark matter clumps in the Galactic halo? We

calculate the probability of surviving of the remnants of dark matter clumps in the Galaxy by modelling

the tidal destruction of the small-scale clumps. It is demonstrated that a substantial fraction of clump

remnants may survive through the tidal destruction during the lifetime of the Galaxy if the radius of a core

is rather small. The resulting mass spectrum of surviving clumps is extended down to the mass of the core

of the cosmologically produced clumps with a minimal mass. Since the annihilation signal is dominated

by the dense part of the core, destruction of the outer part of the clump affects the annihilation rate

relatively weakly and the survived dense remnants of tidally destructed clumps provide a large

contribution to the annihilation signal in the Galaxy. The uncertainties in the minimal clump mass

resulting from the uncertainties in neutralino models are discussed.
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I. INTRODUCTION

According to current observations, about 30% of the
mass of the Universe is in a form of cold dark matter
(DM). The nature of DM particles is still unknown. The
cold DM component is gravitationally unstable and is
expected to form the gravitationally bounded clumpy
structures from the scale of the superclusters of galaxies
and down to very small clumps of DM. The large-scale DM
structures are observed as the galactic halos and clusters of
galaxies. They are also seen in numerical simulations.
Theoretical studies of DM clumps are important for under-
standing the properties of DM particles because annihila-
tion of DM particles in small dense clumps may result in a
visible signal. The DM clumps in the Galaxy can produce
the bright spots in the sky in the gamma or X-bands [1]. A
local annihilation rate is proportional to the square of the
DM particle number density. Thus, the annihilation signal
from small clumps can dominate over diffuse components
of DM in the halo.

The cosmological formation and evolution of small-
scale DM clumps have been studied in numerous works
[2–13]. The minimum mass of clumps (the cut-off of the
mass spectrum),Mmin is determined by the collisional and
collisionless damping processes (see, e.g., [6] and refer-
ences therein). Recent calculations [10] show that the cut-
off mass is related to the friction between DM particles and
cosmic plasma similar to the Silk damping. In the case of
the Harrison-Zeldovich spectrum of primordial fluctua-
tions with CMB normalization, the first small-scale DM
clumps are formed at redshift z� 60 (for 2� fluctuations)
with a mean density 7� 10�22 g cm�3, virial radius

6� 10�3 pc, and internal velocity dispersion 80 cm s�1,
respectively. Only a very small fraction of these clumps
survive the early stage of tidal destruction during the
hierarchical clustering [4]. Nevertheless, these survived
clumps may provide the major contribution to the annihi-
lation signal in the Galaxy [4,7,14–16]. At a high redshift,
neutralinos, considered as DM particles, may cause the
efficient heating of the diffuse gas [17] due to annihilation
in the dense clumps.
One of the unresolved problems of DM clumps is a value

of the central density or core radius. Numerical simulations
give a nearly power density profile of DM clumps. Both the
Navarro-Frenk-White and Moore profiles give formally a
divergent density in the clump center. A theoretical mod-
elling of the clump formation [18] predicts a power-law
profile of the internal density of clumps

�intðrÞ ¼ 3� �

3
��

�
r

R

���
; (1)

where �� and R are the mean internal density and a radius of
clump, respectively, � ’ 1:8–2 and �intðrÞ ¼ 0 at r > R. A
near isothermal power-law profile (1) with � ’ 2 has been
recently obtained in numerical simulations of a small-scale
clump formation [19].
It must be noted that density profiles of small-scale DM

clumps and large-scale DM haloes may be different. The
Galactic halos are well approximated by the Navarro-
Frenk-White profile outside of the central core where
dynamical resolution of numerical simulations becomes
insufficient. Different physical mechanisms are engaged
for formation of a central core during the formation and
evolution of clumps. A theoretical estimation of the rela-
tive core radius of a DM clump xc ¼ Rc=Rwas obtained in
[18] from energy criterion, xc � Rc=R ’ �3

eq, where �eq is

a value of density fluctuation at the beginning of a matter-
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dominated stage. A similar estimate for DM clumps with
the minimal mass �10�6M� originated from 2� fluctua-
tion peaks gives �eq ’ 0:013 and Rc=R ’ 1:8� 10�5, re-

spectively. In [4], the core radius xc ’ 0:3��2 has been
obtained, where � is a relative height of the fluctuation
density peak in units of dispersion at the time of energy-
matter equality (see also Sec. V). This value is a result of
the influence of tidal forces on the motion of DM particles
in the clump at the stage of formation. This estimate may
be considered as an upper limit for the core radius or as the
break scale in the density profile, e.g., a characteristic scale
in the Navarro-Frenk-White profile. It could be that a real
core radius, where the density ceases to grow, is deter-
mined by the relaxation of small-scale perturbations inside
the forming clump [20]. Another mechanism for core
formation arises in the ‘‘meta-cold dark matter model’’
due to the late decay of cold thermal relics into lighter
nonrelativistic particles with low phase-space density
[21,22].

Nowadays, numerical simulations have a rather low
space resolution in the central region of clumps to deter-
mine the core radius. The only example with some indica-
tion to presence of a core with radius xc ’ 10�2 is
numerical simulation of small-scale clump formation
[19]. The special numerical simulations with a sufficiently
high space resolution to reveal the real core radius are very
requested.

In this work, we consider the relative core radius xc ¼
Rc=R of DM clumps as a free parameter in the range
0:001–0:1. We investigate the dependence of the probabil-
ity of clump survival in the Galaxy on this parameter under
the action of tidal forces from the Galactic disk and stars.
As a preferred value, we consider xc ’ 10�2 in spite of the
numerical simulations [19]. The corresponding annihila-
tion rate of DM particles is proportional to their squared
number density, and thus is very sensitive to the value of
the core radius.

In our earlier works [7,12], we used a simplified crite-
rium for a tidal destruction of the clump. Namely, we
postulated that the clump is destructed if a total tidal
energy gain

Pð�EÞj after several disk crossings (or colli-

sions with stars) becomes of order of initial binding energy
of a clump jEj, i.e.,

X
j

ð�EÞj � jEj; (2)

where the summation goes over the successive disk cross-
ings (or encounters with stars). This criterium is justified in
the cosmological context of the DM clump formation
because both the formation of the density profile of the
clump and its tidal heating proceed during the same time of
nonlinear evolution of density perturbation. For the Galaxy
case, a more detailed consideration is needed to describe a
tidal destruction of DM clumps by stars. An improved

approach includes a gradual mass loss of systems [23–
25], in particular, by small-scale DM clumps [5,26].
In this work, we will describe a gradual mass loss of

small-scale DM clumps assuming that only the outer layers
of clumps are involved and influenced by the tidal strip-
ping. Additionally, we assume that the inner layers of a
clump are not affected by tidal forces. In this approxima-
tion, we calculate a continuous diminishing of the clump
mass and radius during the successive Galactic disk cross-
ings and encounters with the stars. We accept now for
criterium of clump destruction, the diminishing of the
radius of tidally stripped clumps down to the core radius.
An effective time of mass loss for the DM clump remains
nearly the same as in our previous calculations [12].
However, the clump destruction time has now quite differ-
ent physical meaning: it provides now a characteristic time
scale for the diminishing of the clump mass and size
instead of the total clump destruction. This means that
small remnants of clumps may survive in the Galaxy.
Respectively, these remnants would be an additional
source of amplification of the DM annihilation signal in
the Galaxy.

II. TIDAL DESTRUCTION OF CLUMPS BY DISK

The kinetic energy gain of a DM particle with respect to
the center of a clump after one crossing of the Galactic disk
is [27]

�E ¼ 4g2mð�zÞ2m
v2z;c

AðaÞ; (3)

where m is a constituent DM particle mass, �z is a vertical
distance (orthogonal to the disk plane) of a DM particle
with respect to the center of the clump, vz;c is a vertical

velocity of the clump with respect to the disk plane at
the moment of disk crossing, and AðaÞ is the adiabatic
correction factor. A gravitational acceleration near the
disk plane is

gmðrÞ ¼ 2�G�sðrÞ; (4)

where we use an exponential model for a surface density
of disk

�sðrÞ ¼ Md

2�r20
e�r=r0 (5)

with Md ¼ 8� 1010M�, r0 ¼ 4:5 kpc.
The factor AðaÞ in (3) describes the adiabatic protection

from slow tidal effects [28]. This adiabatic correction,
further on referred to as the Weinberg correction, is defined
as an additional factor AðaÞ to the values of energy gain in
the momentum approximation. This factor satisfies the
following asymptotic conditions: AðaÞ ¼ 1 for a� 1
and AðaÞ � 1 for a� 1. In [23], the following fitting
formula was proposed:

AðaÞ ¼ ð1þ a2Þ�3=2: (6)
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Here the adiabatic parameter a ¼ !�d, where ! is an
orbital frequency of the DM particle in the clump, �d ’
Hd=vz;c is an effective duration of gravitational tidal shock
produced by the disk with a half-thickness Hd. For tidal
interactions of clumps with stars in the bulge and the halo
the duration of the gravitational shock can be estimated as
�s � l=vrel, where l is an impact parameter and vrel is a
relative velocity of a clump with respect to a star.

As a representative example, we consider the isothermal
internal density profile of a DM clump

�intðrÞ ¼ 1

4�

v2rot
Gr2

(7)

with a cutoff at the virial radius R: �ðrÞ ¼ 0 at r > R. A
corresponding mass profile of a clump isMðrÞ ¼ Miðr=RÞ,
where Mi is an initial mass of a clump at the epoch of the
Galaxy formation. With this mass distribution, a circular

velocity inside a clump is independent of the radius, vrot ¼
ðGMðrÞ=rÞ1=2 ¼ ðGMi=RÞ1=2. A gravitational potential
corresponding to the density profile (7) is �ðrÞ ¼
v2rot½logðr=RÞ � 1�. Let us define a dimensionless energy
of the DM particle " ¼ E=ðmv2rotÞ and gravitational poten-
tial  ðrÞ ¼ �ðrÞ=v2rot ¼ lnðr=RÞ � 1. An internal density
profile �intðrÞ and the distribution function of DM particles
in the clump fclð"Þ are related by the integral relation [29]

�intðrÞ ¼ 25=2�
Z 0

 ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�  ðrÞ

q
fclð"Þd": (8)

The corresponding isothermal distribution function is

fclð"Þ ’ v2rot

4�5=2e2GR2
e�2": (9)

Note that this distribution function provides only an ap-
proximate representation of (7), far from the cutoff radius
R. Nevertheless, this approximation is enough for our
estimates of tidal destruction of the DM clumps.

By using the hypothesis of a tidal stripping of outer
layers of a DM clump, we see that a tidal energy gain �"
causes the stripping of particles with energies in the range
��" < " < 0. A corresponding variation of density at
radius r is

��ðrÞ ¼ 25=2�
Z 0

��"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�  ðrÞ

q
fclð"Þd": (10)

In this equation, the tidal energy gain (3) by different DM
particles is averaged over angles, so as hð�zÞ2i ¼ r2=3. A
resulting total mass loss by a DM clump during one cross-
ing of the Galactic disk is

�M ¼ �4�
Z R

0
r2��ðrÞdr: (11)

Let us specify the dimensionless quantities

Qd ¼ g2m
2�v2z;cG ��i

; Sd ¼ 4�

3
G ��i�

2
d; (12)

where ��i ¼ 3Mi=ð4�R3Þ is an initial mean density of a
clump. For most parts of the clumpsQd � 1with a typical
value Qd � 0:03. In the limiting case Qd � 1 and in the
absence of the adiabatic correction, Sd ¼ 0, the integrals
(10) can be calculated analytically. In a general case, the
fitting formula for the mass loss of a clump during one
passage through the Galactic disk is

�
�M

M

�
d
’ �0:13Qd expð�1:58S1=2d Þ: (13)

Now, we calculate the tidal mass loss by clumps using a
realistic distribution of their orbits in the halo. The method
of calculation is similar to the one used in [12], but instead
of the rough energetic criterium for a tidal clump destruc-
tion (2) we will assume now a gradual decreasing of the
clump mass and size.
Let us choose some particular clumps moving in the

spherical halo with an orbital ‘‘inclination’’ angle 	 be-
tween the normal vectors of the disk plane and orbit plane.
The orbit angular velocity at a distance r from the Galactic
center is d�=dt ¼ J=ðmr2Þ, where J is an orbital angular
momentum of a clump. A vertical velocity of a clump
crossing the disk is

vz;c ¼ J

mrs
sin	; (14)

where rs is a radial distance of a crossing point from the
Galaxy center. There are two crossing points (with differ-
ent values of rs) during an orbital period.
The standard Navarro-Frenk-White profile of the DM

Galactic halo is

�HðrÞ ¼ �0

ðr=LÞð1þ r=LÞ2 ; (15)

where L ¼ 45 kpc, �0 ¼ 5� 106M� kpc�3. It is useful to
introduce the dimensionless variables

x ¼ r

L
; ~�HðxÞ ¼ �HðrÞ

�0

; y ¼ J2

8�G�0L
4M2

;

(16)

" ¼ Eorb=M��0

4�G�0L
2

;  ¼ ���0

4�G�0L
2
; (17)

where�0 ¼ �4�G�0L
2, Eorb is a total orbital energy of a

clump. With these variables, the density profile of the halo
(15) is written as

~� HðxÞ ¼ 1

xð1þ xÞ2 : (18)

A gravitational potential  ðxÞ, corresponding to density
profile (18) is
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 ðxÞ ¼ 1� logð1þ xÞ
x

: (19)

An equation for orbital turning points, _r2 ¼ 0, for DM
clumps in the potential (19) is

1� logð1þ xÞ
x

þ y

x2
¼ ": (20)

From (20), one can find numerically the minimum xmin and
maximum xmax radial distance of a clump from the
Galactic center as a function of orbital energy " and the
square of angular momentum y. Denoting p ¼ cos
,
where 
 is an angle between the radius-vector ~r and the
orbital velocity ~v, we have y ¼ ð1� p2Þx2½"�  ðxÞ�. As
we assumed above, the unit vectors ~v=v are distributed
isotropically at each point x, and, therefore, p has a uni-
form distribution in the interval ½�1; 1�.

The relation between the density profile ~�HðxÞ and the
distribution function is given by the same Eq. (8) with an
obvious substitution fcl ) Fð"Þ, where the distribution
function Fð"Þ for a halo profile (18) can be fitted as [30]

Fð"Þ ¼ F1ð1� "Þ3=2"�5=2

�
� lnð1� "Þ

"

�
q
eP: (21)

Here F1 ¼ 9:1968� 10�2, q ¼ �2:7419, P ¼ P
ipi �

ð1� "Þi, ðp1; p2; p3; p4Þ ¼ ð0:3620;�0:5639;�0:0859;
�0:4912Þ. An interval of time for motion from xmin to
xmax and back is

Tcðx; "; pÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�G�0

p
Z xmax

xmin

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�  ðsÞ � y=s2

p : (22)

An angle of orbital precession during the time Tc=2 is

~� ¼ y1=2
Z xmax

xmin

ds

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�  ðsÞ � y=s2

p � �< 0: (23)

Therefore, an orbital period is longer than Tc and is gi-
ven by

Tt ¼ Tcð1þ ~�=�Þ�1: (24)

Choosing a time interval �T much longer than a clump
orbital period Tt, but much shorter than the age of the
Galaxy t0, i.e., Tt � �T � t0, we define an average rate
of mass loss by a selected clump under influence of tidal
shocks in successive disk crossings

1

M

�
dM

dt

�
d
’ 1

�T

X�
�M

M

�
d
; (25)

where ð�M=MÞd is given by (13) and the summation goes
over all successive crossing points (odd and even) of a
clump orbit with the Galactic disk during the time interval
�T. According to (4) and (14) the gm and vz;c both depend
on the radius x ¼ r=L. One simplification in the calcula-
tion of (25) follows from the fact that a velocity of orbit
precession is constant. For this reason, the points of suc-

cessive odd crossings are separated by the same angles ~�
from (23). The same is also true for successive even cross-
ings. Using this simplification, we transform the summa-
tion in (25) to integration

1

�T

X�
�M

M

�
d
’ 2

Ttj ~�j
Z xmax

xmin

�
�M

M

�
d

d�

dx
dx;

where

d�

dx
¼ y1=2

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�  ðxÞ � y=x2

p (26)

is an equation for the clump orbit in the halo. The method
described will be used in Sec. IV for the final calculations.

III. TIDAL DESTRUCTION OF CLUMPS BY STARS

Now, we calculate the diminishing of a clump mass due
to a tidal heating by stars in the Galaxy by using the same
hypothesis of the preferable stripping of the outer clump
layers. During a single close encounter of a DM clump
with a star, the energy gain of a constituent DM particle in
the clump with respect to the clump center is [7]

�E ¼ 2G2m2
sm�z

2

v2rell
4

; (27)

where m	 is a star mass, l is an impact parameter, vrel is a
relative star velocity with respect to a clump,�z ¼ r cos ,
r is a radial distance of a DM particle from the clump
center, and  is an angle between the directions from the
clump center to the DM particle and to the point of the
closest approach of a star. Using the same method as in
Sec. II, we calculate a relative mass loss by the clump
ð�M=MÞs during a single encounter with a star and obtain
the same fitting formula as (13) but with substituting the
dimensionless parameters, Qd ) Qs and Sd ) Ss, where

Qs ¼ Gm2	
2�v2rell

4 ��i
; Ss ¼ 4�

3
G ��i�

2
s ; (28)

where �s ’ l=vrel.
A DM clump acquires the maximum energy gain during

a single encounter with a star when the impact parameter is
l� R. Using the relation

dt ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�G�0

p dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�  ðxÞ � y=x2

p ; (29)

and integrating over all impact parameters l > R, we cal-
culate an averaged rate of mass loss by a clump during
successive encounters with stars
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1

M

�
dM

dt

�
s
’ 1

2Tt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�G�0

p

�
Z 1

R
2�ldl

Z xmax

xmin

dsn	ðsÞvrelffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"�  ðsÞ � y=s2

p
�
�
�M

M

�
s
; (30)

where n	ðrÞ is a radial number density distribution of stars
in the bulge and halo. A DM clump moves through the
medium with a varying value of n	 along the clump orbit.
In contrast to the case of the disk crossing, the precession
of the clump orbit during an orbital period does not in-
fluence the mass loss due to encounters with stars.
Additionally, the mass loss due to encounters with stars
is independent of the inclination of clump orbits in the case
of a spherically symmetric distribution of stars in the bulge
and halo.

Using the results of [31], we approximate the radial
number density distribution of stars in the bulge in the
radial range r ¼ 1–3 kpc as

nb;	ðrÞ ¼ ð�b=m	Þ exp½�ðr=rbÞ1:6�; (31)

where �b ¼ 8M�=pc3 and rb ¼ 1 kpc. A corresponding
number density distribution of the halo stars at r > 3 kpc
outside of the Galactic plane can be approximated as

nh;	ðrÞ ¼ ð�h=m	Þðr�=rÞ3; (32)

where m	 ¼ 0:4M� and r� ¼ 8:5 kpc. According to [32],
in the region between r ¼ 1 and 40 kpc, a total mass of
stars is 4� 108M� with a star density profile / r�3. These
data correspond to �h ¼ 1:4� 10�5M�=pc3 in (32). We
neglect in our calculations the oblateness of the stellar
halo [32].

IV. SURVIVING FRACTION OF CLUMPS

From Eq. (3) it is seen that the tidal forces influence
mainly the outer part of the clump (where �z is rather
large). Further, we will use our basic assumption that only
outer layers of a clump undergo the tidal stripping, while
the inner parts of a clump are unaffected by tidal forces.
Thus, we assume that a clump mass M ¼ MðtÞ and radius
R ¼ RðtÞ are both diminishing in time due to the tidal
stripping of outer layers, but its internal density profile
remains the same as given by Eq. (7), e.g., for the isother-
mal density profile MðtÞ / RðtÞ and ��ðtÞ / MðtÞ�2.
Combining together the rates of mass loss (25) and (30)
due to the tidal stripping of a clump by the disk and stars,
respectively, we obtain the evolution equation for a clump
mass

dM

dt
¼

�
dM

dt

�
d
þ

�
dM

dt

�
s
: (33)

In the following, we solve this equation numerically start-
ing from the time of the Galaxy formation at t0 � tG up to

the present moment t0. In numerical calculations, it is
convenient to use the dimensionless variables: t=t0 for
time and M=Mi for a clump mass, where Mi is an initial
clump mass. The adiabatic correction provides generally
only a small effect. In the absence of adiabatic correction
or, equivalently, at Sd ¼ Ss ¼ 0 the evolution Eq. (33) has
a simple form

d�

dt
¼ ��

ts
��3

td
; (34)

where� ¼ MðtÞ=Mi and parameters td and ts are indepen-
dent of �. The solution of this equation

�2ðt0Þ ¼ 2td
ð2td þ tsÞ expð2t0=tsÞ � ts

(35)

represents a good approximation to numerical solution of
(33) with the adiabatic correction taken into account.
The most important astrophysical manifestation of DM

clumps is a possible annihilation of constituent DM parti-
cles. The crucial point is a dominance of the central core of
a clump in an annihilation signal if clumps have a steep
enough density profile. Namely, annihilation of DM parti-
cles in a clump core will prevail in a total annihilation rate
in a single clump with a power-law density profile (1) if
�> 3=2 and xc ¼ Rc=R� 1. More specifically, the quan-
tity _N / R

r
r0
4�r02dr0�2

intðr0Þ practically does not depend

on r, if r� r0. As a result, the annihilation luminosity of a
DM clump with approximately an isothermal density pro-
file (� ’ 2) will be nearly constant under influence of tidal
stripping until a clump radius diminishes to its core radius.
In other words, in the nowadays Galaxy the remnants of
tidally stripped clumps with xc < �ðt0Þ � 1, where
�ðtÞ ¼ MðtÞ=Mi and t0 ’ 1010 yrs is the Galaxy age,
obeys the evolution Eq. (33) and have the same annihila-
tion luminosity as their progenitors with � ¼ 1.
By using the evolution Eq. (33), we now calculate the

probability P of the survival of the clump remnant during
the lifetime of the Galaxy. Let us choose some arbitrary
points in the halo with a radius-vector ~r and an angle �
with a polar axis of the Galactic disk. Only the clump orbits
with an inclination angle �=2� �< 	< �=2 pass
through this point. A survival probability for clumps can
be written now in the following form:

Pðx; �Þ ¼ 4�
ffiffiffi
2

p
~�ðxÞ sin�

Z 1

0
dp

Z sin�

0
d cos	

Z 1

 ðxÞ
d"

� ½"�  ðxÞ�1=2Fð"Þ�½�ðt0Þ � xc�: (36)

In this equation, ~�ðxÞ is a density profile of the halo from
(18), p ¼ cos
, 
 is an angle between the radius-vector ~r
and the orbital velocity of clump, � is the Heviside func-
tion,  ðxÞ is the halo gravitational potential from (18), Fð"Þ
is a distribution function of clumps in the halo from (21),
�ðt0Þ depends on all variables of the integration, and xc ¼
Rc=R is an initial value of the clump core. The function
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�ðt0Þ is calculated from the numerical solution of evolu-
tion Eq. (33). If �ðt0Þ> xc, the clump remnant is survived
through the tidal destruction by both the disk and stars. The
annihilation rate in this remnant would be the same as in
the initial clump. On the contrary, in the opposite case,
when �ðtGÞ< xc, the clump is totally destructed because
(i) the core is not a dynamically separated system and
composed of particles with extended orbits, and because
(ii) a nearly homogeneous core is destructed easier than a
similar object with the same mass but with a near isother-
mal density profile.

We consider the small-scale DM clumps in the initial
mass interval Mi ¼ ½10�6M�; 1M�� originated from the
2� (i.e., � ¼ 2) peaks in the Harrison-Zeldovich perturba-
tion spectrum. A reason is as follows. The DM clumps
originated from initial density perturbations with � < 1
were almost completely destructed by tidal interactions
during the early stage of hierarchical clustering as it can
be seen from the distribution function of clumps (44) (see
below). On the contrary, the most dense DM clumps with
� > 3 are mostly survived in the stage of hierarchical
clustering, but their number according to (44) exponen-
tially falls with � and is small. For this reason, we will use
the following approximation: the DM clumps were origi-
nated on average from � ’ 2 peaks, and for any given mass
M we do not consider the distribution of clumps over their
densities. In this approximation, the initial radius of the
clump Ri depends only on the one parameter—the initial
clump density, which also depends only on the initial
clump mass Mi.

The crucial result of the numerical calculation of a
survival probability (36) for clumps with xc � 0:05 is
that Pðx; �Þ � 1 everywhere. Even inside the bulge there
are clumps which are flying through the bulge from exter-
nal regions. This means that clump remnants are mostly
survived through the tidal destruction in the Galaxy. A
noticeable diminishing Pðx; �Þ< 1 near the center of the
Galaxy becomes apparent for clumps with xc > 0:05. It is
understandable because with xc ! 1, we return to the
previous criterium of tidal destruction of clumps (2) and
to a corresponding results for survival probability [7,12].
The survival probability Pðr; �Þ numerically calculated
from (36) for the cases xc � 0:05 and 0.1 is shown in the
Figs. 1 and 2. The dependence on � (an angle between a
radius-vector ~r and a polar axis of the Galactic disk) is very
weak as it was shown in [12]. For this reason, we present
the results only for an intermediate value � ¼ �=4. The
density of clumps is normalized to the density 7:3�
10�23 g cm�3 valid for clumps with mass M ¼ 10�6M�
originated from 2� density peaks in the case of the power-
law index of primordial spectrum of perturbations np ¼ 1.

It is worth to note that a tidal radius of a clump in the
bulge is [33]

r3t ¼ GMðrtÞ
!2
p � d2�=dl2

; (37)

where !p ’ ½GMbðlÞ=l3�1=2 is an angular velocity at the

pericenter (we consider here a circular orbit for simplicity),
MbðlÞ is a mass profile of the bulge, and �ðlÞ is a gravita-
tional potential of the bulge. For the considered small-scale
clumps rt 
 0:2Ri, and, therefore, the tidal radius is not a
crucial factor for destruction of clumps.

V. COSMOLOGICAL DISTRIBUTION
FUNCTION OF CLUMPS

In this section, we provide calculations of a mass func-
tion for the small-scale clumps in the Galactic halo by a
more transparent method than in our previous works [4,7].
The first gravitationally bound objects in the Universe

are the DM clumps of minimum mass Mmin. A numerical
value of Mmin depends strongly on the nature of the DM
particle. Even in the case of a particular DM particle, e.g.,
neutralino, the calculated value ofMmin can differ by many
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FIG. 1 (color online). The survival probability Pðr; �Þ plotted
as a function of distance from the Galactic center r and a mean
internal clump density � in the case xc ¼ 0:1. It gives the
normalized fraction of DM clumps in the halo P calculated from
(36), which survives the tidal destruction by the stellar disk and
the halo stars.
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FIG. 2 (color online). The same as Fig. 1, but for the case
xc ¼ 0:05.
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orders of magnitude for different sets of parameters in the
mSUGRA model, see the Appendix. The clumps of larger
scales are formed later. The larger scale clumps host the
smaller ones and are hosted themselves by the next larger
clumps. Major parts of small-scale clumps are destroyed
by the tidal gravitational fields of their host clumps. At
small-mass scales, the hierarchical clustering is a fast and
complicated nonlinear process. The formation of new
clumps and their capturing by the larger ones are nearly
simultaneous processes because at small scales an effective
index of the density perturbation power spectrum is very
close to a critical value, n! �3. The DM clumps are not
totally virialized when they are captured by hosts. The
adiabatic invariants cannot prevent the survival of cores
at this stage because there is not enough time for the
formation of the singular density profiles in clumps (an
internal dynamical time of a clump is of the same order as
its capture time by a host). We use a simplified model to
take into account the most important features of hierarch-
ical clustering.

In the model of spherical collapse (see for example
[34]), a formation time for a clump with an internal density

� is t ¼ ð
�eq=�Þ1=2teq, where 
 ¼ 18�2, �eq ¼ �0ð1þ
zeqÞ3 is a cosmological density at the time of matter-

radiation equality teq, 1þ zeq ¼ 2:35� 104�mh
2, and

�0 ¼ 1:9� 10�29�mh
2 g cm�3. The index ‘‘eq’’ refers

to quantities at the time of matter-radiation equality teq.

The DM clumps of mass M can be formed from density
fluctuations of a different peak height � ¼ �eq=�eqðMÞ,
where �eqðMÞ is a fluctuation dispersion on a mass scaleM

at the time teq. A mean internal density of the clump � is

fixed at the time of the clump formation and according to

[34] is � ¼ 
�eq½��eqðMÞ=�c�3, where �c ¼ 3ð12�Þ2=3=
20 ’ 1:686.

A tidal destruction of clumps is a complicated process
and depends on many factors: the formation history of
clumps, host density profile, the existence of another sub-
structure inside the host, orbital parameters of individual
clumps in the hosts, etc. Only in numerical simulations, all
these factors can be taken into account properly. The first
such simulation in the small-scale region was produced in
[19]. We use a simplified analytical approach by parame-
trizing the energy gains in tidal interactions by the number
of tidal shocks per dynamical time in the hosts. Using the
model [35] for tidal heating, we determine the survival
time T, i.e., time of tidal destruction, for a chosen small-
scale clump due to the tidal heating inside of a host clump

with larger mass. During the dynamical time tdyn ’
0:5ðG�hÞ�1=2, where �h is a mean internal density of the
host, the chosen small-scale clump may belong to several
successively destructed hosts. A clump trajectory in the
host experiences successive turns accompanied by the
‘‘tidal shocks’’ [35]. Similar shocks come from interac-
tions with other substructures, and in general due to any

varying gravitational field. For the considered small-scale
clump with a mass M and radius R, the corresponding
internal energy increase after a single tidal shock is

�E ’ 4�

3
	1G�hMR

2; (38)

where a numerical factor 	1 � 1. Let us denote by 	2 the
number of tidal shocks per dynamical time tdyn. The cor-

responding rate of internal energy growth for a clump is
_E ¼ 	2�E=tdyn. A clump is destroyed in the host if its

internal energy increase due to tidal shocks exceeds a total
energy jEj ’ GM2=2R. As a result, for a typical time T ¼
Tð�; �hÞ of the tidal destruction of a small-scale clump
with density � inside a more massive host with a density �h
we obtain

T�1ð�; �hÞ ¼
_E

jEj ’ 4	1	2G
1=2�3=2

h ��1: (39)

It turns out that a resulting mass function of small-scale
clumps (see Sec. VI ) depends rather weakly on the value
of the product 	1	2.
During its lifetime, a small-scale clump can stay in many

host clumps of larger mass. After tidal disruption of the
first lightest host, a small-scale clump becomes a constitu-
ent part of a larger one, etc. The process of hierarchical
transition of a small-scale clump from one host to another
occurs almost continuously in time up to the final host
formation, where the tidal interaction becomes inefficient.
The probability of clump survival, determined as a fraction
of the clumps with mass M surviving the tidal destruction
in hierarchical clustering, is given by the exponential func-
tion e�J with

J ’ X
h

�th
Tð�; �hÞ : (40)

Here, �th is a difference of formation times th for two
successive hosts, and summation goes over all clumps of
intermediate mass scales, which successively host the con-
sidered small-scale clump of a mass M. Changing the
summation by integration in (40) we obtain

Jð�; �fÞ ¼
Z tf

t1

dth
Tð�; �hÞ ’ 	

�1 � �f
�

’ 	�1

�
’ 	 t

2

t21
;

(41)

where

	 ¼ 2	1	2

1=2G1=2�1=2

eq teq ’ 14ð	1	2=3Þ; (42)

and t, t1, tf, �, �1, and �f are, respectively, the formation

times and internal densities of the considered clump and of
its first and final hosts. One may see from Eq. (41) that the
first host provides a major contribution to the tidal destruc-
tion of the considered small-scale clump, especially if the
first host density �1 is close to �, and consequently e

�J �
1. Therefore, Eq. (41) gives a qualitatively correct descrip-
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tion of the tidal destruction, however in the more detailed
approach one should take into account that the dependence
of 	 on another parameter is possible. As a reasonable
estimate, we will use the ansatz given by Eq. (41) for
further calculation of mass function.

Now we need to track the number of clumps M (origi-
nated from the density peak �) which enter some larger
host during time intervals �t1 around each t1 beginning
from the time t of the clump formation. A mass function of
small-scale clumps (i.e., a differential mass fraction of DM
in the form of clumps survived in hierarchical clustering)
can be expressed as

�
dM

M
d� ¼ dMd�

e��2=2ffiffiffiffiffiffiffi
2�

p
Z t0

tð��eqÞ
dt1

�
��������
@2FðM; t1Þ
@M@t1

��������e�Jðt;t1Þ: (43)

In this expression, t0 is the Universe age and FðM; tÞ is a
mass fraction of unconfined clumps (i.e., clumps not be-
longing to more massive hosts) with a mass smaller thanM
at time t. According to [34], the mass fraction of uncon-

fined clumps is FðM; tÞ ¼ erfð�c=½
ffiffiffi
2

p
�eqðMÞDðtÞ�Þ, where

erfðxÞ is the error function and DðtÞ is the growth factor
normalized by DðteqÞ ¼ 1. An upper limit of integration t0
in Eq. (43) is not crucial and may be extrapolated to infinity
because a main contribution to the tidal destruction of
clumps is provided by the early formed hosts at the begin-
ning of the hierarchical clustering.

Two processes are responsible for the time evolution of
the fraction @2F=ð@M@tÞ for unconfined clumps in the
mass interval dM: (i) the formation of new clumps and
(ii) the capture of smaller clumps into the larger ones. Both
of these processes are equally efficient at the time when
@2F=ð@M@tÞ ¼ 0. To take into account the confined
clumps (i.e., clumps in the hosts) we need only the second
process (ii) for the fraction @FðM; tÞ=@M. Nevertheless, in
Eq. (43), used the fraction @FðM; tÞ=@M, which depends
on both processes. This is not accurate at a typical for-
mation time of a clump with a mass M, when clump
density is comparable with the density of hosts.
Fortunately, for this time the exponent in Eq. (43) is very
small, e�J � 1, as it can be seen from (41) and (42).
Respectively, an uncertain contribution from process (i)
to the integral (43) is also very small. Meanwhile, only
process (ii) dominates in the integration region where the
exponent e�J is not small. For this reason, Eq. (43) pro-
vides a suitable approximation for the mass fraction
of clumps survived in the hierarchical clustering. The
characteristic epoch t	 of the clumps M formation can
be estimated from the equation �eqðMÞDðt	Þ ’ �c. If

one considers the times t� t	, then the exponents
expf��2

c=½2�2
eqD

2ðtÞ�g can be putted approximately to

unity for simplification of integration in (43).

Finally, we transform the distribution function (43) to
the following form:

�
dM

M
d� ’ �d�ffiffiffiffiffiffiffi

2�
p e��2=2f1ð	Þ

d log�eqðMÞ
dM

dM; (44)

where

f1ð	Þ ¼ 2½�ð1=3Þ � �ð1=3; 	Þ�
3

ffiffiffiffiffiffiffi
2�

p
	1=3

; (45)

�ð1=3Þ and �ð1=3; 	Þ are the Euler gamma function and
incomplete gamma function, respectively. The function
(45) is shown in Fig. 3. It is seen in this figure that f1ð	Þ
varies rather slowly in the interesting interval of 14< 	<
40, and one may use f1ð	Þ ’ 0:2–0:3.
Physically, the first factor � in (44) corresponds to a

more effective survival of high-density clumps (i.e., with
large values of �) with respect to the low-density ones
(with small values of �). Integrating Eq. (44) over �, we
obtain

�int
dM

M
’ 0:02ðnþ 3Þ dM

M
: (46)

An effective power-law index n in Eq. (46) is determined
as n ¼ �3ð1þ 2@ log�eqðMÞ=@ logMÞ and depends very

weakly onM. Equation (46) implies that for suitable values
of n, only a small fraction of clumps, about 0.1%–0.5%,
survive the stage of hierarchical tidal destruction in each
logarithmic mass interval � logM� 1. It must be stressed
that a physical meaning of the survived clump distribution
function �dM=M is different from the similar one for the
unconfined clumps given by the Press-Schechter mass
function @F=@M.
The simple M�1 shape of the mass function (46) is in

very good agreement with the corresponding numerical
simulations [19], but our normalization factor is a few
times smaller. One also can see a reasonable agreement
between the extrapolation of our calculations and the
corresponding numerical simulations of the large-scale
clumps with M 
 106M� (for a comparison see [7]). The
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FIG. 3. The function f1ð	Þ from (45).

BEREZINSKY, DOKUCHAEV, AND EROSHENKO PHYSICAL REVIEW D 77, 083519 (2008)

083519-8



obtained mass function (46) is further transformed in the
process of tidal destructions of clumps by stars in the
Galaxy (see the previous sections).

VI. MODIFIED DISTRIBUTION
FUNCTION OF CLUMPS

In this section, we calculate the modified mass function
for the small-scale clumps in the Galaxy taking into ac-
count clump mass loss instead of the clump destruction
considered in [4,12].

According to theoretical model [4] and numerical simu-
lations [19], a differential number density of small-scale
clumps in the comoving frame in the Universe is
nðMÞdM / dM=M2. This distribution is shown in Fig. 4
by the solid line. The damping of small-scale perturba-
tions with M<Mmin provides an additional factor

exp½�ðM=MminÞ2=3� responsible for the fading of distribu-
tion at small M. The result of the numerical simulations
[19] can be expressed in the form of a differential mass
fraction of the DM clumps in the Galactic halo fðMÞdM ’

ðdM=MÞ, where 
 ’ 8:3� 10�3. The analytical estima-
tion (46) gives approximately 
 ’ 4� 10�3 for the mass
interval 10�6M� <M< 1M�. The discrepancy by the
factor ’ 2 may be attributed to the approximate nature of
our approach as well as to the well-known additional factor
of 2 in the original Press-Schechter derivation of the mass
function. In the later case, one must simply multiply
Eq. (43) by a factor of 2. To clarify this discrepancy, the
more sophisticated calculations are necessary.

As it was described earlier, we consider that DM clumps
originated from 2� density peaks. Therefore, in our ap-
proximation the density of clumps and their distribution
depends only on one parameter M. In general, the distri-
bution of DM clumps depends on the pair of parameters, e.
g., mass and radius, mass and velocity dispersion, or mass
and peak-high � as in the distribution (44). Meanwhile, the
authors of numerical simulations do not present a general

distribution of clumps over two parameters. The general
distribution of clumps can be in principle extracted from
simulations and is very requested for further investigations
of DM clumpiness.
By using the formalism of Sec. V, we derive the mass

distribution of the clump remnants in dependence of the
initial masses Mi of clumps. To do this, we calculate
numerically the value of the mass � of the clump remnant
in dependence of the initial massMi for separate elements
�p�	�" in the parameter space in (36). Then for fixed
intervals �� of values of �, we provide the summation of
the weights of distribution function, which is given by
Eq. (36) without symbols of integration and � function.
By using the derived � distribution, we transform the
initial (cosmological) mass function of clumps to the final
(nowadays) mass function in the halo at the present mo-
ment. This final mass function is shown in Fig. 4 for two
distances from the Galactic center. We supposed in nu-
merical calculations that a core radius is very small and all
masses of remnants are admissible. With a finite core size,
the final mass function has a cutoff near the core’s mass of
the clump with a minimal mass Mmin. The adiabatic cor-
rection leads to the accumulation of remnants of some
mass corresponding to the violation of momentum ap-
proximation. One can see from Fig. 4 that clump remnants
exist below the Mmin. Deep in the bulge (very near to the
Galactic center) the clump remnants are more numerous
because of intensive destructions of clumps in the dense
stellar environment in comparison with the rarefied one in
the halo. The main contribution to the low-mass tail of the
mass function of remnants comes from the clumps with the
near-disk orbits where the destructions are more efficient.
The another important point is an efficient destruction of

clumps with orbits confined inside the stellar bulge.
Nevertheless, a number of density of clumps inside the
bulge is nonzero because a major part of the clumps have
orbits extending far beyond the bulge. These ‘‘transit’’
clumps spend only a small part of their orbital time tra-
versing the bulge and survive the tidal destruction.

VII. AMPLIFICATION OF THE
ANNIHILATION SIGNAL

A local annihilation rate is proportional to the square of
the DM particle number density. A number density of DM
particles in a clump is much large than a corresponding
number density of the diffuse (not clumped) component of
DM. For this reason, an annihilation signal from even a
small fraction of DM clumps can dominate over an anni-
hilation signal from the diffuse component of DM in the
halo. In this section, we calculate the amplification (or
‘‘boosting’’) of an annihilation signal due to the presence
of the survived DM clump remnants in the Galactic halo.
We consider here the Harrison-Zeldovich initial perturba-
tion spectrum with power index np ¼ 1 as a representative

example. The value of np is not exactly fixed by the current
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FIG. 4. Numerically calculated modified mass function of
clump remnants for galactocentric distances 3 and 8.5 kpc.
The solid curve shows the initial mass function.
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observations of cosmic microwave background (CMB)
anisotropy. In the case of np < 1, the DM clumps are

less dense, and a corresponding amplification of the anni-
hilation signal would be rather small [4].

The gamma-ray flux from the annihilation of the diffuse
distribution (15) of DM in the halo is proportional to

IH ¼
Z rmaxð�Þ

0
�2
Hð�Þdx; (47)

where the integration is over r along the line of sight,

�ð�; rÞ ¼ ðr2 þ r2� � 2rr� cos�Þ1=2 is the distance to the

Galactic center, rmaxð�Þ ¼ ðR2
H � r2�sin2�Þ1=2 þ r� cos� is

a distance to the external halo border, � is an angle between
the line of observation and the direction to the Galactic
center, RH is a virial radius of the Galactic halo, and r� ¼
8:5 kpc is the distance between the sun and Galactic center.
The corresponding signal from annihilations of DM in
clumps is proportional to the quantity [4]

Icl ¼ S
Z rmaxð�Þ

0
dx

Z
Mmin

fðMÞdM��Hð�ÞPð�; �Þ; (48)

where �ðMÞ is the mean density of the clump. The function
S depends on the clump density profile and core radius of
the clump [4], and we use S ’ 14:5 as a representative
example. The observed amplification of the annihilation
signal is defined as �ð�Þ ¼ ðIcl þ IHÞ=IH and is shown in
Fig. 6 for the case xc ¼ 0:1. It tends to unity at � ! 0
because of the divergent form of the halo profile (15). The
annihilation of diffuse DM prevails over signal from
clumps at the Galactic center. The �ð�Þ very slightly

depends on xc, and corresponding graphs for xc < 0:1 are
almost indistinguishable from the one in Fig. 5. This is
because the observed signal is obtained by integration
along the line of sight and the effect of the clump’s
destruction at the Galactic center is masked by the signal
from another region of the halo.
This amplification of an annihilation signal is often

called a ‘‘boost factor.’’ A boost factor of the order of 10
is required for interpretation of the observed EGRET
gamma-ray excess as a possible signature of DM neutra-
lino annihilation [36].

VIII. CONCLUSION

In [5] it was found that almost all small-scale clumps in
the Galaxy are destructed by tidal interactions with stars
and transformed into ‘‘ministreams’’ of DM. The proper-
ties of these ministreams may be important for the direct
detection of DM particles because DM particles in streams
arrive anisotropically from several discrete directions. In
this work, we demonstrate that the cores of clumps (or
clump remnants) survive in general during the tidal de-
struction by stars in the Galaxy. Although their outer shells
are stripped and produce the ministreams of DM, the
central cores are protected by the adiabatic invariant and
survived as the sources of annihilation signals. This con-
clusion depends crucially on the unknown sizes of the
cores: the smaller cores are more protected because DM
particles there have higher orbital frequencies and there-
fore the larger the adiabatic parameter.
Despite the small survival probability of clumps during

early stage of hierarchical clustering, they provide the
major contribution to the annihilation signal (in compari-
son with the unclumpy DM). The amplification (boost
factor) can reach 102 or even 103 depending on the initial
perturbation spectrum and minimum mass of clumps. This
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FIG. 5. The annihilation signal (48) (upper curve) as a function
of the angle � between the line of observation and the direction
to the Galactic center. For comparison the annihilation signal is
also shown (by the bottom curve) from the Galactic halo without
DM clumps (47). The values of both integrals (47) and (48) are
multiplied by a factor of 1048.
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boost factor must be included in calculations of the anni-
hilation signals. Some promising interpretations of obser-
vations and calculations of annihilation signal from the
Galactic halo require this boost factor (see, e.g., [36]).
The discussed dense remnants survive the tidal destruction
and provide the enhancement of DM annihilation in the
Galaxy. These remnants of DM clumps form the low-mass
tail in the standard mass distribution of small-scale clumps
extended much below Mmin of the standard distribution. It
does not mean of course the increasing of annihilation
signal in comparison with the case without clump destruc-
tion. It only indicates that galactic clump destruction does
not diminishe strongly the annihilation signal.

The principle simplifying assumption of this work is that
only the outer layers of clumps are subjected by the tidal
stripping. The main difficulties in considering the full
problem with the mass loss from inner layers are in the
complicated dynamical reconstruction of clumps just after
tidal shocks. We believe that our approach provides a
rather good result by the two reasons. First, the influence
of tidal forces depends on the system size, and, therefore,
the outer layers are greatly subjected to tidal forces.
Second, the adiabatic protection is more efficient in the
inner part of the clump because of higher orbital frequen-
cies here. In reality, we expect some expansion of the
clump and diminishing of its central density due to energy
deposits from tidal forces. It would be a very interesting
task to clarify this process in future works.

The numerical estimate of the boost factor for DM
particle annihilation inside clumps is very model depen-
dent. It depends on the nature of DM particles and on their
interaction with ambient plasma. The important physical

parameters, which affect the annihilation rate in clumps,
are decoupling temperature Td and minimal mass Mmin in
the clump mass distribution. The boost factor increases
strongly for small Mmin. The minimal mass in standard
calculations is determined by the escape of DM particles
from a growing fluctuation due to, e.g., diffusion, free-
streaming or Silk effect. Uncertainties in the calculated
values of Td and Mmin are discussed in the Appendix. For
the lightest neutralino as a DM particle, assuming it to be
the pure bino B, one can see from Table III a huge differ-
ence in Mmin caused by the variation of supersymmetry
(SUSY) parameters m� and ~m. For these parameters, we

use cosmologically allowed values from the benchmark
scenarios of the work [37]. Moreover, inclusion of other
neutralino compositions, e.g., mixed bino-Higgsino, the
other allowed benchmark scenarios with coannihilation
and focus-point regions, and some other modifications,
may very considerably increase the allowed region of
Mmin values up to ð3� 10�12–7� 10�4ÞM� [38]. In-
clusion of the other particle candidates further extends
this region.
Another parameter variation which affects strongly the

boost factor is the spectral index of density perturbation np
(see [4]). We conclude thus that the annihilation boost
(enhancement) factor even for neutralino has large un-
certainties due to the difference in SUSY parameters
and spectral index np. It can reach the factor 104 and

even more, the largest values of boost factor can already
be excluded by observations of indirect signal since
mSUGRA parameters can be fixed for this largest value.
On the contrary, a tidal destruction of clumps in the Galaxy
affects the annihilation boost factor much less.

TABLE I. The values of decoupling temperature Td and minimal clump mass Mmin with m� ¼ 100 GeV and ~m ¼ 200 GeV for
different damping mechanisms: 1) free-streaming, 2) collision damping, 3) acoustic oscillations, 4) quasi-free-streaming with friction.

Reference: [42] 1) [4] 1) [6] 2) [41] 3) [10] 4)

Td, MeV 28 26 25 20 22.6

Mmin=M� 2:5� 10�7 1:7� 10�7 1:5� 10�6 1:3� 10�5 8:4� 10�6

TABLE II. Selected benchmark scenarios from [37]. The masses of particles are given in GeV.

Scenario � ~eL ~eR ~�e; ~�� ~��

B0 95 188 117 167 167

E0 112 1543 1534 1539 1532

M0 794 1660 1312 1648 1492

TABLE III. Values of Td and Mmin for the Bertschinger [10] damping scenario and three benchmark scenarios [37] which close to
scenarios B0, E0, and M0 shown in Table II.

m� ~m Td Mmin

100 GeV 200 GeV 22.6 MeV 8:4� 10�6M�
100 GeV 1500 GeV 196 MeV 1:3� 10�8M�
800 GeV 1600 GeV 305 MeV 3:5� 10�9M�
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APPENDIX: MINIMUM CLUMP MASS

1. Uncertainties in minimal clump mass and
decoupling temperature

The low-mass cutoff of the clump mass spectrum ac-
companies the process of decoupling. It starts when DM
particles coupled strongly with surrounding plasma in the
growing density fluctuations. The smearing of the small-
scale fluctuations is due to the collision damping occurring
just before decoupling, in analogy with the Silk damping
[39]. It occurs due to the diffusion of DM particles from a
growing fluctuation, and only the small-scale fluctuations
can be destroyed by this process. The corresponding dif-
fusive cutoff Mdiff

min is very small. As coupling becomes

weaker, the larger fluctuations are destroyed and Mmin

increases. One may expect that the largest value of Mmin

is related to a free-streaming regime. However, as recent
calculations show [10], the largest Mmin is related to some
friction between DM particles and cosmic plasma similar
to the Silk damping. The predicted minimal clump masses
range from very low values, Mmin � 10�12M� [40], pro-
duced by a diffusive escape of DM particles, up toMmin �
10�4M�, caused by acoustics oscillations [41] and quasi-
free-streaming with limited friction [10].

The calculations of minimal clump mass Mmin and
decoupling temperature Td are determined by elastic scat-
tering of DM particles off leptons l ¼ ð�L; eL; eRÞ in cos-
mic plasma. The uncertainties in cross section very
strongly influence the resulting values of Mmin and Td.
In all works cited above, the lightest neutralino (�) in
the form of pure bino ( ~B) is assumed as a DM particle,
and �l scattering occurs due to exchange by sleptons
~l ¼ ð~�L; ~eL; ~eRÞ.
The elastic cross sections for lL� and lR� scattering

have been calculated in [4] as

�
d�

d�

�
lL�

¼ �2
em

8cos4
W

!2ð1þ cos
cmÞ
ð ~m2

L �m2
�Þ2

(A1)

and �
d�

d�

�
lR�

¼ 16

�
d�

d�

�
lL�
; if ~mL ¼ ~mR; (A2)

where !� ml is a c.m. energy of l, 
cm is a scattering
angle of l in a c.m. system, m� is a neutralino (bino) mass,

~mL and ~mR are, respectively, a mass of the left and right
sfermions, and 
W is the Weinberg angle.

The values of Td and Mmin as cited in [4,6,41,42] differ
very much from each other, but a very big contribution to
this difference comes from the differences in the used
values for m� and ~m. To see the difference, which must

be attributed to the different damping mechanisms used in
these works, we recalculated Td and Mmin with the same
values of m� and ~m, for which we used 100 and 200 GeV,

respectively. The results are presented in Table I. We did
not include there the work [40] because a pure diffusive
damping results in too low a value of Mmin. From Table I,
one can see a reasonable agreement in values of Td and
Mmin and a successive increasing of Mmin from 2:5�
10�7M� for free-streaming to �110�5M� for oscillation
damping and quasi-free-streaming with friction.

2. Uncertainties in SUSY parameters

We shall consider now the range of predictions for
different values of SUSY parameters allowed in cosmol-
ogy. For this aim, we shall use the SUSY benchmark
scenarios from the work [37], which agrees with the
Wilkinson microwave anisotropy probe (WMAP) and
other cosmological data. These benchmark scenarios are
obtained within the mSUGRA model with universal pa-
rameters at the grand unified theory scale: m0 (the univer-
sal scalar soft breaking mass), m1=2 (the universal gaugino

soft breaking mass), A0 (the universal cubic soft breaking
terms), and tan� (the ratio of two Higgs v.e.v.’s). The LEP
and b! s	 constraints are imposed. The resulting relic
density of neutralinos from these scenarios is in agreement
with the WMAP data or can be obtained with small
changes of m0 and m1=2. In Table II, we display three

benchmark scenarios from [37]. Scenario B0 gives the
lower value m� � 100 GeV and ~m close to 200 GeV,

which we discussed above. Scenario M0 gives the highest
value m� � 800 GeV and ~m � 1600 GeV. Respectively,

scenario EE0 gives the intermediate value m� � 110 GeV

and ~m � 1500 GeV, similar to those we used in [4].
To illustrate the uncertainties in Td and Mmin due to

uncertainties in m� and ~m (in the simplifying assumption

that m~� ¼ m~eL ¼ m~eR) we choose the calculations of

Bertschinger [10] in the quasi-free-streaming scenario
with friction, which seems to be at present the most de-
tailed ones. We use the Bertschinger formulas

Td ¼ 7:65C�1=4g1=8	
�

m�

100 GeV

�
5=4

MeV; (A3)

Mmin ¼ 7:59� 10�3C3=4

�
m�

ffiffiffiffiffi
g	

p
100 GeV

��15=4
M�; (A4)

with a dimensionless constant

C ¼ 256ðGFm
2
WÞ2

�
~m2

m2
�

� 1

��2X
L

ðb4L þ c4LÞ; (A5)

whereGF is the Fermi coupling constant, bL and cL are left
and right chiral vertices, and mW , ~m, and m� are, respec-

BEREZINSKY, DOKUCHAEV, AND EROSHENKO PHYSICAL REVIEW D 77, 083519 (2008)

083519-12



tively, the masses of the W boson GFm
2
W ¼ 0:0754, the

slepton, the neutralino, and the number of freedom at the
decoupling epoch g	 ¼ 43=4. (Our own calculations in [4]
of C, which is related with the square of the matrix element
for lþ �! lþ � scattering, differ from (A4) by a factor
of 1.6.) As a result, we obtain for the benchmark scenarios
which approximately coincide with model B0 (minimum
m� and ~m), E0 (minimum m� and large ~m), and M0 (very
large m� and ~m) the values of Td and Mmin listed in

Table III. The predicted range of parameters for Mmin

from this Table, ð3:5� 10�9 � 8:4� 10�6ÞM� is not ro-
bust at all. It is obtained within mSUGRA assumptions
about possible universality of SUSY parameters m0, m1=2,

and A0. Lifting the universality restriction, the mass of the
neutralino can increase up to the TeV range scale (though
m� > 200 GeV needs a fine-tuning less than 1% in SUSY

[43] or decreased down to a few GeV [44]).
In the numerical predictions above, we limited ourselves

by rather restrictive assumptions on the mSUGRA model.
The most important of them are assumptions that the
neutralino is a pure bino state and a choice of a cosmolog-
ically allowed benchmark scenario. The detailed analysis
made in [38] showed that the allowed parameters of
mSUGRA result in much wider possibilities, e.g., neutra-
lino as mixed bino-Higgsino and the other benchmark

scenarios. These possibilities are considered under
WMAP cosmological constraints and a condition of pro-
ducing the corresponding DM density for each set of
mSUGRA parameters. The considered modifications allow
new channels of neutralino interactions with ordinary par-
ticles, e.g., the exchange by Z-boson, coannihilation and
resonances in neutralino-fermion scattering. It results in a
wide range (many orders of magnitude) of scattering cross
sections, and, respectively, in a wide range of decoupling
temperature from 5 MeV to 3 GeV. The corresponding
range of Mmin is given by ð3� 10�12–7� 10�4ÞM�. The
authors consider also the Kaluza-Klein particle as a DM
candidate.
The small-scale mass ofMmin results in the large density

of DM clumps, and thus in a much stronger annihilation
signal from the Galactic halo. For typical values of the
power index of the perturbation spectrum (from CMB
observations) the small-scale mass of Mmin results in the
large density of DM clumps, and thus in a much stronger
annihilation signal from the Galactic halo. However, the
dependence of a mean clump density on the clump mass is
rather weak due to the nearly flat form of the perturbation
spectrum at small scales. The crucial factor for the ampli-
fication of the annihilation signal by clumps is the value of
the perturbation power-law index np.
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