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The energy conditions play an important role in the understanding of several properties of the Universe,

including the current accelerating expansion phase and the possible existence of the so-called phantom

fields. We show that the integrated bounds provided by the energy conditions on cosmological observables

such as the distance modulus �ðzÞ and the lookback time tLðzÞ are not sufficient (or necessary) to ensure

the local fulfillment of the energy conditions, making explicit the limitation of these bounds in the

confrontation with observational data. We recast the energy conditions as bounds on the deceleration and

normalized Hubble parameters, obtaining new bounds which are necessary and sufficient for the local

fulfillment of the energy conditions. A statistical confrontation, with 1�� 3� confidence levels, between

our bounds and supernovae data from the gold and combined samples is made for the recent past. Our

analyses indicate, with 3� confidence levels, the fulfillment of both the weak energy condition (WEC)

and dominant energy condition (DEC) for z � 1 and z & 0:8, respectively. In addition, they suggest a

possible recent violation of the null energy condition (NEC) with 3�, i.e. a very recent phase of

superacceleration. Our analyses also show the possibility of violation of the strong energy condition

(SEC) with 3� in the recent past (z � 1), but interestingly the qðzÞ-best-fit curve crosses the

SEC—fulfillment divider at z ’ 0:67, which is a value very close to the beginning of the epoch of

cosmic acceleration predicted by the standard concordance flat �CDM scenario.
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I. INTRODUCTION

In classical general relativity, if one wishes to study
spacetime properties that hold for a variety of matter
sources, it is suitable to impose the so-called energy con-
ditions that limit the arbitrariness of the energy-momentum
tensor T�� on physical grounds. These conditions can be

stated in a coordinate-invariant way in terms of T�� and

vector fields of fixed character (timelike, null, and space-
like). However, within the framework of the standard
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) model,
we only need to consider the energy-momentum tensor
of a perfect fluid with density � and pressure p, i.e.,

T�� ¼ ð�þ pÞu�u� � pg��; (1)

so that the energy conditions take one of the following
forms [1–3]:

NEC: �þ p � 0;

WEC: � � 0 and �þ p � 0;

SEC: �þ 3p � 0 and �þ p � 0;

DEC: � � 0 and � � � p � �;

(2)

where NEC, WEC, SEC, and DEC correspond, respec-
tively, to the null, weak, strong, and dominant energy
conditions. Clearly, the ordinary matter in the form of

baryons or relativistic particles like photons and neutrinos
satisfies these energy conditions.
From the theoretical point of view, the energy conditions

have been used in different contexts to derive powerful
results in a variety of situations. For example, the
Hawking-Penrose singularity theorems invoke the SEC
[1], the positive mass theorem assumes the DEC [4], while
the proof of second law of black hole thermodynamics
requires NEC [3,5].
On macroscopic scales relevant for cosmology, another

important viewpoint is the confrontation of the energy-
condition predictions with the observational data. In this
regard, since the pioneering works by Visser [6], it has
been shown that the energy conditions provide model-
independent bounds on the cosmological observables,
and a number of studies involving such bounds have
been recently discussed in the literature [7–14] (see also
the related Ref. [15]). Santos et al. [7,8] have derived
bounds on the distance modulus, �ðzÞ, for any spatial
curvature k, and made a confrontation of the bound pre-
dictions with recent type Ia supernovae (SNe Ia) data. In
Refs. [9,10], the confrontation of the NEC and SEC bounds
with a combined sample of 192 supernovae was carried out
providing similar and complementary results. They have
also shown that the violation of integrated bounds [such as
those on �ðzÞ] at a given redshift z ensures the breakdown
of the corresponding energy condition, without specifying
at what redshift the energy-condition violation took place.
In Ref. [11], model-independent energy-conditions bounds
on the lookback time, tLðzÞ, was derived and a confronta-
tion with age estimates of galaxies was made. Sen and
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Scherrer [12] derived upper limits on the matter density
parameter �m from the WEC in a flat (k ¼ 0Þ universe. In
the recent Ref. [16], Cattoën and Visser have reviewed and
complemented some aspects of Refs. [6–8,11]. Energy-
conditions constraints on modified gravity models, such
as the so-called fðRÞ-gravity, have also been investigated
in Ref. [13] and more recently in Ref. [14].

In this paper, to proceed further with the investigation of
the interrelation between energy conditions on scales rele-
vant for cosmology and observational data, we extend and
complement the results of Refs. [7–11] in three different
ways. First, we show in a simple way that the violation of
integrated bounds such as those on the Hubble parameter
HðzÞ, on the distance modulus �ðzÞ [7,8], and on the
lookback time tLðzÞ [11] at a redshift z is neither a neces-
sary nor sufficient local condition for the breakdown of the
associated energy condition [9,10]. Second, we derive
local necessary and sufficient bounds for the fulfillment
of each energy condition in terms of the deceleration
parameter qðzÞ and the normalized Hubble function EðzÞ ¼
HðzÞ=H0 for any spatial curvature. Third, we make the
confrontation between our local nonintegrated bounds
with statistical estimates [in the plane EðzÞ � qðzÞ] by
using the SNe Ia of both the new gold sample [17], of
182 SNe Ia and the combined sample of 192 SNe Ia [18]. In
this way, our necessary and sufficient nonintegrated
energy-condition bounds allow a statistical confrontation
of energy conditions and SNe Ia data within chosen con-
fidence levels at any given redshift.

II. INTEGRATED BOUNDS FROM THE ENERGY
CONDITIONS

In this section we give an account of our basic assump-
tions, briefly recast the major results of Refs. [7–10], and
discuss the nature of the energy-condition integrated
bounds and their limitation in the local confrontation
with observational data.

Let us begin by recalling that the standard approach to
cosmological modelling commences with a spacetime
manifold endowed with the Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) metric

ds2 ¼ dt2 � a2ðtÞ
�

dr2

1� kr2
þ r2ðd�2 þ sin2�d�2Þ

�
; (3)

where the spatial curvature k ¼ 0, 1, or�1, and aðtÞ is the
cosmological scale factor. The metric (3) encodes the
assumption that our 3-dimensional space is homogeneous
and isotropic at sufficiently large scales along with the
existence of a cosmic time t. However, to study the dy-
namics of the Universe an additional assumption in this
approach to cosmological modeling is necessary, namely,
that the large scale structure of the Universe is essentially
governed by the gravitational interactions, and hence can
be described by a metrical theory of gravitation such as
general relativity (GR).

These very general premises, which we assume in this
work, constrain the cosmological fluid to be a perfect-type
fluid of the form (1), with the total density � and pressure p
given by

� ¼ 3

8�G

�
_a2

a2
þ k

a2

�
; (4)

p ¼ � 1

8�G

�
2
€a

a
þ _a2

a2
þ k

a2

�
; (5)

where dots denote derivative with respect to the time t.
The integrated bounds on the Hubble functions HðzÞ

comes from the following set of dynamical constraints:1

NEC ) � €a

a
þ _a2

a2
þ k

a2
� 0; (6)

WEC ) _a2

a2
þ k

a2
� 0; (7)

SEC ) €a

a
� 0; (8)

DEC ) €a

a
þ 2

�
_a2

a2
þ k

a2

�
� 0; (9)

which can be easily derived from the energy conditions
[Eqs. (2)] along with the above Eqs. (4) and (5). In fact,
Eqs. (6)–(9) can be written in terms of the Hubble function,
HðzÞ ¼ _aðtÞ=aðtÞ, and its derivatives with respect to the
redshift, z ¼ ða0=aÞ � 1, as

NEC ) @H2

@z
� � 2kð1þ zÞ

a20
; (10)

WEC ) � kð1þ zÞ2
a20H

2
� 1; (11)

SEC ) @ lnH2

@z
� 2

ð1þ zÞ ; (12)

DEC ) @

@z

�
H2

ð1þ zÞ6
�
� 4k

a20ð1þ zÞ5 ; (13)

where here and in what follows the subscript 0 stands for
present-day quantities. Now, integrating the inequations
(10), (12), and (13) in the interval ð0; zÞ, where we assume
that they hold, one obtains the following integrated bounds

1In line with the usage in Refs. [7,8,11], here and in what
follows we use the boldface-type to denote the energy-condition
restriction that is not contained in any of the previous set of
energy-conditions inequations [see Eq. (2)]. In this way, NEC,
WEC, SEC, and DEC refer, respectively, to the following
NEC, WEC, SEC, and DEC inequations: �þ p � 0, � � 0,
�þ 3p � 0, and �� p � 0.

M. P. LIMA, S. VITENTI, AND M. J. REBOUÇAS PHYSICAL REVIEW D 77, 083518 (2008)

083518-2



on Hubble function from the energy conditions:

NEC ) HðzÞ � H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��k0 þ�k0ð1þ zÞ2

q
; (14)

SEC ) HðzÞ � H0ð1þ zÞ; (15)

DEC ) HðzÞ � H0ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1��k0Þð1þ zÞ4 þ�k0�

q
:

(16)

We note that the in equation (11) does not contain the
derivative of HðzÞ, but clearly for z ¼ 0 theWEC restricts
the present-day curvature parameter to �k0 �
�k=ða0H0Þ2 � 1.

The integrated bounds provided by the energy condi-
tions on the distance modulus �ðzÞ can now be easily
obtained from the above bounds on the Hubble function
as follows. First, we recall that the distance modulus for an
object at redshift z is defined by

�ðzÞ � mðzÞ �M ¼ 5log10

�
dLðzÞ
1 Mpc

�
þ 25; (17)

wherem andM are, respectively, the apparent and absolute
magnitudes, and dL is given by

dLðzÞ ¼ c

H0

ð1þ zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffij �k0 j
p Sk

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j �k0 j

q Z z

0

dz0

Eðz0Þ
�
; (18)

where SkðxÞ ¼ sinðxÞ, x, sinhðxÞ for k ¼ 1; 0;�1 respec-
tively, and EðzÞ ¼ HðzÞ=H0. Second, we substitute
Eqs. (14)–(16) into Eqs. (17) and (18) to obtain the bounds
on the distance modulus �ðzÞ for any spatial curvature k.
For the flat FLRW model (�k0 ¼ 0) which we focus our
attention on in this paper, the integrated bounds reduce to

NEC ) �ðzÞ � 5log10½cH�1
0 zð1þ zÞ� þ 25; (19)

SEC ) �ðzÞ � 5log10½cH�1
0 ð1þ zÞ lnð1þ zÞ� þ 25;

(20)

DEC ) �ðzÞ � 5log10

�
cH�1

0 zð2þ zÞ
2ð1þ zÞ

�
þ 25: (21)

Concerning the above bounds on HðzÞ and �ðzÞ, we
emphasize that the nonlocal or integrated nature of these
bounds arises from the fact that they were obtained by
assuming the fulfillment of the energy condition in the
whole interval of integration ð0; zÞ. However, in the same
way that a positive sum of N terms does not necessarily
imply that all the terms of the sum are also positive, the
fulfillment of the integrated bounds on HðzÞ and �ðzÞ does
not necessarily imply that the energy conditions are obeyed
in all subintervals of ð0; zÞ but only in at least an undeter-
mined subinterval. Reciprocally, the violation of these

integrated bounds merely implies that the corresponding
energy condition was violated in at least a subinterval of
ð0; zÞ. This amounts to saying that the fulfillment (or the
violation) of any of these bounds at a given redshift z is not
a sufficient (nor a necessary) local condition for the fulfill-
ment (or, respectively, the violation) of the associated
energy condition at z. In practice, this means that the local
confrontation between the prediction of the integrated
bounds such as those on HðzÞ and on �ðzÞ [Eqs. (14)–
(16)] and [Eqs. (19)–(21)] and observational data is not
suitable to draw conclusions on the local fulfillment or
violation of the associated energy conditions at z.2

III. NONINTEGRATED BOUNDS FROM THE
ENERGY CONDITIONS

The practical limitation in the local confrontation be-
tween the above integrated bounds and observational data
calls for nonintegrated bounds from energy conditions,
which can be easily obtained by rewriting Eqs. (6)–(9) in
terms of the deceleration parameter, qðzÞ ¼ � €a=aH2, and
the normalized Hubble function, EðzÞ ¼ HðzÞ=H0, in the
following form:

NEC , qðzÞ ��k0

ð1þ zÞ2
E2ðzÞ � �1; (22)

WEC , E2ðzÞ
ð1þ zÞ2 � �k0; (23)

SEC , qðzÞ � 0; (24)

DEC , qðzÞ þ 2�k0

ð1þ zÞ2
E2ðzÞ � 2; (25)

for any spatial curvature �k0.
Some words of clarification are in order here concerning

the above bounds. First, we note that, for a fixed value of
�k0, Eq. (23) provides the WEC lower bound on normal-
ized Hubble function EðzÞ for any z, whereas Eqs. (22) and
(25) give, respectively, the NEC and DEC bounds on
parameters of the EðzÞ � qðzÞ plane for any fixed redshift
z?. Also, the SEC lower bound [Eq. (24)] clearly holds
regardless of the value of the spatial curvature. Second,
since the bounds have been derived without making any
integration (nonintegrated bounds), they are clearly suffi-
cient and necessary to ensure the local fulfillment of the

2We note that at a nonlocal level, the fulfillment (or the
violation) of each of these integrated bounds at a given z is
sufficient to ensure only the fulfillment (or, respectively, the
violation) of the associated energy conditions somewhere in at
least a subinterval of the integration interval ð0; zÞ, as discussed
in Refs. [9,10] and concretely illustrate in Sec. IVB.
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associated energy condition. In practice, this allows local
confrontation between the predictions of these noninte-
grated bounds and, e.g., SNe Ia data, an issue which we
shall discuss in the following sections focusing in the flat
FLRW (k ¼ 0) case, in which the NEC and DEC non-
integrated bounds reduce, respectively, to qðzÞ � �1 and
qðzÞ � 2, and where obviously the fulfillment of the SEC
[qðzÞ � 0] implies that the NEC is satisfied identically.

IV. ANALYSIS AND DISCUSSION

A. Estimates of qðz?Þ and Eðz?Þ
In order to make the confrontation between the non-

integrated bounds [Eqs. (22)–(25)] with observational data
we need estimates of qðz?Þ and Eðz?Þ. Model-independent
estimates of these parameters can be obtained by approx-
imating the deceleration parameter as a function of the
redshift in terms of a linear piecewise continuous function,
known as linear spline,

qðzÞ ¼ ql þ q0l�zl; z 2 ðzl; zlþ1Þ; (26)

where the subscript l means that the quantity is taken at zl,
�zl � ðz� zlÞ, and the prime means the derivative with
respect to z. We use the definition of qðzÞ in terms of HðzÞ
to obtain

EðzÞ ¼ exp
Z z

0

1þ qðzÞ
1þ z

dz; (27)

and, consequently, the luminosity distance and the distance
modulus using Eqs. (17) and (18). Then we fitted the
parameters of the qðzÞ curve using the type Ia supernovae
(SNe Ia) redshift-distance modulus data from the gold
sample [17] and a combined sample [18].

B. Results

In Figs. 1(a) and 1(b) we confront, the NEC along
with DEC, and the SEC integrated bounds on �ðzÞ
[Eqs. (19)–(21)] with SNe Ia of the combined sample as
compiled in Ref. [18] for, respectively, the redshift inter-

FIG. 1. (a) The NEC upper bound and the DEC lower bound on the distance modulus, �ðzÞ, in the redshift interval (0.02, 0.055).
(b) The SEC upper bound on �ðzÞ in the redshift interval (0.3, 0.8). The data points in both panels correspond to type Ia supernovae
from a combined sample, and consistently we have taken H0 ¼ 65:8 km s�1 Mpc�1.

FIG. 2. The 1�, 2�, and 3� contours obtained with the Eðz?Þ and qðz?Þ estimates from combined (solid lines) and gold (dashed
lines) samples at z? ¼ 0:0451 [panel (a)] and at z? ¼ 0:679 [panel (b)]. The nonintegrated SEC and NEC bounds are also indicated.
The best-fit values for ðEðzÞ; qðzÞÞ at z? ¼ 0:0451 are ð1:015;�0:638Þ for gold, and ð1:020;�0:559Þ for combined. At z? ¼ 0:679
the best-fit values are ð1:621; 0:469Þ for gold, and (1.464, 0.215) for combined sample.
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vals (0.02, 0.055) and (0.3, 0.8) by taking consistently
H0 ¼ 65:8 km s�1 Mpc�1.3

Clearly there are several SNe data points indicating the
violation with more than 1� of the integrated NEC and
SEC upper bounds on �ðzÞ, and two data points suggest-
ing the violation of the integratedDEC lower bound on the
distance modulus with * 1�.

To concretely contrast the integrated and nonintegrated
bounds by using supernovae observations, we consider, as
a first example, the supernova 1992bh at z ¼ 0:0451 of the
combined sample, whose observed distance modulus is
�1992bh ¼ 36:91� 0:19 while the upper-bound NEC pre-
dictions is �ðz ¼ 0:0451Þ ¼ 36:66, i.e., it violates the
integrated upper bound from NEC with ’ 1:31� [see
Fig. 1(a)]. However, this local violation of the NEC inte-
grated bounds is not sufficient to guarantee the breakdown
of the NEC at z ¼ 0:0451. This point is made apparent in
Fig. 2(a) which shows the 1�, 2�, and 3� confidence
regions in the plane EðzÞ � qðzÞ [estimated from combined
sample at z? ¼ 0:0451] along with the nonintegrated
(local) NEC bound [qðzÞ � �1]. Clearly, the fact that
the whole 1� confidence region is above the NEC non-
integrated bound is sufficient to ensure the fulfillment of
the NEC with 1� at z? ¼ 0:0451, despite the ’ 1:31�
violation of the NEC integrated bound at this redshift.

Figures 1(b) and 2(b) show the contrast between the
SEC integrated and nonintegrated bounds. In Fig. 1(b)
the supernova 03D1co (which belongs to the combined
and gold samples) at z? ¼ 0:679, is such that its observed
value of the distance modulus [gold: � ¼ 43:58� 0:19,
combined: � ¼ 43:59� 0:27] violated the SEC inte-
grated upper-bound predictions [gold: � ¼ 43:06, com-
bined: � ¼ 42:99] with 2:22� (gold) and 2:72�
(combined). Figure 2(b) shows the 1�, 2�, and 3� con-
fidence regions in the plane EðzÞ � qðzÞ [estimated from
gold and combined sample at z? ¼ 0:679] along with the
nonintegrated SEC lower bound [qðzÞ � 0]. The compari-
son of these figures makes clear that although the observed
�ðzÞ values are more than 2� higher than the SEC inte-
grated upper bounds (suggesting at first sight a violation of
the SEC), the nonintegrated bound analysis shows that at
z? ¼ 0:679 the SEC can either be fulfilled or violated

within 1�, 2�, and 3� confidence levels for both SNe Ia
samples.
In order to obtain a detailed global picture of the break-

down and fulfillment of the energy conditions in the recent
past, we shall extend the above local analysis by examining
the behavior of the nonintegrated energy-condition bounds
with 1�� 3� confidence levels for the recent past (0<
z � 1) using the combined and gold SNe Ia samples. To
this end, we first divide the redshift interval (0,1] into 100
equally spaced points at which we carry out the statistical
estimates and confrontation of the nonintegrated bounds
with SNe Ia data. Second, we note that, for the flat case, the
NEC, SEC, and DEC nonintegrated bounds do not de-
pendent on the estimates of Eðz?Þ [see Eqs. (22), (24), and
(25) and Fig. 2], and therefore the upper and lower 1��
3� limits of qðz?Þ are sufficient to establish the fulfillment
or violation of these energy conditions within these con-
fidence levels.
The two panels in Fig. 3 show the best-fit values and 1�,

2�, and 3� limits for qðz?Þ for the combined [panel (a)]
and gold [panel (b)] samples along with the nonintegrated
NEC, SEC, andDEC bounds in the plane qðzÞ � z. These
panels indicate the violation of the SECwith more than 3�
confidence level in the redshift intervals ð’ 0:09;’ 0:17Þ
and ð’ 0:11;’ 0:16Þ for, respectively, the gold and com-
bined samples. We note that highest evidence for the
violation of SEC is at z� 0:135 for both samples [3:86�
(combined) and 3:43� (gold) below the bound]. Clearly,
violation of the SEC is also permitted (within 1� to 3�)
for higher redshifts, but the best-fit qðz?Þ curves cross the
SEC-fulfillment divider at z ’ 0:67 and z ’ 0:42 for the
combined and gold samples, respectively.
Concerning the NEC, the panels of Fig. 3 show its

violation within 3� for low redshifts [z 2 ð0;’ 0:1Þ] for
combined and gold samples. For higher values of redshift
we have the NEC-fulfillment with 2� for both samples.4

Regarding the DEC, Fig. 3 shows that it is fulfilled in
nearly the whole redshift interval for both samples, but it
might be violated within 3� for high redshifts (z * 0:8),
where the errors in our estimates grow significantly,
though.
Concerning the above analyses it is worth emphasizing

that they are very insensitive to the values of the curvature
parameter, i.e., all the above conclusions remain essen-
tially unchanged for values of �k0 lying in the interval

3We note that for the combined sample provided by Riess [19],
the distance modulus is computed using an arbitrary choice of
the absolute magnitude M as discussed in [17,18]. In Fig. 1(a)
and 1(b) we have dealt with this arbitrariness by noting that the
confrontation between the integrated bounds [Eqs. (19)–(21)]
with SNe Ia data depends onH0 andM through the additive term
m0 ¼ Mþ 5log10ð c=H0

1 MpcÞ. Thus, to obtain a value of m0 consis-
tent with the SNe data, we have fitted the low redshift (z � 0:3)
SNe Ia distance modulus treating H0 as an unknown and taking
the values of magnitude M as given by the combined sample.
Clearly, this procedure for comparison between bounds with SNe
Ia data is independent of a particular value ofH0 in the sense that
one can also begin by taking a specific value of H0, adjust the
value of m0, and treating M as unknown instead.

4Since the violation of the integrated bounds at any z ensures
the violation of the associated energy condition in a subinterval
ð0; zÞ, the violation of the NEC within 1�, in z 2 ð0; 0:02Þ is the
cause for the violation of the NEC integrated bound by the
supernova 1992bh at z ¼ 0:0451 of the combined sample.
However, differently from the NEC case which is fulfilled
with 1� for z > 0:05, Fig. 3 shows no redshift where SEC is
obeyed with 1�. In this way, due to the degeneracies of the SNe
Ia data, one cannot specify a subinterval of (0, 0.679) responsible
for the violation of the SEC integrated bound by SNe Ia 03D1co
at z ¼ 0:679.
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provided by the WMAP and other experiments [20]. In
other words, our estimates of Eðz?Þ, qðz?Þ and of the non-
integrated bounds [Eqs. (22)–(25)] by using the best-fit
value, the upper or the lower 1� limits for �k0 ¼
�0:014� 0:017 [20] are very close to estimates of those
parameters in the flat case, with differences much smaller
than the associated errors.

Finally, we also note that the nonintegratedWEC bound
[Eq. (23)] is fulfilled in the whole redshift interval (0, 1) for
the upper 1� limit value of the curvature provided by
WMAP team, i.e., E2ðzÞ � 0:003ð1þ zÞ2 holds for all
our estimated values of Eðz?Þ, whereas for the �k0 2
ð�0:031; 0Þ the WEC is fulfilled identically, i.e., regard-
less of the values of Eðz?Þ and z?.

V. CONCLUDING REMARKS

By using the fact the classical energy conditions can be
recast as a set of differential constraints involving the scale
factor aðtÞ and its derivatives [see (6)–(9)], model-
independent integrated bounds on, e.g., the Hubble pa-
rameter HðzÞ, the distance modulus �ðzÞ, and on the look-
back time tLðzÞ have been recently derived and confronted
with observational data (see, e.g., Refs. [6–11,16]).

In this paper, we have shown that the violation (or
the fulfillment) of these integrated bounds at a given red-
shift z is neither sufficient nor necessary to ensure the
violation (or, respectively, the fulfillment) of the energy
conditions at z. In practice, this means that the local con-
frontation between the prediction of the integrated bounds
and observational data (such as, e.g., those in
Refs. [7,8,11]) is not sufficient to draw conclusions on
the violation or fulfillment the energy conditions at z.
This feature is also made apparent in Figs. 1 and 2, where
we present concrete examples of violation of integrated
bounds with either fulfillment of the nonintegrated bounds
with 1� [panels 1(a) and 2(a)], or fulfillment and violation

of the nonintegrated bounds with 1� and 2� [panels 1(b)
and 2(b)].
To overcome the crucial drawback in the confrontation

between integrated bounds on cosmological observables
and observational data, we have formulated new bounds
from energy conditions in terms of the normalized Hubble
and deceleration parameters [EðzÞ and qðzÞ] which are
necessary and sufficient for the fulfillment of the energy
conditions [Eqs. (22)–(25)]. We have also confronted
our nonintegrated bounds with model-independent esti-
mates of qðzÞ and EðzÞ which were obtained by using the
gold sample of 182 SNe Ia provided by Riess et al. in
Ref. [17] and with a combined sample of 192 SNe Ia
provided by Wood-Vasey et al. [18] [Figs. 2 and 3].
On general grounds, our analyses indicate theWEC fulfill-
ment in the recent past (z � 1) with 3�, and a possible
recent phase of superacceleration (violation of the NEC
with 3� for z 2 ð0; 0:1Þ for both the combined and
gold samples. Our analyses also show that the DEC is
fulfilled with 3� for all recent past redshifts but z � 0:8.
Concerning the SEC our analyses indicate the possibility
its violation with 1�� 3� confidence levels for
z � 1, with small subintervals in which there is no
SEC-fulfillment with 3� for both the combined and gold
samples. An interesting fact from the confrontation be-
tween the SEC nonintegrated bound and SNe Ia combined
sample is that, although the violation of the SEC is per-
mitted in the recent past with 3� confidence level, the
estimated qðzÞ-best-fit curve crosses the SEC-fulfillment
divider at z ’ 0:67 [see panel 3(a)], which is very close to
redshift of the beginning of the epoch of cosmic accelera-
tion predicted by the current standard concordance flat
�CDM scenario with �m ’ 0:3.
Finally, we emphasized that, although we have focused

our attention on the flat FLRW case, the above results
concerning the new nonintegrated bounds analyses remain
unchanged for values of �k0 lying in the interval provided
by the WMAP team [20].
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FIG. 3. The best-fit curve, the upper and lower 1�, 2�, and 3� limits of qðzÞ for 100 equally spaced redshifts. The NEC and SEC
nonintegrated lower bounds, and also the DEC nonintegrated upper bound for the flat case are shown. This figure shows that the SEC
is violated with 1� confidence level until z ’ 0:38 for combined [panel (a)] and until z ’ 0:26 for gold sample [panel (b)]. It shows
the violation of the SEC with 3� for low redshift intervals. It also shows that the NEC and the DEC are violated within the 3�
confidence level for, respectively, very low and high redshifts. See the text for more details.
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