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The thawing quintessence model with a nearly flat potential provides a natural mechanism to produce

an equation of state parameter, w, close to�1 today. We examine the behavior of such models for the case

in which the potential satisfies the slow-roll conditions: ½ð1=VÞðdV=d�Þ�2 � 1 and ð1=VÞðd2V=d�2Þ �
1, and we derive the analog of the slow-roll approximation for the case in which both matter and a scalar

field contribute to the density. We show that in this limit, all such models converge to a unique relation

between 1þ w,��, and the initial value of ð1=VÞðdV=d�Þ. We derive this relation and use it to determine

the corresponding expression for wðaÞ, which depends only on the presentday values for w and ��. For a

variety of potentials, our limiting expression for wðaÞ is typically accurate to within �w & 0:005 for w<

�0:9. For redshift z & 1, wðaÞ is well fit by the Chevallier-Polarski-Linder parametrization, in which wðaÞ
is a linear function of a.
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I. INTRODUCTION

Observational evidence [1,2] indicates that roughly 70%
of the energy density in the Universe is in the form of an
exotic, negative-pressure component, dubbed dark energy.
(See Ref. [3] for a recent review). The observational
bounds on the properties of the dark energy have continued
to tighten. Taking w to be the ratio of pressure to density
for the dark energy:

w ¼ pDE=�DE; (1)

recent observational constraints are typically�1:1 & w &
�0:9 when w is assumed constant (see, e.g., [4,5] and
references therein).

We can consider two possibilities. If the measured value
of w continues to converge to a value arbitrarily close to
�1, then it is most reasonable to assume a cosmological
constant (a conclusion supported by both the Akaike in-
formation criterion [6] and common sense). On the other
hand, it is conceivable that the observations will converge
on a value of w very close to, but not exactly equal to,�1.
In this case, we must consider how such a dark energy
equation of state might arise.

One possibility, dubbed quintessence, is a model in
which the dark energy arises from a scalar field [7–11].
Caldwell and Linder [12] showed that quintessence models
in which the scalar field potential asymptotically ap-
proaches zero can be divided naturally into two categories,
which they dubbed ‘‘freezing’’ and ‘‘thawing’’ models,
with quite different behaviors. Thawing models have a
value of w which begins near �1 and increases with
time, while freezing models have a value of w which
decreases with time, with an asymptotic value that depends
on the shape of the potential. (If the observations converge

to a value of w less than �1, more exotic models must be
considered. We will not consider this possibility here).
Thawing models with a nearly flat potential provide a

natural way to produce a value of w that is close to, but not
exactly equal to �1, since the field begins with w � �1,
and w increases only slightly up to the present.
Furthermore, with a nearly flat potential and w � �1,
the dynamics of quintessence are considerably simplified.
In this paper, we show that all such models converge to a
single unique evolution. In addition to providing a plau-
sible model for w near �1, such models (since they all
converge to a single type of behavior) can serve as a useful
set of fiducial models that can be compared to �CDM.
In the next section, we reexamine thawing quintessence

models and outline the arguments for these models. In
Sec. III, we present a general description of the behavior
of such models. Our main results are given in Eqs. (23) and
(26). In Sec. IV, we discuss the arguments against thawing
quintessence models. Our conclusions are summarized
briefly in Sec. V.

II. THE CASE FOR THAWING QUINTESSENCE

We will assume that the dark energy is provided by a
minimally coupled scalar field,�, with equation of motion
given by

€�þ 3H _�þ dV

d�
¼ 0; (2)

where the Hubble parameter H is given by

H ¼
�
_a

a

�
¼

ffiffiffiffiffiffiffiffiffi
�=3

q
: (3)

Here a is the scale factor, � is the total density, and we
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work in units for which 8�G ¼ 1. Equation (2) indicates
that the field rolls downhill in the potential Vð�Þ, but its
motion is damped by a term proportional to H.

The pressure and density of the scalar field are given by

p ¼
_�2

2
� Vð�Þ (4)

and

� ¼
_�2

2
þ Vð�Þ; (5)

respectively, and the equation of state parameter, w, is
given by Eq. (1).

As noted above, observations suggest a value of w near
�1. Caldwell and Linder [12] noted there are basically two
ways to achieve such a result (see also Ref. [13] for a more
detailed discussion of some of these issues). In the first
case, freezing potentials, the field is initially rolling down
the potential with w � �1, but it slows with time, driving
w toward �1. (As emphasized in Ref. [13], the tracking
models introduced in Ref. [11] are a subset of freezing
models, but not all freezing models display tracking be-
havior). In thawing models, the field is initially nearly
frozen at some value �0, with w ¼ �1. Then as H de-
creases, the field rolls down the potential, and w increases
with time.

It is possible to produce w near �1 at the present using
either freezing or thawing models. Chongchitnan and
Efstathiou [14] used Monte Carlo simulations to derive a
set of potentials that yield w very close to �1 today. They
found two classes of acceptable solutions: very flat poten-
tials and models in which the field evolves from a region
with very steep slope in the potential to a region in which
the potential is roughly flat. While neither type of model
can be ruled out, we feel that the models with a nearly flat
potential are clearly a more natural way to produce the
desired presentday value of w near �1.

A similar naturalness issue was raised by Bludman [15],
who argued that the only way to achieve tracking models
with w near�1 today was for the model to contain a sharp
change in the curvature of the potential at the present.
Thus, we are presented with a double coincidence problem:
why should the field be entering this special region of the
potential at the same time that the dark energy is coming to
dominate the matter, and why are both of these happening
right now? In thawing models with a nearly flat potential,
on the other hand, w never deviates very far from �1.

Another argument in favor of these thawing models is
that we already have strong evidence that the Universe at
one time underwent a period of vacuum energy domination
(inflation). Many models for inflation correspond to the
sort of thawing models examined here [16]; the scalar field
initially has w ¼ �1, but then rolls downhill to terminate
inflation.

Finally, Griest [17] has suggested a solution to the
coincidence problem involving thawing fields. In his
model, the Universe contains a variety of scalar fields
with various initial energy scales Við�0Þ, i ¼ 1; 2; 3; . . .
As the matter or radiation density drops below a given
Við�0Þ, the Universe undergoes a period of dark energy
domination, but the field then thaws and slides down the
potential, allowing matter or radiation to dominate again.
Given enough of these fields, it would not be surprising to
find ourselves in an epoch in which one of them is just
beginning to dominate at present (see also the somewhat
different model of Ref. [18]).
None of these arguments proves, of course, that a uni-

verse with w close to �1 (but not equal to �1) must
involve a thawing quintessence field with a nearly flat
potential. However, they do indicate that such models are
worthy of further study.

III. EVOLUTION OF THAWING QUINTESSENCE
WITH NEARLY FLAT POTENTIAL

We will assume a scalar field with initial value �0 in a
nearly flat potential Vð�Þ. Specifically, we will assume that
at � ¼ �0, the field satisfies the slow-roll conditions:

�
1

V

dV

d�

�
2 � 1 (6)

and

1

V

d2V

d�2
� 1: (7)

The latter condition corresponds to a mass scale m� �ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð�0Þ

p
. Setting Vð�0Þ roughly equal to the dark energy

density at the present, we get m� � 10�33 eV. This is the

same (unnaturally small) mass that occurs generically in
quintessence models for dark energy.
In analyzing models for inflation, it is usually assumed

that the scalar field dominates the expansion, and that

Vð�Þ � _�2=2. With these assumptions, along with the
flatness of the potential given by Eqs. (6) and (7), it can

be shown that the €� term in Eq. (2) can be neglected,

yielding the simple equation 3H _� ¼ �dV=d� (see, e.g.,
Ref. [16]). This is called the slow-roll approximation.
It is well known that the slow-roll approximation fails

for the case of quintessence [13,15,19]. The basic reason is
that the slow-roll approximation requires the scalar field to
dominate the expansion. However, this is never the case for
quintessence, since matter always contributes significantly
to the total density. However, nothing prevents us from
assuming the slow-roll conditions on the potential (Eqs. (6)
and (7)) along with the requirement that w be close to �1
today. Effectively, we are deriving the analog of the slow-
roll approximation for the case where the expansion is not
dominated by the scalar field.
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At the late times which are of interest here, the Universe
is dominated by dark energy (assumed to arise from a
scalar field) and nonrelativistic matter; we can neglect
the radiation component. We assume a flat universe con-
taining only matter and a scalar field, so that �� þ�M ¼
1. Then Eqs. (2) and (3) can be rewritten in terms of the
variables x, y, and �, defined by

x ¼ �0=
ffiffiffi
6

p
; (8)

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð�Þ=3H2

q
; (9)

� ¼ � 1

V

dV

d�
; (10)

and the prime will always denote the derivative with re-
spect to lna: e.g., �0 � aðd�=daÞ. (This discussion, from
Eq. (8) through Eq. (16), is taken from Refs. [20–22]).

Then x2 gives the contribution of the kinetic energy of
the scalar field to ��, and y2 gives the contribution of the

potential energy, so that

�� ¼ x2 þ y2; (11)

while the equation of state is

� � 1þ w ¼ 2x2

x2 þ y2
: (12)

It is convenient to work in terms of �, since we are
interested in models for which w is near �1, so � is near
zero, and we can then expand quantities of interest to
lowest order in �. Equations (2) and (3), in a universe
containing only matter and a scalar field, become

x0 ¼ �3xþ �
ffiffi
3
2

q
y2 þ 3

2x½1þ x2 � y2�; (13)

y0 ¼ ��
ffiffi
3
2

q
xyþ 3

2y½1þ x2 � y2�; (14)

�0 ¼ � ffiffiffi
6

p
�2ð�� 1Þx; (15)

where

� � V
d2V

d�2

��
dV

d�

�
2
: (16)

We now rewrite these equations, changing the dependent
variables from x and y to the observable quantities�� and

� given by Eqs. (11) and (12). To make this transformation,
we assume that x0 > 0; our results generalize trivially to the
opposite case. We obtain:

�0 ¼ �3�ð2� �Þ þ �ð2� �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3���

q
; (17)

�0
� ¼ 3ð1� �Þ��ð1���Þ; (18)

�0 ¼ � ffiffiffi
3

p
�2ð�� 1Þ

ffiffiffiffiffiffiffiffiffiffiffi
���

q
: (19)

Note that Eq. (17) also follows, in a trivial way, from the
expression for w0 given in Ref. [13]. Finally, we will see
that the equations simplify if we transform our dependent
variable from a to ��ðaÞ. This gives us

d�

d��
¼ �0

�0
�

¼
�3�ð2� �Þ þ �ð2� �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3���

q
3ð1� �Þ��ð1���Þ : (20)

This change of variables is valid only if�� is a monotonic

function of the scale factor; it breaks down at any point
where d��=da ¼ 0. This condition is satisfied for most

quintessence models and for all of the models we consider
here; it is not satisfied, for example, in models in which��

oscillates in time [18].
Equations (19) and (20) are an exact description of the

scalar field evolution for x0 > 0, but they do not yield any
simple solution. At this point, we make two assumptions.
Our first assumption is that � � 1, corresponding to w
near�1. The second assumption is that � is approximately
constant, so that

� ¼ �0 ¼ �ð1=VÞðdV=d�Þj�¼�0
; (21)

i.e., �0 is the value of � at the initial value of the scalar field
�0 before it begins to roll down the potential.
Equation (21) follows from the slow-roll conditions,
Eqs. (6) and (7), as we will show at the end of this
calculation. Replacing � with �0 and retaining terms to
lowest order in � in Eq. (20) yields the following:

d�

d��
¼ � 2�

��ð1���Þ þ
2

3
�0

ffiffiffiffiffiffi
3�

p

ð1���Þ
ffiffiffiffiffiffiffiffi
��

q : (22)

This equation can be transformed into a linear differential
equation with the change of variables s2 ¼ �, and the
resulting equation can be solved exactly. For the models
of interest here, we have the boundary condition � ¼ 0 at
�� ¼ 0. The resulting solution (reexpressed in terms ofw)

is

1þ w ¼ �2
0

3

2
64 1ffiffiffiffiffiffiffiffi

��

q �
�
1

��

� 1

�
tanh�1

ffiffiffiffiffiffiffiffi
��

q 3
75

2

;

¼ �2
0

3

2
64 1ffiffiffiffiffiffiffiffi

��

q � 1

2

�
1

��

� 1

�
ln

0
@1þ

ffiffiffiffiffiffiffiffi
��

q
1�

ffiffiffiffiffiffiffiffi
��

q
1
A
3
75

2

:

(23)

Equation (23), along with the corresponding result forwðaÞ
derived below, is our main result. It shows that for suffi-
ciently flat potentials, all thawing quintessence models
with w near �1 approach a single generic behavior, with
wðaÞ determined entirely by ��ðaÞ and the (constant)

initial value of ð1=VÞðdV=d�Þ. A graph of this generic
relationship between w, ��, and �0 is given in Fig. 1.

THAWING QUINTESSENCE WITH A NEARLY FLAT POTENTIAL PHYSICAL REVIEW D 77, 083515 (2008)

083515-3



Equation (23) shows that 1þ w�Oð�2
0Þ. Thus, our first

slow-roll condition (Eq. (6)) insures that 1þ w � 1, as
desired. The condition that � be nearly constant up to the
presentday can be quantified by requiring j�0=�j � 1.
Taking � to be of order �2 in Eq. (19), we obtain the
condition

1

V

d2V

d�2
�

�
1

V

dV

d�

�
2 � 1: (24)

The two slow-roll conditions, taken together, insure that
this condition is satisfied.

A sufficiently accurate determination of the presentday
values of w and �� (w0 and ��0, respectively) uniquely

determines the value of �0 for these models. For example,
for ��0 ¼ 0:7 and w0 ¼ �0:9, we obtain �0 ¼ 0:8.

The way in which arbitrary potentials satisfying the
slow-roll conditions converge to Eq. (23) is illustrated in
Fig. 2. In this figure, the solid curve gives the behavior for
wð��Þ predicted by Eq. (23), while the dotted and dashed

curves give the true evolution for the potentials V ¼ �2

and V ¼ ��2, respectively, where we choose the initial
value of � such that �0 ¼ 1, 2=3, 1=2. As expected,
agreement is poor for �0 ¼ 1 and improves for smaller
values of �0. Since we dropped terms of order 1þ w in
deriving Eq. (23), we expect the fractional error in 1þ w to
be on the order of 1þ w. Forw<�0:9, this translates into
an error in w of �w & 0:01, which is apparent in Fig. 2.

The behavior of the ��2 potential demonstrates an
important point: while negative power law potentials usu-
ally give rise to freezing models [7,10,11], they can be

made to act as thawing models by an appropriate choice of
�0. For example, when Vð�Þ ¼ ��n, if �0 � n, then
Eqs. (6) and (7) are satisfied, and the model behaves like
a thawing model. This shows that any potential can give
rise to the type of models discussed here, as long as Vð�Þ
has a region over which Eqs. (6) and (7) apply.
We can use Eq. (18) to solve for �� as a function of a

and thus determine wðaÞ. Taking the limit � � 1 in
Eq. (18) gives �0

� ¼ 3��ð1���Þ, with solution

�� ¼ ½1þ ð��1
�0 � 1Þa�3��1; (25)

where��0 is the presentday value of��, and we take a ¼
1 at the present. Equation (25) is identical to the expression
for�� as a function of a in the�CDMmodel, which is not
surprising, as we are taking w near�1 (see also Ref. [23]).
Equations (23) and (25) together give an explicit expres-
sion for w as a function of a. Assuming a particular value
w0 for the presentday value of w, we can then eliminate �0

from this expression, so that wðaÞ is a unique function of
w0 and ��0. We obtain:

1þ w ¼ ð1þ w0Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð��1
�0 � 1Þa�3

q

� ð��1
�0 � 1Þa�3tanh�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð��1
�0 � 1Þa�3

q
�
2

�
�

1ffiffiffiffiffiffiffiffiffiffi
��0

q �
�

1

��0

� 1

�
tanh�1

ffiffiffiffiffiffiffiffiffiffi
��0

q ��2
: (26)

FIG. 1. The value of ð1þ wÞ=�2
0 as a function of �� in

thawing quintessence models with a nearly flat potential and w
near �1. Here w and �� are functions of the scale factor a,

while �0 is the (constant) initial value of �ð1=VÞðdV=d�Þ.

FIG. 2. A comparison between wð��Þ for Vð�Þ ¼ �2 (dotted
curve), Vð�Þ ¼ ��2 (dashed curve), and our analytic result for
wð��Þ (solid curve) for (top to bottom) �0 ¼ 1, �0 ¼ 2=3, and

�0 ¼ 1=2.
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A graph of wðaÞ is shown in Fig. 3 for several values of w0

and ��0. Note that wðaÞ depends primarily on w0 and is

not very sensitive to the value of��0 for 0:6<��0 < 0:8.

Also,wðaÞ is a nearly linear function of a for a between 0.5
and 1 (redshift z & 1), although the linear behavior breaks
down for z > 1. The z & 1 behavior agrees well with the
Chevallier-Polarski-Linder parametrization [24,25], in
whichwðaÞ is taken to have the formwðaÞ ¼ w0 þ wað1�
aÞ, although Eq. (26) does not provide any particular in-
sight into the origin of this linear behavior. However, in our
case wa is not a free parameter, but depends on w0 and
��0; for a fixed value of ��0, Eq. (26) corresponds to a

one-parameter family of models. For instance, for ��0 ¼
0:7, the linear fit to Eq. (26) for z & 1 is roughly w ¼
w0 � 1:5ð1þ w0Þð1� aÞ, so that wa � �1:5ð1þ w0Þ.

Now we can compare the generic behavior predicted by
Eq. (26) with the actual scalar field evolution. In Fig. 4, we
show this predicted behavior, along with wðaÞ for the
potentials V ¼ �2, V ¼ ��2, and V ¼ expð���Þ. The
value of �0 for the power law potentials is chosen to
give ��0 ¼ 0:7 and w0 ¼ �0:9. For the exponential po-

tential,��0 ¼ 0:7 andw0 ¼ �0:9 are fixed by the value of

�. The typical errors here are �w & 0:005, showing strong
agreement between the true evolution of wðaÞ and our
analytic expression for wðaÞ. The error decreases as w0

decreases, so Fig. 4 gives an upper limit on the error in our
approximation for w0 <�0:9.
In Fig. 5, we compare our limiting behavior for wðaÞ in

Eq. (26) to the SNIa observations. The likelihoods were
constructed using the 60 Essence supernovae, 57 SNLS
(Supernova Legacy Survey), and 45 nearby supernovae,
and the new data release of 30 SNe Ia detected by HSTand
classified as the Gold sample by Riess et al. [2,26]. The
combined data set can be found in Ref. [5]. It is clear that
current observations do not exclude the thawing quintes-
sence models we have considered here, although the ob-
servations are also obviously consistent with a
cosmological constant. The maximum likelihood point
actually lies below w0 ¼ �1, but we have not extended
our graph to w0 <�1, as our derivation of Eq. (26) as-
sumes a standard quintessence model with w 	 �1 at all
times.
We have shown that the slow-roll conditions, Eqs. (6)

and (7), are sufficient to allow a thawing model to produce
w near �1 today, but are they also necessary conditions?
The answer is no, although violating these bounds with a
thawing model requires rather unusual potentials.
Following Ref. [14], we have produced a potential by
joining the functions Vð�Þ ¼ expð��1�Þ and Vð�Þ ¼
expð��2�Þ at � ¼ 0. The potential is then continuous,

FIG. 4. The evolution of w as a function of the scale factor, a,
normalized to a ¼ 1 at the present, with ��0 ¼ 0:7 and w0 ¼
�0:9. The solid curve is our analytic result for the behavior of
thawing models with a nearly flat potential and w near �1.
Other curves give the true evolution for the potentials Vð�Þ ¼
�2 (dotted curve), Vð�Þ ¼ ��2 (short dash curve), and
Vð�Þ ¼ expð���Þ (long dash curve). The dot-dash curve is a
model with Vð�Þ ¼ expð���Þ in which � changes discontin-
uously.

FIG. 3. Our analytic result for the evolution of w as a function
of the scale factor, a, normalized to a ¼ 1 at the present, in
thawing quintessence models with a nearly flat potential and w
near �1, for ��0 ¼ 0:8 (dashed curve), ��0 ¼ 0:7 (solid

curve), and ��0 ¼ 0:6 (dotted curve). The upper three curves

are for w0 ¼ �0:9; the lower three curves are for w0 ¼ �0:95.
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but � varies discontinuously, so Eq. (7) is violated. In
Fig. 4, we show wðaÞ for this thawing potential (dot-dash
curve), where we have taken �1 ¼ 0:2, �2 ¼ 1:04, and we
have chosen �0 to give w0 ¼ �0:9 and ��0 ¼ 0:7. The

evolution of � is clearly always in the thawing regime
(dw=da > 0), and it gives w near �1, but it does not
produce a functional form for wðaÞ resembling that of a
nearly flat potential. Of course, this form for the potential is
rather pathological (note that it also violates the upper
bound on w0 as a function of w for thawing models postu-
lated in Ref. [12]).

One of the best-motivated thawing quintessence models
is the pseudo-Nambu Goldstone boson (PNGB) model
[27]. (For a recent discussion, see Ref. [28] and references
therein). This model is characterized by the potential

Vð�Þ ¼ M4½cosð�=fÞ þ 1�; (27)

and �0 can be taken to lie between 0 and �f. Then the
evolution of this model is a function ofM, f, and�0. Using
Eqs. (6) and (7), we see that the slow-roll conditions are
satisfied for all �0 if f > 1, while they cannot be satisfied
for any �0 if f < 1. The latter result follows from the
trigonometric function in the PNGB potential: its second
derivative is large whenever the first derivative is small,
and vice versa. None of these results depend on the value of
M. Thus, our results are a good approximation to the
behavior of the PNGB model for the case where f > 1.

Now we consider some related approximation schemes.
Crittenden et al. [23] analyzed quintessence models withw
near �1 in terms of the parameter �ð�Þ, defined through
the equation

�ð�Þ ¼ dV=d�

Vð1þ €�=3H _�Þ : (28)

Withw near�1, they took the evolution for�� to be given

by Eq. (25), and they approximated the evolution of � as a
linear function of �:

�ð�Þ ¼ �0 þ �1ð���0Þ: (29)

Thus, the model of Ref. [23] has two free parameters, �0

and �1, which determine wðaÞ. It is straightforward to
derive the equivalent of our Eqs. (23) and (26). For w as
a function of ��, we obtain:

1þ w ¼ 2

3
�2
0��

�
1���

1���0

�
4�1=3

: (30)

Our corresponding result (Eq. (23)) is clearly distinct from
this result for all values of �0 and �1. Note further that
Eq. (30) implies 1þ w0 ¼ ð2=3Þ�2

0��0, so we can express

w as a function of w0,��0, and �1 alone (corresponding to

Eq. (26)); �0 drops out of this expression:

1þ w ¼ ð1þ w0Þa3½��0a
3 þ ð1���0Þ��ð4�1þ3Þ=3:

(31)

Again, this result is distinct from Eq. (26), although the two
expressions obviously can be made to converge to similar
behavior by the appropriate choice of �1, since �1 can be
chosen to give good agreement with the exact evolution
[23]. The main difference between this approach and ours
is that our final result for wðaÞ contains no free parameters;
it is a function only of w0 and ��0, while the expression

for wðaÞ in the form of Eq. (31) contains the fitting pa-
rameter �1.
Neupane and Scherer [29] considered the consequences

of fixing x (as defined in Eq. (8)) to be a constant, �. With
x ¼ �, their relation corresponding to our Eq. (23) is

1þ w ¼ �2

3��

: (32)

While it is possible in such models to produce w close to
�1 at the present, Eq. (32) shows that these w � �1
models always act as freezing models, since increasing
�� corresponds to decreasing 1þ w.

One might argue that the correct ‘‘generic’’ model for a
nearly flat potential should be a linear potential, i.e., con-
stant dV=d�, rather than constant ð1=VÞðdV=d�Þ. Linear
potentials have been investigated previously by a number
of authors [10,30–34]. Exact solutions for the linear po-
tential have been derived for the case where the Universe is
scalar field dominated [30] or when it is matter dominated
[10], but not for the intermediate case. However, it is
possible to use the techniques discussed here to derive an
approximate solution. If we take

0.68 0.7 0.72 0.74 0.76 0.78 0.8
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

Ωφ0

w
0

FIG. 5. The 1� 	 (solid) and 2� 	 (dashed) contours in the
plane defined by the presentday values of �� and w for the

quintessence field (denoted ��0 and w0, respectively), for the

thawing behavior given by Eq. (26).
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V ¼ V0 � ��; (33)

then Eq. (2) has the solution

_� ¼ �
Z tf

t¼ti

�
aðtÞ
aðtfÞ

�
3
dt: (34)

The integrand can be reexpressed in terms of a andHðaÞ to
give

_� ¼ �
Z af

a¼ai

1

HðaÞ
�
a

af

�
3 da

a
: (35)

This solution is as yet exact. Now we make essentially the
same approximations that we used earlier for 1þ w � 1.
We takeHðaÞ to be given by Eq. (3), but in determining the
total value of �, we approximate �� as a constant, and we

take 1þ w to be given by 1þ w � _�2=Vð�0Þ. With these
approximations, Eq. (35) can be used to derivewð��Þ. The
resulting expression for wð��Þ is identical to Eq. (23).

Furthermore, numerical integration for the linear potential
gives results in good agreement with our ðw0; waÞ fit dis-
cussed above (see Fig. 4 of Ref. [31]). This supports the
conclusion that our results (Eqs. (23) and (26)) represent a
generic asymptotic behavior. Of course, we cannot rule out
the possibility of a more exact solution for the linear
potential than the one we have outlined here.

IV. THE CASE AGAINST THAWING
QUINTESSENCE

Now consider the arguments against the models consid-
ered here. To avoid unknown quantum gravity effects, it is
desirable for the energy scale of the scalar field to be below
the Planck mass (unity in our units). Requiring�< 1 does
not constrain the models presented here, as the potential
can be modified to shift the value of� to any desired value.
In Ref. [12], it was suggested that a possible constraint is
jV=V 0j< 1. Obviously, if this constraint is enforced, then
all of the models considered here are ruled out, since we
have only considered models with V 0=V < 1 (Eq. (6)). The
implications of this proposed constraint are explored fur-
ther in Ref. [13]. In Ref. [35], it was argued that the correct
constraint is actually ��< 1, where �� is the change in
the value of � from its initial value to the present. Our
models do satisfy this second constraint.

Linder [13] has noted that thawing models with �0 � 1
occupy only a very small fraction of the phase plane
defined by w and w0. This is certainly true; if one requires
w to be very close to �1 at present, and assigns equal a
priori weight to all phase trajectories in the w� w0 plane,
then models with �0 � 1 are very unlikely.

Huterer and Peiris [36] performed Monte Carlo simula-
tions of quintessence models, sampling low-order polyno-
mial potentials. (See also the related work in

Refs. [33,34]). They found essentially no acceptable thaw-
ing models were generated using this procedure. This is not
surprising, since their procedure samples a uniform distri-
bution in the initial values of both ½ð1=VÞðdV=d�Þ�2 and
ð1=VÞðd2V=d�2Þ, while our models require the initial val-
ues of both of these quantities to be much smaller than
unity.
We do not dispute the conclusions in either Refs. [13] or

[36]; they simply represent a different approach to deter-
mining the most plausible models. The models presented
here require a very flat potential. One can argue that the
special nature of the potential makes such models unlikely;
however, we believe that an observed value of w near �1
argues in favor of choosing such special potentials, while
the fact that all such models converge to a similar evolution
makes these models more interesting. These thawing mod-
els do require a fine-tuning of�0; it must be chosen so that
Vð�0Þ is approximately equal to the dark energy density
today.
The most serious problem with the models considered

here is that there is currently no compelling observational
evidence to favor them over a cosmological constant, as
Fig. 5 shows. On the other hand, current observations do
not rule out these thawing models.

V. CONCLUSIONS

Thawing models with potentials that satisfy the slow-roll
conditions provide a natural way to produce w near �1,
and they all converge to a single, universal behavior. Such
models are, in some ways, the opposite of the tracker
models proposed in Ref. [11]. The tracker models are
insensitive to the initial conditions, but they depend sensi-
tively on the shape of the potential over the entire range of
evolution of �. The models discussed here, in contrast,
depend only on the initial conditions, i.e., the value of V
and its derivatives at �0, but are insensitive to the shape of
the rest of the potential. This situation arises because the
field never rolls very far along the potential, and so never
has a chance to ‘‘see’’ the rest of the potential.
These models provide a very well-defined form for wðaÞ

that depends only on the presentday values of w and ��.

While we have provided a variety of arguments both for
and against such models, it is obvious that these issues will
ultimately be settled by observational data, rather than by
the speculations of theorists like us.
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