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We study the classical stability of an anisotropic space-time seeded by a spacelike, fixed-norm,
dynamical vector field in a vacuum-energy-dominated inflationary era. It serves as a model for breaking
isotropy during the inflationary era. We find that, for a range of parameters, the linear differential
equations for small perturbations about the background do not have a growing mode. We also examine the
energy of fluctuations about this background in flat space. If the kinetic terms for the vector field do not
take the form of a field strength tensor squared, then there is a negative energy mode and the background is
unstable. For the case where the kinetic term is of the form of a field strength tensor squared, we show that
classical solutions to the equations of motion that are close to the background solution have energy greater
than or equal to zero. This suggests that the background is metastable.
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I. INTRODUCTION

Inflation has become the standard paradigm for very
early Universe cosmology. It supposes an era when the
Universe was dominated by vacuum energy. During this
era any classical inhomogeneities are smoothed out by the
exponential expansion of the Universe. The inhomogene-
ities that we observe today originate in small quantum
fluctuations that have their wavelength redshifted outside
the horizon by the exponential expansion of the Universe.
At some time, the Universe exits the inflationary era and
transitions to a radiation-dominated era and then eventu-
ally to a matter-dominated era. After inflation, the Universe
expands slower than the speed at which light travels. This
allows the perturbations with wavelengths that are outside
of the horizon to eventually reenter the horizon and gen-
erate the inhomogeneities we observe in the microwave
background (as well as the large scale structure of the
Universe).

Since we have no direct probes of the inflationary era,
we are compelled to consider the possibility that some
tenets of physics—tenets that are fundamental to our
current understanding of the Universe—only reflect post-
inflationary developments. One such tenet is that rotational
invariance is not spontaneously (or explicitly) broken. This
symmetry implies angular momentum conservation and is
necessary for the classification of elementary particles by
their spin (i.e., their angular momentum in their rest
frame).

Recently the possibility that rotational invariance is
broken during the inflationary era has been studied [1–6].
In Ref. [1] it was noted that if the breaking of rotational
invariance is small there is a very simple and unique
signature on the spectrum of density perturbations and
hence on the anisotropy of the microwave background

radiation. Ackerman et al. also introduced a simple model
for breaking rotational invariance during the inflationary
era. They calculated the influence of the breaking of rota-
tional invariance on the spectrum of density perturbations,
verifying the expectations based on their general argu-
ments. The Lagrange density for the model has the usual
Einstein-Hilbert action, a cosmological constant term with
vacuum energy density �� and the following terms con-
taining the four-vector field u�,
 

Lu � ��1r
�u�r�u� � �2�r�u

��2 � �3r
�u�r�u�

� ��u�u� �m2�: (1)

Here � is a Lagrange multiplier that enforces the constraint
g��u

�u� � m2. We take m2 > 0 so the four-vector u� is
spacelike.

This model has a homogeneous but anisotropic back-
ground solution to the classical equations of motion. We
choose the x3 axis to be aligned along the four-vector field,

 u0 � 0; u1 � u2 � 0; and u3 �
m
b�t�

; (2)

resulting in a space-time metric of the form

 d s2 � �dt2 � a�t�2dx2
? � b�t�

2dx2
3: (3)

The breaking of rotational invariance by the four-vector
field causes the x3 direction to expand at a different rate
than the x1 and x2 directions. Explicitly,1

 a�t� � eHat; b�t� � eHbt; (4)

where the Hubble parameters are related to the vacuum
energy, the scale of rotational invariance breaking, and
parameters in the vector Lagrangian by the following
equations,
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1It is assumed that the dynamics immediately preceding the
inflationary era was rotationally invariant so that a�0� � b�0�.
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 Ha �
_a
a
� Hb�1� 16�G�1m

2�;

Hb �
_b
b
�

�����������������������������������������������������������������������
8�G��

�1� 8�G�1m2��3� 32�G�1m2�

s
:

(5)

Notice that the background solution does not depend on the
parameters �2;3, and as m! 0 the rate of expansion is the
same for all spatial dimensions.

The purpose of this paper is to study the classical
stability of this solution. We first consider the linear dif-
ferential equations that result from expanding the classical
equations of motion to linear order about the background
solution discussed above. We find that, for small G�im2,
small perturbations do not grow provided that �1 > 0 and
�1 � �2 � �3 � 0. Next we consider the energy of these
solutions in flat space. Negative energy modes indicate an
instability that might not show up in the analysis of the
linearized equations of motion.

A special role is played by the case �1 � �2 � �3 � 0
where, in flat space, the kinetic terms for the vector field
take the form of a field strength tensor squared. In this case,
we find that when the energy density is evaluated to
quadratic order in fluctuations about the background, all
propagating modes have positive energy. However, when
that equality is not satisfied, there is a mode that propagates
with negative energy. For the case where the kinetic term is
of the form of a field strength tensor squared, we show that
classical solutions to the Euler-Lagrange equations of mo-
tion in flat space that are close to the background solution
have energy greater than or equal to zero.

Models with vector fields that spontaneously break
Lorentz symmetry were first introduced in [7]. Similar
fixed-norm, timelike, Lorentz-violating vector field models
have been extensively studied; constraints required by
theoretical and observational consistency have been placed
on parameters in this theory [7–19]. For a review, see [20].

Others have classified gauge invariant perturbations in
anisotropic scenarios [21,22]; however, we choose to work
in a particular (nonstandard) gauge for calculational
convenience.

II. STRATEGY

The effect of an isotropy-breaking vector field on the
expansion of the Universe during inflation was recently
studied [1]. In this model, the four-vector u� is nonzero
only during the time interval 0< t < t�, where t � 0 is the
beginning of inflation and t� is the end of inflation. We
assume that the dynamics is rotationally invariant during
reheating and thereafter. During the time interval 0< t <
t�, the dynamics of interest in this paper is governed by the
action

 S �
Z

d4x
�������
�g
p

�
1

16�G
R� �� �Lu

�
; (6)

where Lu is given in Eq. (1). The homogeneous back-
ground inflationary space-time solution is given in
Eqs. (3)–(5).

The energy-momentum tensor for u� derived from (1) is
[9]
 

T�u��� � 2�1�r�u
�r�u� �r

�u�r�u�� � 2�r��u��J
�
���

� r��u
�J����� � r��u��J

�
���	

� 2m�2u�r�J��u�u� � g��Lu; (7)

where J�� is the current tensor,

 J�� � ��1r
�u� � �2�

�
�r�u

� � �3r�u
�:

Given Eqs. (2) and (7), the nonvanishing components of
the background stress tensor are

 T�u�00 � �1m2

� _b
b

�
2
; T�u�11 � T�u�22 � �1m2a2

� _b
b

�
2
;

T�u�33 � �1m2

�
_b2 � 2 �bb� 4

_a _b b
a

�
:

(8)

The components of the energy-momentum tensor in our
chosen background are independent of �2 and �3. For a
nontrivial vector contribution to the stress tensor (and
consequently for an anisotropic metric resulting from the
field equations), one must require that �1 � 0. Note that
the background solution does not satisfy the weak energy
condition. An inflating background solution requires

 8�Gm2�1 >�
1
2: (9)

This is not a strong bound on �1 since we are interested in
backgrounds that have a small violation of isotropy, i.e.,
Gm2 
 1.

In this paper we study the classical stability of the
homogeneous background solution to the equations of
motion. We expand the equations of motion to linear order
about the homogeneous background. Since the background
is homogeneous it is convenient to Fourier transform the
small fluctuations about the background in the comoving
spatial coordinates �x1; x2; x3� and examine the time de-
pendence that the linearized equations of motion imply.
The physical wave vectors �ki, i � 1, 2, and �k3 are related to
the comoving wave vectors by �ki � ki=a�t� and �k3 �
k3=b�t�.

We begin with a flat-space stability analysis neglecting
gravity since, when �k� H, such an analysis captures the
essential physics. Then we perform a stability analysis
including gravity in two regions, �k� H and �k
 H. We
do not treat the transition region where the physical wave-
lengths of the modes cross the horizon. In the final section
of this paper we examine the flat-space energy of solutions
to the equations of motion. Negative energy solutions
indicate an instability that might not be evident from a
study of the linearized equations of motion.
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III. STABILITY ANALYSIS NEGLECTING
GRAVITY

In the short-wavelength limit, �k� H, it is physically
intuitive that modes will not be able to resolve space-time
curvature. Therefore we should be able to derive dispersion
relations for small fluctuations in u� about a flat back-
ground space-time that will receive corrections suppressed
by Gm2 when gravity is included. In this case, we have the
action

 S �
Z
d4x���1�@�u���@�u�� � �2�@�u��2

� �3�@�u���@�u�� � ��u�u� �m2��: (10)

The Euler-Lagrange equation for � gives

 	��u
�u� � m2; (11)

while the equation of motion for the vector field gives

 �u� � �1@�@�u� � ��2 � �3�@��@�u�� � 0: (12)

We can use Eq. (11) to solve for � by taking the inner
product of the vector Euler-Lagrange equation (12) with
the vector,

 � � �
�1

m2 u�@�@
�u� �

�
�2 � �3

m2

�
u�@

��@�u
��: (13)

We consider small perturbations about the background,
�u� � m	�3, �� � 0, and �g�� � 	��. We denote small
perturbations about the background vector field by v� so
that

 u� � �u� � v�:

Since we are neglecting gravity, all Greek indices are
raised and lowered by the Minkowski metric. The pertur-
bation about the background value of the Lagrange multi-
plier, �� � �� ��, is a function of the vector field
perturbations through Eq. (13),

 m��� ��2 � �3�@3�@�v
�� � 0: (14)

From Eq. (11) we see that v3 � 0. And by expanding
Eq. (12) to first order in perturbations, we have the follow-
ing equations for the nontrivial vector field perturbations
(i 2 f1; 2g):

 �1@�@�v0 � ��2 � �3�@0�@�v�� � 0;

�1@�@
�vi � ��2 � �3�@

i�@�v
�� � 0:

(15)

We Fourier transform the components of v�, and in
terms of the Fourier modes (transformed in both space
and time),

 v0�!; ~k� � k3
1�!; ~k� and

vi�!; ~k� � ki
2�!; ~k� � �ijkj �!; ~k�;
(16)

where i, j 2 f1; 2g, and we have arranged for all scalar (
)

and pseudoscalar2 ( ) components to have the same mass
dimension. With this decomposition, linear combinations
of the Fourier transform of Eqs. (15) become
 

��1�k2
? � k

2
3� � ��1 � �2 � �3�!2	k3
1

� ��2 � �3�!k2
?
2 � 0; (17)

 

��1�k
2
? � k

2
3 �!

2� � ��2 � �3�k
2
?	
2

� ��2 � �3�!k3
1 � 0; (18)

 �1k2
?�k

2
? � k

2
3 �!

2� � 0; (19)

where k2
? �

P2
i�1 kiki.

We first consider the case where �1 � �2 � �3 � 0.
The scalar mode 
1 � �k

2
?=!k3�
2 propagates with the

dispersion relation

 !2 � k2
? � k

2
3: (20)

The pseudoscalar mode also propagates with this disper-
sion relation. The scalar mode 
1 � �!=k3�
2 propagates
with the dispersion relation

 !2 � k2
? � k

2
3

�
�1

�1 � �2 � �3

�
: (21)

When �1 � �2 � �3 � 0, Eq. (17) becomes a con-
straint equation and therefore the number of scalar modes
is decreased by 1 while the pseudoscalar equation remains
dynamical. A mode disappears at first order when �1 �
�2 � �3 � 0 because there is an enhanced gauge symme-
try. At first order in perturbations, the transformation v� !
v� � @���t; x1; x2� leaves the Lagrangian invariant. The
scalar function � is restricted to have no x3 dependence at
first order by the constraint u�u� � m2. The disappearing
mode,

 v0�!; ~k� � !
2�!; ~k�; vi�!; ~k� � ki
2�!; ~k�; (22)

satisfies (in coordinate space) v��t; ~x� � @��t; ~x� for
� � 0, 1, 2. When �2 � �3 � ��1, Eqs. (15) imply that
�t; ~x� is independent of x3. Thus the mode (22) becomes a
gauge artifact when �1 � �2 � �3 � 0.

IV. STABILITY ANALYSIS INCLUDING GRAVITY

In this analysis we have four-vector field fluctuations
and ten metric fluctuations to consider. However, we can
use diffeomorphism invariance to remove some of them.
Under an infinitesimal coordinate transformation, x� !
x� � ��, the vector field transforms to u� ��u�, where

 �u� � u�@��
� � ��@�u

�; (23)

2We use the name ‘‘pseudoscalar’’ for the  ’s not because
these objects are odd under parity but in order to distinguish
them from the 
’s. The two different kinds of scalars decouple.
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while the metric transforms to g�� � �g��, where

 �g�� � ��r��� �r����: (24)

We choose a gauge where the first order fluctuations in
the (contravariant) four-vector field about their back-
ground, �u� � 	�3m=b�t�, vanish [i.e. ��u�� � v� � 0
where u� � �u� � v�]. This gauge condition is satisfied
by fixing

 � v� � �u�j1st order � �u�@��
� � ��@� �u�

�
m
b�t�

@3�� � ��3�
0 m
b�t�

Hb:

It is important to note that the gauge freedom has not
been completely exploited. The condition ��u�� � 0 is
invariant under gauge transformations of the form x� !
x� � ��, where
 

�� � �f0�t; x1; x2�; f1�t; x1; x2�; f2�t; x1; x2�; f3�t; x1; x2�

�Hbx3f0�t; x1; x2��: (25)

Once the above four functions of three coordinate variables
are chosen, the gauge has been completely specified. This
residual gauge freedom will be used in the analysis of long-
wavelength fluctuations.

The vector field satisfies the Lagrange multiplier equa-
tion, u2 � m2. This equation and our choice of gauge
imply that

 ��g���u�u� � 2g���v��u� � ��g33�
m2

b2 � 0; (26)

and thus we are left with nine metric fluctuations to
consider.

Without loss of generality, we have chosen coordinates
such that the background vector field lies entirely along the
x3 direction. Since isotropy is broken, only an SO(2)
spatial symmetry remains. Let the Roman indices i, j, k
be SO(2) indices that run from 1 to 2. Define the ‘‘comov-
ing‘‘ metric perturbations, h��, through the following
equation,
 

ds2 � ��1� h00�dt
2 � 2a�t�h0idtdx

i � 2b�t�h03dtdx
3

� 2a�t�b�t�hi3dx
idx3 � a�t�2��ij � hij�dx

idxj

� b�t�2�dx3�2: (27)

We work to first order in the small perturbations. After
making our gauge choice, there are nine perturbations, as
well as nine independent equations for the system. One can
show that the equations of motion for the vector field are
equivalent to the energy-momentum conservation equa-
tions. Furthermore, energy-momentum conservation (and
thus the equations of motion) follow from Einstein’s equa-

tions. The identity to first order in perturbations is

 8�G��r�T
�
� � � r��E��;

where

 �E�� � ��G��� � 8�G��T���:

Finally, only nine of Einstein’s equations are independent.
The interdependence among Einstein’s equations in our
gauge can be found by working out the identity above for
� � 3, since the left-hand side vanishes identically,

 �@t � 2�Ha �Hb��
�E03

b�t�
� �ij

@i�Ej3
a�t�2b�t�

�
@3�E33

b�t�3
:

Thus we take, as our complete set of equations at first order
in small perturbations, all of Einstein’s equations except
for �E33.

We Fourier transform

 h���t; k1; k2; k3� �
Z d3x

�2��3=2
h���t; x1; x2; x3�e�i ~k ~x;

and define

 

�k i � ki=a�t�; �k2
? �

�ki �ki; and �k3 � k3=b�t�;

where i 2 f1; 2g and summation is implied over repeated
indices. Also, define the constants

 �n � 8�Gm2�n and � � 8�G��: (28)

Then the Fourier-transformed field equations become
 

�E00� ���� �k2
3��1��2��3��h00� 2i �k3��1Hb�Ha�h03

� i�Ha�Hb� �kih0i� �k3
�kihi3�

1
2�

�k2
?�

�k2
3�1� 2�2�

� �Ha�Hb�@t�hii�
1
2

�ki �kjhij� 0; (29)

 

2�E0i

a�t�
� �i �ki�Ha �Hb�h00 � �k3

�kih03 � �2�� 2H2
a

� 2HaHb � 2H2
b�1� �1� � �k2

? �
�k2
3�1� 2�1

� 2�3��h0i � �ki �kjh0j � i �k3��Ha �Hb�1� 4�1�

� @t�hi3 � i� �kj@thij � �ki@thjj� � 0; (30)

 

�E03

b�t�
� i �k3��1Hb�Ha�h00�

�
��3H2

a��1�4HaHb

�H2
b�2 �k2

3��
1

2
�1�2�1�2�3� �k2

?

�
h03

�
1

2
�k3

�kih0i� i �ki
1

2
�1�2�1�2�3��Ha�Hb�@t�hi3

� i �k3
1

2
�Ha�Hb�1�2�1��@t�hii�0; (31)
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�Eij
a�t�2

� �ij���H
2
a �HaHb � �1� �1�H

2
b� �

1

2
�k2
? �

1

2
�1� 2�2� �k

2
3 �

1

2
�Ha �Hb�@t�h00 �

1

2
�ki �kjh00

� i �k3�ij�Ha � �1� 2�1�Hb � @t�h03 � i �k�i�Ha �Hb � @t�hj�0 � i�ij �kl�Ha �Hb � @t�h0l

� �k3��ij �klhl3 � �k�ihj�3� �
1

2
�ij� �k

2
3�1� 2�2� � �2Ha �Hb � @t�@t�hkk

�

�
�� �H2

a �HaHb �H
2
b�1� �1�� �

1

2
�k2
3�1� 2�1 � 2�3� �

1

2
�2Ha �Hb � @t�@t

�
hij � 0;

(32)

 

2�Ei3
a�t�b�t�

� � �k3
�kih00 � i �ki�1� 2�1 � 2�3��2Hb � @t�h03 � i �k3�3Ha �Hb�1� 4�1� � @t�h0i

� �2��H2
a�2�1 � 2�3 � 5� �HaHb�1� 10�1 � 2�3� � 2H2

b�1� �1 � 2�3� � 4 �k2
3�1�hi3

� �1� 2�1 � 2�3���ij� �k2
? � �2Ha �Hb � @t�@t� � �ki �kj�hj3 � �k3� �kihjj � �kjhij� � 0: (33)

A. Short-wavelength limit of the field equations

Here we consider the limit �H= �k� ! 0, which corre-
sponds to modes with physical wavelengths much shorter
than the Hubble radius. Such modes have periods much
shorter than the Hubble time; therefore we can treat the �ki
as constants independent of time (i.e. Ha;b are effectively
zero in this limit). The background solution in Eq. (5) gives����

�
p
�Hb, and thus we also take ��= �k2� ! 0.

The various degrees of freedom in the field equations
decouple into six equations governing the scalar modes and
three equations governing the pseudoscalar modes if one
uses the decomposition (i, j � 1, 2)
 

h00� �k2
?

��1; h0i� �k3� �ki ��2��ij �kj ��1�; h03� �k2
3

��3;

hij��ij
�k2
?

2
��4�

�
�ki �kj��ij

�k2
?

2

�
��5� �k�i�j�k �kk ��2;

hi3� �k3� �ki ��6��ij �kj ��3�: (34)

Note that all of the scalar ( ��) and pseudoscalar ( ��)
components have the same mass dimension. We make
the ansatz for the time dependence of the fields above,

 

�� l�t; ~k� � ��l�!; ~k�e
i!t and ��l�t; ~k� � ��l�!; ~k�e

i!t:

The decomposition (34) aids in solving the field equa-
tions in the usual way: linear combinations of Einstein’s
equations that resemble the above decomposition lead to
equations coupling only (pseudo)scalar fields.

There are six scalar fields in the mode decomposition
(34). The functional and algebraic constraints on these
fields are given by the field equations:

 0�
�E00

�k2
?

� �k2
3��1��2��3�

��1�

� �k2
?

4
�

�k2
3

2
�1� 2�2�

�
��4�

�k2
?

4
��5� �k2

3
��6;

0�
2 �ki�E0i

a�t� �k3
�k2
?

� �k2
3�1� 2�1� 2�3�

��2� �k2
3

��3�
!
�k3

� �k2
?

2
��4�

�k2
?

2
��5� �k2

3
��6

�
;

0�
�E03

b�t� �k2
3

��
�k2
?

2
��2�

� �k2
?

2
�1� 2�1� 2�3� � 2 �k2

3�1

�
��3�

!
�k3

� �k2
?

2
��4�

�k2
?

2
�1� 2�1� 2�3�

��6

�
;

0�
�Eii
a�t�2 �k2

?

�

� �k2
?

2
� �k2

3�1� 2�2�

�
��1� �k3! ��2� 2

! �k3
3

�k2
?

��3�

�
!2

2
� �k2

3

�
�1� 2�2��3�

1

2

��
��4� �k2

3
��6;

0�
�ki �kj�Eij
a�t�2 �k4

?

�
�k2
3

2
�1� 2�2�

��1�
! �k3

3
�k2
?

��3�

�
!2

4
�

�k2
3

4
�1� 2�1� 4�2� 2�3�

�
��4�

� �k2
3

4
�1� 2�1� 2�3� �

!2

4

�
��5;

0�
�ki�Ei3

a�t�b�t� �k3
�k2
?

�
! �k3

2
��2�

�k2
?

2
��1�

! �k3

2
�1� 2�1� 2�3�

��3�
�k2
?

4
� ��4�

��5� �

�
!2

2
�1� 2�1� 2�3� � 2�1

�k2
3

�
��6:

Let us consider the dynamical degrees of freedom. We shall schematically denote ! ���!; ~k� � @t ���t; ~k� � _���t�. The
first equation is a constraint. When�1 � �2 � �3 � 0,3 it can be solved to give ��1�t� � ��1�

��4�t�; ��5�t�; ��6�t��. The next

2Recall the definition �n � 8�Gm2�n.
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two equations can be solved to give ��2�t� �
��2�

_��4�t�;
_��5�t�;

_��6�t�� and ��3�t� � ��3�
_��4�t�;

_��5�t�;_��6�t��. In the last three equations, ��2 and ��3 appear
only as _��2�t� and _��3�t�. Thus, after making the substitu-
tions for ��1, ��2, and ��3, the last three equations form a
system of second order ordinary differential equations of
three functions. Thus, when�1 � �2 � �3 � 0, we expect
three distinct dynamical modes.

When �1 � �2 � �3 � 0, the function ��1 drops out of
the constraint equation. Then the first equation can be

solved for ��4�
��5�t�; ��6�t��, and the next two for ��2�t� �

��2�
_��5�t�;

_��6�t�� and ��3�t� � ��3�
_��5�t�;

_��6�t��. Since ��1

enters the above equations with no time derivatives, one of
the last three equations can be used to eliminate ��1, and
the remaining two become second order differential equa-
tions in time of two functions, ��5�t� and ��6�t�. Thus, when
�1 � �2 � �3 � 0, we expect only two distinct dynamical
modes in the scalar sector.

Here we present the propagating modes and their dis-
persion relations. The first scalar mode relates the ampli-
tudes of the various fields by

 

�� 1 �
�k3

!
��2 �

��4 �
�k2
?

��5

2!2 � �k2
?

; ��3 � 0 � ��6;

(35)

and propagates with the dispersion relation

 !2 � �k2
? �

�k2
3�1� 2�1 � 2�3�: (36)

The next scalar mode is characterized by the amplitude
relationships

 

�� 1 �
��4 �

��5 �
2 �k3!

!2 � �k2
?

��2

�
2 �k3!

�k2
?�1� 2�1 � 2�3�

��3 �
2

1� 2�1 � 2�3

��6;

(37)

and propagates with the dispersion relation

 !2 � �k2
? �

�k2
3

�
�1�1� 2�1 � 2�3�

�1 � �2
1 � �

2
3

�
: (38)

The last propagating scalar mode only occurs when �1 �
�2 � �3 � 0 and is characterized by the amplitude rela-
tionship

 

��5 �
�k3

!
��2 �

2 �k3�1� �1�

!�1� 2�1 � 2�3�
��3

�
2�1� �1�

1� 2�1 � 2�3

��6 �
�k2
?

�!2 �
�k2
3�1�1�2�1�2�3�

1��1
�

��1

�
�k2
?

� �k2
? � 2

�k2
3�1�1�2�1�2�3�

1��1
�

��4; (39)

and the dispersion relation

 !2 � �k2
? �

�k2
3

�
�1�1� 2�1 � 2�3�

�1� �1�

�

�

�
1� �1 � 3�2 � �3

�1 � �2 � �3

�
: (40)

This last mode corresponds to the flat-space mode (22). As
we found in the flat-space analysis, this mode is absent
when �1 � �2 � �3 � 0. [Note that, in the short-
wavelength limit, a�t� and b�t� are treated as constants,
so covariant derivatives become ordinary derivatives and
thus �1 � �2 � �3 � 0 corresponds to the case where the
Lagrange density takes the form of a field strength
squared—as in the flat-space analysis.]

For general Fourier components, we can guarantee that
!2 � 0 if and only if the coefficient of the �k2

3 term is
positive semidefinite. Thus we see that the stability of the
modes gives the following conditions on the �n’s [and thus,
recalling Eq. (28), the �n’s]:

 �1 � �3 � �
1

2
;

�1�1� 2�1 � 2�3�

�1 � �
2
1 � �

2
3

� 0;

�1�1� 2�1 � 2�3�

�1� �1�

�
1� 2�2

�1 � �2 � �3
� 1

�
� 0:

(41)

We see that only the last equation gives us a condition on
�2. In the limit that Gm2 
 1, we have the following
condition,

 

�1

�1 � �2 � �3
�

�1

�1 � �2 � �3
� 0; (42)

which is identical to what we found in the flat-space
analysis. The other two constraints are trivially satisfied
in this limit.

The following equations for the pseudoscalar fields fol-
low from the field equations:

 0 �
2�ij�E0i

�kj
�k3

�k2
?a�t�

� � �k2
? �

�k2
3�1� 2�1 � 2�3�	 ��1 �

!
�k3

� �k2
?

2
��2 � �k2

3
��3

�
;

0 �
�lj �kl �ki�Eij

�k4
?a�t�

2
� �

! �k3

2
��1 �

�k2
3

2
��3 �

�
!2

4
�

�k2
3

4
�1� 2�1 � 2�3�

�
��2;

0 �
�ij�Ei3 �kj

�k3
�k2
?a�t�b�t�

�
! �k3

2
��1 �

�k2
?

4
��2 �

�
!2 � �k2

?

2
�1� 2�1 � 2�3� � 2�1

�k2
3

�
��3;
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where �n � 8�Gm2�n. Here, the first equation is a con-
straint, and there are two distinct dynamical modes. The
pseudoscalar eigenmode �2! �k3= �k2

?�
��1 � ��2, ��3 � 0

propagates with the dispersion relation

 !2 � �k2
? �

�k2
3�1� 2�1 � 2�3�: (43)

The second pseudoscalar eigenmode is given by
�2 �k3=!��1� 2�1 � 2�3� ��1 � �1� 2�1 � 2�3� ��2 �
2 ��3 and propagates with the dispersion relation

 !2 � �k2
? �

�k2
3

�
�1�1� 2�1 � 2�3�

�1 � �2
1 � �

2
3

�
: (44)

Note that the value of�2 does not affect the stability of any
of the propagating pseudoscalar modes. Also, the two
pseudoscalar dispersion relations were already found to
characterize two of the propagating modes in the scalar
sector.

When �1 � ��3 and �2 � 0 (the Maxwell case), all
modes propagate with the speed of light. However, all
modes would not necessarily propagate with the speed of
light if we only required �1 � �2 � �3 � 0.

In the limit Gm2 
 1 (or equivalently m2 
 M2
p, where

Mp is the Planck mass) we have �n 
 1. The flat-space
analysis considered earlier is insensitive to O��n� correc-
tions to the dispersion relations and (of course) neglects
gravitational degrees of freedom. Here we show that the
more general analysis simplifies to the flat-space analysis.
Since, in our gauge, ��u�� � �g�� �u� � �m=b��g�3, com-
paring Eqs. (16) and (34) we expect that

 
1 /
��3; 
2 /

��6; and  / ��3: (45)

In the �n 
 1 limit, the dispersion relation for the scalar
mode, (38), and the pseudoscalar mode, (44), has the first
order approximation

 !2 � �k2
? �

�k2
3

�
1�

�
��1 � �3�

2

�1

��
; (46)

with amplitude relationship � �k3!= �k2
?�

��3 �
��6. The dis-

persion relation in Eq. (40) has the first order approxima-
tion

 !2 � �k2
? �

�k2
3

�
�1

�1 � �2 � �3

�
�1� 3�2 � �3	; (47)

with amplitude relationship � �k3=!� ��3 �
��6.

The �n ! 0 limit of dispersion relations (38), (40), and
(44) and the corresponding mode amplitude relationships,
along with Eq. (45), lead to the propagating modes and
dispersion relations found in Sec. III. (In the flat-space
analysis, one can rescale the Fourier modes in order to
put them in the form of �k? and �k3 since this simply results
in an overall constant rescaling of the integration measure.)
We found only three (two when �1 � �2 � �3 � 0) dis-
tinct modes in the analysis neglecting gravity because the
��6 � 0 � ��3 and ��3 � 0 modes are purely gravitational.

The purely gravitational modes have the following exact
dispersion relation,

 !2 � k2
? � k

2
3�1� 2�1 � 2�3�: (48)

As �n ! 0, the gravitational modes have the usual graviton
dispersion relation (as expected). We see that the intuitive
flat-space analysis is reproduced by the more general
analysis involving coupling to gravity.

In [10], Lim carried out a similar perturbative analysis of
a fixed-norm, timelike, Lorentz-violating vector field in a
de Sitter background. Lim considers the model of Ref. [9],
which is a slight simplification of the model in Ref. [17].4

He found rescaled mode propagation speeds very similar to
those that we found when �1 � �2 � �3 � 0. There is a
one-to-one correspondence of the inverse of his propaga-
tion speeds with our x3-direction propagation speeds when
m2 ! �m2.

B. Long-wavelength limit of the field equations

We now consider the behavior of the modes after they
cross the Hubble horizon and work in the limit where
�k=H
 1. First simplifying Einstein’s equations in this
limit and then performing a mode decomposition yields
simple differential equations for the various modes. The
field equations decouple into six equations governing the
scalar (�) modes and three equations governing the pseu-
doscalar (�) modes if one uses the decomposition (i, j �
1, 2)
 

h00 ��1; h0i �
1

k?
�ki�2� �ijkj�1�; h03 ��3;

hij �
�ij
2

�4�

�kikj
k2
?

�
�ij
2

�
�5�

k�i�j�kkk
k2
?

�2;

hi3 �
1

k?
�ki�6� �ijkj�3�; (49)

where k? �
����������������
k2

1 � k
2
2

q
. Note that all of the scalar (�) and

pseudoscalar (�) components have the same mass dimen-
sion and are zeroth order in k?, k3.

The scalar mode Einstein equations are
 

0 � Hb�3� 4�1��1�t� � @t�4�t�;

0 � 4Hb�1� �1��Hb�3� 4�1� � @t��1�t�

� ��3� 4�1�Hb@t � @
2
t ��4�t�;

0 � �Hb�3� 4�1�@t � @
2
t ��5�t�;

0 � �2H2
b�1�3� 2�1� �Hb�3� 4�1�@t � @

2
t ��6�t�;

where we have used the background solution Ha �
Hb�1� 2�1� and � � H2

b�1� �1��3� 4�1�. The other
two scalar equations are trivially zero. This means that
�2�t� and �3�t� are unconstrained functions of time. The

4The action in [17] includes a term quartic in the vector field.
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solutions for the remaining scalar modes are

 �1�t� � �1�0�e
�tHb�3�4�1�; (50)

 �4�t� � �1�0��e
�tHb�3�4�1� � 1� ��4�0�; (51)

 �5�t� � �5�0�e�tHb�3�4�1� � A5�e�tHb�3�4�1� � 1�; (52)

 �6�t� � e�2tHb�1��6�0�e�3tHb � A6�e�3tHb � 1��; (53)

where A4 and A5 are arbitrary constants. One should note
that Ha �Hb � 2�1Hb and Hb�3� 4�1� � 2Ha �Hb.

The nontrivial, pseudoscalar mode, Einstein equations
imply

 0 � �Hb�3� 4�1�@t � @2
t ��2�t�;

0 � �2H2
b�1�3� 2�1� �Hb�3� 4�1�@t � @

2
t ��3�t�;

where we have again used the background solution,
Eq. (27). The third equation vanishes identically, so there
are no constraints on �1�t�.

The solutions for the other modes are

 �2�t� � �2�0�e�tHb�3�4�1� � B2�e�tHb�3�4�1� � 1�; (54)

 �3�t� � e�2tHb�1��3�0�e�3tHb � B3�e�3tHb � 1��; (55)

where B2 and B3 are arbitrary constants.
The unconstrained scalar and pseudoscalar modes,

�2�t�, �3�t�, and �1�t�, are, unsurprisingly, gauge arti-
facts. Importantly, �3�t� is unchanged under any trans-
formation of the form (25). We show this explicitly in the
Appendix.

That �3�t� is not a gauge artifact implies that �1 (recall-
ing that �1 � 8�Gm2�1) must be greater than zero,

 �1 > 0; (56)

in order for this mode to decay. Thus, assuming Eq. (56),
no comoving modes grow in the limit k=H
 1.

For the timelike vector [10], the �1 > 0 bound guaran-
tees a positive definite flat-space Hamiltonian at second
order in perturbations; however, �1 > 0 is not a require-
ment for lowest order perturbative stability. For the case of
a timelike vector in de Sitter space, all comoving modes
decay as 1=a�t� [10]; however, for a spacelike vector we
find that �6�t� and �3�t� fall off more slowly than 1=a�t�
while �1�t�, �4�t�, �5�t�, and �2�t� decay more quickly.
(Here we assume that Ha �Hb � 2Hb�1 is smaller than
Ha.)

V. FLAT-SPACE ENERGIES

In the previous sections we have studied the classical
equations of motion linearized about the homogeneous
background solution. For small Gm2 they were stable
provided �1 > 0 and �1 � �2 � �3 � 0. In this section
we examine the classical energy of solutions to the flat-

space equations of motion. Negative energy solutions in-
dicate an instability that might not have shown up in our
study of the linearized equations of motion.

In flat space one can write the vector field action as
 

Su � �
Z
d4x

�
�1

2
F��F�� � ��1 � �2 � �3��@�u��2

� ��u�u� �m2�

�
; (57)

where F�� � @�u� � @�u� and boundary terms are set to
zero. Let i; j 2 f1; 2g as in previous sections. The energy
functional derived from the above action is5

 

Eu �
Z
d3xT�u�00 �

Z
d3x

�
�Lu

��@0u��
@0u� �Lu

�

� �1

Z
d3x

�
1

2
F��F�� � 2u0@�F�0

�

� ��1 � �2 � �3�
Z
d3x��@0u0�

2

� �@iui � @3u3�
2� �

Z
d3x��u�u� �m2�; (58)

where, in the last expression, all indices are intentionally
lower, and repeated indices should be summed without
factors of the metric.

We take u� � �v0; v1; v2; m� v3� as in Sec. III.
Physical field configurations must satisfy the Lagrange
multiplier equation of motion, u2 � m2, which implies

 v3 � m
� ��������������������������

1�
v2

0 � v
2
i

m2

s
� 1

�
�
v2

0 � v
2
i

2m
� . . . : (59)

Thus v3 is actually second order in perturbations. This
expansion also makes manifest that an expansion order
by order in perturbations is equivalent to an expansion in
powers of m�1.

Imposing only the Lagrange multiplier equation of mo-
tion, the lowest order [O�m0�] piece of Eq. (58) is
 

E�0�u � �1

Z
d3x

�
1

2
FijFij � �@3v0�

2 � �@3vi�
2

� �@iv0 � @0vi�Fi0

�
� ��1 � �2 � �3�

�
Z
d3x��@0v0�

2 � �@ivi�2�; (60)

since v3 � O�m�1�. When �1 � �2 � �3 � 0, we find
that the mode described by the dispersion relation (21)
has energy density (at lowest order in perturbations)

 E�0�u =V � �2�1!2k2
3

~
2
2;

5The Lagrange multiplier constraint is holonomic. Whether a
holonomic constraint is imposed before or after forming the
stress-energy tensor has no effect on the tensor’s final form.
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while the modes that propagate with the dispersion relation
!2 � k2

? � k
2
3 have energy density

 E�0�u =V � 2�1!
2k2
?

~ 2 and E�0�u =V � 2�1k
2
3k

2
?

~
2
2;

where ~ and ~
2 are coordinate-independent coefficients of
the plane wave solutions and V is the volume of space.
Thus for�1 > 0 the mode with dispersion relationship (21)
has negative energy while the others have positive energy.
The existence of a negative energy mode implies that the
background field configuration, �u� � m	�3, is unstable
when �1 � �2 � �3 � 0.

However, as discussed in Sec. III, when �1 � �2 �
�3 � 0, the mode that we have just shown to have negative
energy (when �1 > 0) vanishes. In fact, we can show that
in this case solutions to the Euler-Lagrange equations of
motion that are near the background �u� � m	�3 have
non-negative energy. From here on, we take �1 � �2 �
�3 � 0. First note that � � O�m�1� since, by the equa-
tions of motion,

 � �=�1 �
u�@�F��

m2 �
@�F�3

m
�
v�@�F��

m2

�
@0@3v0 � @i@3vi

m
�O�m�2�:

Therefore, the equations of motion, �1@�F
�� � ��u�,

imply @�F�0 � O�m�1�. This implies that field configu-
rations that satisfy the equations of motion have the lowest
order energy functional,

 E�0�u � �1

Z
d3x

�
F0iF0i �

1

2
FijFij � �@3v0�

2 � �@3vi�2
�
:

(61)

Thus the energy functional is positive semidefinite at low-
est order in perturbations.

In principle, there could be a direction in field space that
has zero energy at lowest order but has a negative energy
contribution at a higher order in perturbations that leads to
an instability. Thus let us consider field configurations that
have zero energy at lowest order,

 F0i � Fij � @3v0 � @3vi � 0: (62)

Recall that the full energy functional (assuming u�u� �
m2) is
 

Eu � �1

Z
d3x

�
F0iF0i � F03F03 �

1

2
FijFij � Fi3Fi3

� 2�@iFi0 � @3F30�u0

�
: (63)

For field configurations that have zero energy at leading
order—those that satisfy (62)—the full energy functional
is

 Eu � �1

Z
d3x��@0v3�

2 � �@iv3�
2�; (64)

where v3 � m�
��������������������������������������
1� �v2

i � v
2
0�=m

2
q

� 1�. Thus, if v3 is not
a constant, then the energy given in Eq. (64) is strictly
positive.

The energies of field configurations about the back-
ground �u� � m	�3 that could possibly have turned nega-
tive locally—those that have zero energy at leading
order—are in fact positive semidefinite to all orders [as
we have shown in Eq. (64)]. In Ref. [18], the energy in this
theory was found to be unbounded from below, but the
existence of local extrema was not considered. Our analy-
sis suggests that the background about which we expand is
metastable.

VI. CONCLUDING REMARKS

We have studied the small fluctuations about a spatially
homogeneous anisotropic inflationary background. The
anisotropy was caused by a dynamical four-vector that
was constrained to have a spacelike invariant norm. For a
range of parameters the background space-time is classi-
cally stable.

From the first order stability analysis of the equations of
motion, we derived the constraints �1 > 0 and �1 � �2 �
�3 � 0 for the parameters in the vector Lagrangian (1).
Moreover, we find that all modes have positive energy in
flat space and do not grow with time in the case where the
kinetic term for the four-vector corresponds to a field
strength tensor squared (i.e. for �1 � �2 � �3 � 0). A
negative energy mode propagates if �1 � �2 � �3 � 0,
which implies that the background given by Eqs. (2)–(5) is
unstable when �1 � �2 � �3 � 0. The flat-space energy
is greater than or equal to its value at the background �u� �
m	�3 when �1 > 0 and �1 � �2 � �3 � 0, which sug-
gests that the background is metastable in this case.6 At the
classical level the models of Refs. [7,9,17] with a spacelike
four-vector and �1 � �2 � �3 � 0 provide a convenient
framework to explore the consequences of a small viola-
tion of rotational invariance during the inflationary era.
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APPENDIX: GAUGE ARTIFACTS

A gauge transformation of the form in Eq. (25) induces
the transformation h���t; ~k� ! h���t; ~k� � �h���t; ~k� in
the comoving Fourier-transformed metric perturbations.
Explicitly (i, j � 1, 2),

6An analysis of energies when gravity is included is likely to
change the condition from �1 � �2 � �3 � 0 to �1 � ��3,
�2 � 0.
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�h00�t; ~k� � 2@tf0�t; ~k?�;

�h0i�t; ~k� � i
ki
a�t�

f0�t; ~k?� � a�t�@tfi�t; ~k?�;

�h03�t; ~k� � b�t��i�0�k3�@tf0�t; ~k?� � @tf3�t; ~k?��;

�hij�t; ~k� � �2�Ha�ijf0�t; ~k?� � ik�ifj��t; ~k?��;

�hi3�t; ~k� � �
b�t�
a�t�

ki��
0�k3�f0�t; ~k?� � if3�t; ~k?��;

where ~k? � �k1; k2� and f��t; ~k?� are the Fourier trans-
forms of f��t; x1; x2�. The corresponding transformations
of the fields as defined in Eq. (49) are

 ��1 � �h00 � 2@tf0�t; ~k?�; (A1)

 ��2 �
ki
k?

�h0i � i
k?
a�t�

f0�t; ~k?� � a�t�
ki
k?
@tfi�t; ~k?�;

(A2)

 ��3 � �h03 � b�t��i�0�k3�@tf0�t; ~k?� � @tf3�t; ~k?��;

(A3)

 ��4 � �hii � �2�Ha2f0�t; ~k?� � ikifi�t; ~k?��; (A4)

 ��5 �

�kikj
k2
?

�
1

2
�ij

�
�hij � �ikifi�t; ~k?�; (A5)

 ��6 �
ki
k?

�hi3

� �
b�t�
a�t�

k?��0�k3�f0�t; ~k?� � if3�t; ~k?��; (A6)

and

 ��1 �
�ijkj
k?

�h0i � �a�t�
�ijkj
k?

@tfi�t; ~k?�; (A7)

 ��2 �
k�i�j�kkk
k2
?

�hij � i�ijkifj�t; ~k?�; (A8)

 ��3 �
�ijkj
k?

�hi3 � 0: (A9)

We see that �3�t� is invariant under the residual gauge
transformations in Eq. (25). From Eqs. (A2), (A3), and
(A7), it is clear that one can gauge away �3�t� by fixing
@tf3�t; ~k?� and @tf0�t; ~k?� � 0, and one can gauge away
�2�t� and �1�t� by fixing @tkifi�t; ~k?� and @t�ijkjfi�t; ~k?�,
respectively.
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