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Detecting the parity-odd, or B-mode, polarization pattern in the cosmic microwave background
radiation due to primordial gravity waves is considered to be the final observational key to confirming
the inflationary paradigm. The search for viable models of inflation from particle physics and string theory
has (re)discovered another source for B-modes: cosmic strings. Strings naturally generate as much vector-
mode perturbation as they do scalar, producing B-mode polarization with a spectrum distinct from that
expected from inflation itself. In a large set of models, B-modes arising from cosmic strings are more
prominent than those expected from primordial gravity waves. In light of this, we study the physical
underpinnings of string-sourced B-modes and the model dependence of the amplitude and shape of the
CBB
l power spectrum. Observational detection of a string-sourced B-mode spectrum would be a direct

probe of post-inflationary physics near the grand unified theory (GUT) scale. Conversely, nondetection
would put an upper limit on a possible cosmic string tension of G� & 10�7 within the next three years.
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I. INTRODUCTION

In the past few years, observations of the cosmic micro-
wave background (CMB) and large-scale structure data
have largely confirmed the predictions of the inflationary
paradigm. Now, observational cosmologists have begun to
turn their instruments towards the final unconfirmed sig-
nature of inflation: primordial B-mode, or odd-parity, po-
larization in the CMB [1]. Meanwhile, string theorists have
worked diligently towards realizing observationally viable
models of inflation within reasonably well-understood
string compactifications (see, e.g., [2–4] for reviews). In
parallel, viable models of hybrid inflation continue to be
explored in the context of particle physics (e.g., [5–8]).
Brane and hybrid inflation models often predict the pro-
duction of cosmic strings [2,6,7,9–19], linear defects aris-
ing from the breaking of U(1) symmetries towards the end
of the inflationary epoch. These relics of the inflationary
period provide a rich phenomenology, but here we focus on
their contribution to the polarization of the CMB.

The production of cosmic strings in such models seems
at first unimportant, since they cannot source the majority
of the CMB anisotropy [20]. However, it now appears that
strings may be the most prominent source of observable B-
mode polarization in many of these braneworld or hybrid
inflationary models [21,22]. Strings, as extended objects,
source vector mode perturbations in the CMB as readily as
they do scalar mode perturbations. This is in contrast with
the inflationary picture, where gravity waves generated by
inflation source tensor mode perturbations that are gener-
ally much smaller than the adiabatic scalar mode perturba-
tions. Defect-sourced B-mode polarization was first

calculated in [23] for global defects, and for local strings
in [24–26]. Recently, B-mode predictions from field theo-
retical simulations of local strings were also reported in
[27]. It is true that cosmic strings are subdominant sources
of CMB perturbation, limited to producing less than about
10% of the primordial anisotropy [28–34].1 But since the
inflationary tensor-to-scalar ratio—the parameter that gov-
erns the strength of inflationary gravity waves—is ex-
pected also to be below 10%, cosmic strings and
primordial gravity waves may well be observables of simi-
lar detectability.

Models of hybrid and brane inflation [35], tend to pro-
duce a low tensor-to-scalar ratio [36]. Hybrid inflationary
models from particle physics, for instance, typically have
unobservably small (r & 10�4) tensor-to-scalar ratios
[37,38]. Most models of inflation that have been realized
in string theory are of the hybrid type, and also have small
scalar-to-tensor ratios, typically r� 10�10 (e.g. [39–41]).
On the other hand, many of these models produce cosmic
strings near the grand unified theory (GUT) scale [42–45],
which implies a cosmic string tension (G�) close to the
observational upper bound of G� & 2� 10�7 [32–34].

Among models of inflation motivated by string theory,
brane inflation (reviewed recently in Refs. [2,4]) can create
the widest range of cosmic string tensions, with 10�13 <
G�< 10�6 possible. In certain warped throat ‘‘slow-roll’’
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1It was shown in [22,34] that CMB data can actually favor a
contribution from strings if the inflationary spectrum is either
exactly Harrison-Zeldovich (ns � 1) or, more generally, has
ns � 1. The degree of preference is somewhat dependent on
the shape of the spectrum. String models that predict a pro-
nounced peak at ‘� 400 in the string contribution to the CMB
spectrum are less likely to improve the fit to the data than those
with no peak.
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scenarios, for instance, G�� 10�9 is expected, while in
other ‘‘fast-roll’’ realizations G� * 10�7 can easily be
achieved [18]. In the low-multipole region (2< ‘ <
100), experimental sensitivity to primordial gravity waves
can be converted to sensitivity to strings via2 G�$ 1:4�
10�6

���
r
p

; hence, the promise that near-term experiments
can observe r� 10�2 in this multipole range implies sen-
sitivity to strings with tensions as low as G�� 10�7.
Brane inflation, however, may not be able3 to create a
tensor-to-scalar ratio above r� �few� � 10�3 [48]. For
high ‘ > 100, the situation is different: the dominant B-
modes are expected to come from the lensing of primordial
E-modes into B-modes by large-scale structure. However,
the string-sourced B-mode spectrum peaks in this high ‘
range, so if strings are present they will show up as an
excess over the expected signal. An apparent excess of
10%, for instance, would be caused by strings with a
tension of G� ’ 6� 10�8 (assuming standard string net-
work parameters).

To summarize: in models of inflation that are motivated
either by string theory or particle physics, the more prom-
ising avenue for creation of B-mode polarization is via
cosmic strings, not tensor modes. Hence, we might hope
that if B-modes from inflationary tensor modes are not
observed, B-modes from cosmic strings produced after
inflation might be. Inflationary models with large tensor
modes (like chaotic inflation) tend not to create defects.
Distinguishing the source of the polarization will be a
challenge. To distinguish string B-modes from primordial
gravity waves requires fine scale resolution in the range
‘ < 100. Distinguishing string-sourced polarization at ‘ >
100 requires an accurate calculation of the amplitude of the
B-mode polarization that comes from the conversion of E-
mode polarization to B-mode polarization by gravitational
lensing. This is because the peak BB contribution from
strings falls at ‘� 1000, overlapping heavily with the
spectrum expected from lensing of E. Hence, the presence
of a string-induced B-mode would induce an excess in
power throughout this region of ‘ values above what is
expected from lensing. Accurately characterizing this ex-
cess will require very good predictions of the expected
lensing signal. If all goes well, polarization experiments
could eventually see strings with tensions as low as G��
10�9 [21]. Because strings can source B-modes in the
aftermath of a hybrid inflationary epoch that cannot di-
rectly source B-modes, the class of inflationary models
that B-mode experiments can test is broadened.

Detecting neither string or primordial gravity wave-
sourced B-modes would strongly constrain many inflation-
ary models. These constraints would be different from, and
perhaps stronger than, the constraints derived from mea-
surement of other cosmological parameters (e.g., the spec-
tral index ns).

In this paper, we outline the physics behind cosmic
strings generation of B-mode polarization, placing a heavy
emphasis on how much variability might be expected from
various models of string networks. This gives us an idea of
how much a successful detection of cosmic string B-modes
might teach us about these networks. We also review some
of the currently operating, soon to be launched, and future
planned experiments to measure the CMB’s B-mode po-
larization to give estimates for what range of string ten-
sions they will be able to detect.

II. HOW STRINGS POLARIZE THE CMB

The string-sourced perturbations are fundamentally dif-
ferent from those produced by inflation. Inflation sets the
initial conditions for the perturbations (i.e. their initial
spectrum) which then evolve in time without additional
disturbances being produced. In this sense, inflationary
perturbations can be classified as passive. Inhomo-
geneities produced by cosmic strings are active—string
networks are thought to persist throughout the history of
the universe and actively source metric perturbations at all
times. It is well known [49] that, in the absence of a source
term, vector modes decay quickly, scalar modes have a
growing and a decaying solution, and tensor modes are
sustained on superhorizon scales and decay after entering
the horizon. For this reason, vector modes are not relevant
in passive scenarios, and are rarely considered in the
literature. Cosmic strings, on the other hand, actively
source scalar, vector, and tensor perturbations. For them,
scalar and vector-mode perturbations are typically of simi-
lar magnitude. The string-generated tensor modes are also
at a comparable level, but their observational impact is
generally lower because of the oscillatory nature of gravity
waves [50].

The nonzero CMB temperature quadrupole at the time
of recombination leads to linear polarization of CMB
through Compton scattering of photons on baryons.
Before recombination, the photons and baryons form a
tightly coupled fluid with the anisotropy characterized
only by monopole (density contrast) and dipole (mass
flow) components. After last scattering, photons propagate
freely. Hence polarization is produced during a narrow
time window in the last scattering epoch, when scattering
becomes sufficiently rare for a temperature quadrupole to
develop. Essentially, this window corresponds to the time
between the last scattering and the next-to-last scattering.
Polarization can also be produced at more recent epochs
during reionization.

2This conversion covers only the region of 2< ‘< 100, and
was calculated by comparing the total BB power in strings
versus the total BB power from tensor modes in this ‘ range.
This particular relation is dependent on the parameters of the
string model, and a more complete conversion is suggested in
Sec. IV.

3More complicated setups involving ‘‘wrapped’’ branes might
loosen such bounds [46,47].
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At any point on the sky, CMB polarization can be
represented by a headless vector with a magnitude jPj ��������������������
Q2 	U2

p
and an orientation angle � � �1=2��

arctan�U=Q�, where Q and U are two of the four Stokes’
parameters [51].4 The pattern of the P-vectors on the sky
can be separated into parity-even and parity-odd contribu-
tions, or the so-called E and B-modes. While intensity
gradients automatically generate E-mode patterns, the B-
mode is not produced unless there are metric perturbations
that can locally have a nonvanishing handedness, i.e. have
a parity-odd component. Local departures from zero hand-
edness can be due to tensor modes, i.e. gravity waves,
which can be represented as linear combinations of left-
and right-handed polarizations [52]. The B-mode can arise
from nonzero vector modes, or vorticity.

Cosmic strings induce both vector and tensor compo-
nents in the metric by actively generating anisotropic
stress, with the vector contribution being the most impor-
tant. This implies a nonvanishing vorticity in the photon-
baryon plasma at the surface of last scattering, which
generates B-mode polarization in the CMB. The vector
metric potential V in Fourier space, in the generalized
Newtonian gauge, can be defined as [53]

 h0j�k; ��eikx � �VQ�1�; (1)

where h�� is the linear perturbation to the metric and Q�1�

is a divergenceless harmonic eigenmode of the Laplacian.
The reader is referred to [53,54] for a more detailed de-
scription of the formalism. At last scattering, V is given by
[53],

 V��
; k� � �8�Ga�2



Z �


0
d�a4k�1�pf�

�1�
f 	 �

�1�
s �;

(2)

where f represents the fluid and s the seed contributions to
the anisotropic stress, a subscript 
 indicates the values of
the conformal time � and scale factor a at last scattering.
The vector anisotropic stress of the fluid, included here, is
indirectly sourced by the strings through the metric.
However, the direct coupling of the string anisotropic stress
to the vector metric potential dominates over the (indirectly
sourced) fluid contribution. Finally, one can see from this
expression that the vector potential will decay as a�2 if it is
not actively seeded.

It is instructive to consider the vector-mode contribution
from one straight cosmic string segment. Without loss of
generality, one can choose k � ẑk [55], in which case the
T13 and T23 components of the Fourier transform of the
energy-momentum tensor of the string network become

pure vector modes, i.e. they do not contribute to the scalar
or tensor modes. The two components are statistically
equivalent, and it is sufficient to work with just one of
them. e.g. T13. The Fourier components of the energy-
momentum tensor of the string are given by [20,55,56]

 T00 �
����������������

1� v2
p

sin�kX̂03l=2�

kX̂03=2
cos� ~k � ~x0 	 k _̂X3v��;

Tij �
�
v2 _̂Xi _̂Xj �

�1� v2�

�2 X̂0iX̂
0
j

�
T00;

(3)

where X̂0i is the component of the string’s orientation in the

direction i and _̂Xi is the string’s velocity in the direction i,
v is the velocity, � is the wiggliness parameter that re-
normalizes the string’s tension based on its small-scale
structure, � is the tension, and ~xo is the string’s location
in space. We chose k � ẑk. In our notation, the anisotropic
stress is related to T13 via [54]

 ��1�s �k; �� � �2
���
2
p
T13�k; ��: (4)

The key observation one can make from these equations is
that the string contribution to anisotropic stress is always
present, even for a stationary string. The string’s orienta-
tion inherently violates isotropy.

For a single string, the strength of the scalar, vector, and
tensor contributions depend on the orientation of the string
with respect to k. A network of strings can be thought of as
a collection of many string segments at random positions,
each with a random orientation and velocity. The B-mode
power spectrum is determined by the two-point correlation
h
P
m�
�1�
s�m�

P
n�
�1�

s�n�i, where the sums are taken over all seg-

ments present at last scattering. If the segments are statis-
tically independent—which is approximately true since
they are taken to be comparable to the horizon size—
then the ensemble average reduces to a single sum over
contributions of separate strings, i.e. h

P
nj�

�1�
s�n�j

2i. In fact, if
all strings are statistically equivalent, this reduces to
Nhj��1�s�1�j

2i, where N is the number of segments and

��1�s �1� is the contribution from one string. One can analyti-
cally evaluate the average hj��1�s�1�j

2i for a straight string
using Eqs. (3) and (4) by averaging over uniformly distrib-
uted velocity directions, string positions, and orientations.
The dependence of the B-mode spectrum on the network
parameters can be inferred from how hj��1�s�1�j

2i varies with
v, l, and �. We will return to this when we interpret our
numerical results, but we sketch the main dependencies
now.

Two important network parameters—the correlation
length, l, and the strings’ root-mean square (rms) velocity,
v—enter T00 (see Eq. (3)) in a sine and cosine function,
respectively. Scaling l and v up and down, then, amounts to
changing the Fourier space dependence of the string con-
tribution. The dominant Fourier modes will determine the

4The other two parameters are the intensity I, and the one
quantifying the circular polarization, V. Circular polarization is
not produced at last scattering and is expected to be zero on
cosmological scales in the absence of large-scale magnetic fields
or other exotic physics.
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dominant angular modes of the B-mode spectrum and set
the location of the angular peaks. The sine function that
depends on l sets the location of the peak in string-sourced
power. The cosine function that depends on v also takes a
contribution from a random phase. Varying v changes the
number of cosine-peaks that contribute to the shape of the
overall peak. Higher velocity strings will contribute more
cosine-peaks and lead to broader B-mode spectra.
Changing the rms velocity also changes the ratio
hjTijj

2i=hjT00j
2i, i.e. the relative contribution of the aniso-

tropic stress versus the isotropic stress. Namely, increasing
v reduces this ratio. This can be seen by computing this
ratio from Eq. (3),

 

hjTijj
2i

hjT00j
2i
� hjX̂0iX̂

0
jj

2i � 2v2�hjX̂0iX̂
0
jj

2i 	 h�X̂0iX̂
0
j�� _̂Xl _̂Xk�i

	O�v4�;

so that any nonzero velocity always decreases the aniso-
tropic contribution. String wiggliness similarly suppresses
the anisotropic stress relative to the isotropic stress. All of
these effects can be seen in Sec. III B and Figs. 2–4, which
present the results from our numerical experiments.

III. DEPENDENCE OF THE B-MODE SPECTRUM
ON THE STRING NETWORK PROPERTIES

A. The string network model

The cosmic string model we use was introduced in
[20,55], based on the approach suggested in [57], and
developed into its present form in [56,58]. The code that
evaluates the CMB temperature and polarization spectra
for the model is publicly available as CMBACT [59]. In
this model, the string network is represented by a collec-
tion of uncorrelated straight string segments moving with
uncorrelated, random velocities. There are two fundamen-
tal length scales in such a model, as illustrated in Fig. 1: �,
the length of a string segment, which represents the typical
length of roughly straight segments in a full network; and
��, the typical length between two string segments, which
sets the number density of strings in a given volume (Ns /

1= ��2). The model assumes network scaling, which is ex-
pected from numerical simulations. In the simplest scaling,
the length of each segment at any time (�t) is taken to be
equal to the correlation length of the network ( ��t). This
length and the rms velocity of segments are computed from
the velocity-dependent one-scale model of Martins and
Shellard [60]. The positions and orientations of the seg-
ments are drawn from uniform distributions in space and
on a two-sphere, respectively. The model’s parameters
have been calibrated to produce source correlation func-
tions in agreement with those in Ref. [61]. The shapes of
the spectra obtained using the model are in good agreement
with results of other groups [27,62–64], who used different
methods.

On the cosmological scales probed by the CMB mea-
surements, the fine details of the string evolution do not
play a major role. It is the large-scale properties—such as
the scaling distance, the equation of state (wiggliness), and
the rms velocity—that determine the shape of the string-
induced spectra. All of these effects are accounted for by,
and are adjustable in, our model. Furthermore, the overall
normalization of the spectrum has a simple dependence on
the string tension and number density:

 Cstrings
‘ / Ns�G��2 /

�
G�

��

�
2
: (5)

Since we can understand the overall amplitude of the
spectrum in this simple way, we will focus on how the
shape and distribution of B-mode power spectra are altered
by changing various network parameters.

Finally, the wiggly nature of strings is accounted for by
modifying the string energy-momentum tensor using the
wiggly string equation of state:

 

~U � ��; ~T � ��1�; (6)

where � is a parameter describing the wiggliness, ~U and ~T
are the mass per unit length and the string tension of the
wiggly string, and � is the tension (or, equivalently, the
mass per unit length) of the smooth string. In addition to
modifying the equation of state, the presence of the small-
scale structure slows strings down on large scales. We
account for this by dividing the rms string velocity by the
parameter �. The wiggliness of the strings remains ap-
proximately constant during the radiation and matter eras,
but changes its value during the transition between the two.
We take the radiation era value, �r, to be a free parameter
that we vary, and set the matter era value to be �m � �1	
�r�=2, with a smooth interpolation between the two values
(as prescribed in [56]). For Nambu-Goto strings, this
roughly agrees with results of numerical simulations
[65,66] which show a decrease from �r � 1:8–1:9 in the
radiation era to �m � 1:4–1:6 in the matter era.

FIG. 1 (color online). Illustration of model length scale pa-
rameters.
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B. Spectrum dependence on network parameters

Before proceeding to discuss specific dependencies, let
us describe the main features in the shape of the string-
induced B-mode spectrum. All spectra in Fig. 2 have two
peaks. The less prominent peak at lower ‘ is due to the
rescattering of photons during reionization, which corre-
sponds to an optical depth of 0.09 [67], or an approximate
redshift range of 7< z< 12. The main peak, at higher ‘, is
the contribution from last scattering. Both peaks are quite
broad. This is because a string network seeds fluctuations
over a wide range of scales at any given time. The position
of the main peak is determined by the most dominant
Fourier mode stimulated at last scattering. One can esti-
mate this dominant scale using simple analytical consid-
erations based on the uncorrelated segment picture
presented in the previous section. It primarily depends on
the string correlation length at last scattering, but also is
affected by the rms string velocity and the wiggliness.
Hence, finding the location of the main string peak, which
falls in the range of many B-mode experiments (see
Sec. V), would give us a direct measure of the physics of
a cosmic string network.

We discuss the key dependencies in a sequence of sub-
sections below. For fixing the normalization, there are two
possible approaches. In the first, we make use of the
observational upper bound that at most �10% of the over-
all TT power is sourced by strings. We define the total
power as

 CX �
X2000

‘�2

�2‘	 1�CX‘ ; (7)

where the superscript X labels a particular type of the
spectrum. The string tension, G�, controls the overall
amplitude of the power spectrum, but does not affect its
shape or the ratio of the BB to the TT spectrum. So we can
adjust the string spectrum normalization (i.e. �G��2) so
that

 CTT
strings=C

TT
total � 0:1: (8)

We can then use the adjusted value of G� to evaluate the
B-mode spectrum. The results from this approach are
shown in Fig. 2. Following from this approach, when we
speak of the ‘‘amplitude’’ of BB power, this amplitude

10 100 1000

v = 0.1
v = 0.2
v = 0.3
v = 0.4
v = 0.5
v = 0.6
v = 0.7
v = 0.8

10 100 1000

FIG. 2 (color online). In these plots, the cosmic string BB power spectrum has been normalized such that the cosmic string
contribution to the total CMB TT power is 10%. (Top left) Variation of the segment correlation length. (Top center) Variation of the
string segments’ rms velocity. (Top right) Variation of the string wiggliness, �. Note also that we have plotted the B-mode spectra from
primordial gravity waves for a tensor-to-scalar ratio r � 0:1 (blue, solid line) and from E to B lensing (red, dashed line) in each panel
for comparison purposes. The lower three panels show the ratio of the BB power to TT power over the range of parameters considered.
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should be interpreted as the amplitude of BB relative to TT
power. In particular, in the lower half of Fig. 2 we plot
CBB=CTT. Increasing the wiggliness of the strings, for
example, increases the TT power but does not affect the
anisotropic stress. Hence, after we reduce G� to keep the
string-induced CMB anisotropy at a 10% level, the ampli-
tude of the predicted B-mode signal will be lower for larger
wiggliness.

The other approach we employ is to ignore constraints
on the TT spectrum and simply ask what G� will be
detectable, given a certain experimental sensitivity to B-
mode power. This way of looking at the problem allows us
to neglect questions about what the exact upper limit of the
string contribution to the TT power is and gives a more
direct measure of how varying network parameters can
make string-sourced BB power more or less detectable.

1. Correlation length

Correlation length controls the dominant momentum
mode contributed by strings to the anisotropic and ordinary
stress. In our string network model, the comoving length l
is a function of time determined from the one-scale model
of [60]. Scaling implies that the physical correlation length
L�t� � al remains a fixed fraction of the horizon. That is,
L � �r;mt, where �r and �m are constants corresponding to
the radiation and matter eras, respectively. Typically, �m �
2�r, and the transition between the two scaling regimes
carries well into the matter era, so the value of � during the
last scattering epoch is much closer to �r than it is to �m.

To study how the B-mode spectrum changes when the
correlation length varies, we changed the function l by
constant factors. In other words, in each case we did not
alter the parameters of the one-scale model—which enc-
odes a relationship between v and l—but simply multi-
plied the output length scale by a constant before feeding it
into the CMB calculations. In Figs. 2 and 3 we show results
for six such trials, corresponding to �r � f0:04; 0:27; 0:5;
0:74; 0:97; and 1:2g.

The string length enters via sin�Akl� in Eq. (3), where
A < 0:5 is a randomized constant. Hence we would expect
that the dominant string contribution—the location of the
main string power spectrum peak—scales monotonically
with l. A larger l causes a ‘‘longer’’ mode to be dominant
with the peak at a smaller ‘ multipole. Indeed, this is what
we observe numerically, as shown in Figs. 2 and 3.

The amplitude of the BB contribution relative to the TT
contribution is not strongly dependent on l, as evident from
the bottom panel in Fig. 2. The overall amplitude of the BB
contribution is accurately captured by the ��2 scaling of
the string number density. Aside from this overall rescal-
ing, the main effect of larger string correlation length is to
move the location of the peak of the spectrum to lower ‘,
enhancing the B-mode power at low-‘ < 100, the region of
ell space in which strings and primordial tensor modes
produce comparable power.

2. String velocity

The rms string velocity remains approximately constant
through the radiation era and the early matter era, with a
typical value of vr � 0:65 for the default parameters used
in [60]. To study the effect of different v’s on the B-mode
spectrum, we employed a method similar to the one used in
the previous subsection. Namely, we did not alter the
parameters of the one-scale model, but instead multiplied
the output for the rms string velocity by a constant factor to
obtain values of v during the radiation epoch in the range
0:1< vr < 0:8. Our results are presented in Fig. 4.

As anticipated from analytical considerations in Sec. II,
larger values of the rms velocity decrease the amount of B-
mode power relative to TT power. However, the depen-
dence of the shape of the spectrum on velocity is nontrivial.
The peak moves to higher multipoles (smaller scales) for
low and moderate velocities (v� 0:5 and v! 0), but
moves to larger scales for higher velocities and between
the low and moderate velocities. These changes reflect the
nonlinear dependence on velocity encoded in Eq. (3), aver-
aged over an entire network. The chief cause of this effect
seems to come from the cosine dependence of the aniso-
tropic stress on velocity. As velocity grows larger, more
cosine maxima contribute to the power. Hence the peak is
not as well defined by the overall ‘-dependence, and
becomes a somewhat broader peak, with many velocity-
driven momentum modes contributing.

For detectability, the chief result of changing the string
segments’ rms velocity is that higher velocities generally
move the peak of the spectrum to lower ‘ and, conse-
quently, force proportionally more of the B-mode power
into the low-‘�<100� region. We should not be surprised
that the effect of higher velocity is qualitatively similar to
that of larger �. The world sheet area swept out by a string
segment is proportional to vrms�t, and the effect strings
have on their surroundings is related to this area. Hence,
higher velocities have a similar effect to longer correlation
lengths.

3. Wiggliness

The amount of small-scale structure on strings, or their
wiggliness, affects the B-mode spectra in two ways. One
effect is that wigglier strings are slower on horizon scales,
hence the trends associated with varying the rms velocity
would again be relevant. The other effect is the suppression
of the stress-components of the energy-momentum tensor
with respect to the energy density. This follows immedi-
ately from the modified string equation of state (6) and,
equivalently, from the ��2 factor in (3). Generally, wig-
glier strings generate less vector-mode power relative to
the total power, because of the overall suppression of the
anisotropic stress. The dependence of the peak location on
the wiggliness comes through the effect on the rms velocity
of the network. For the range of �r we have considered in
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this work (1<�r < 4), the effect on the location of the
peak is relatively minor.

IV. DETECTION THRESHOLDS

The standard inflationary paradigm predicts two sources
for B-mode polarization: primordial gravity waves and
gravitational lensing of E-mode polarization into B-mode
polarization by intervening structure. The physics under-
lying the latter of these sources is well established, and the
spectrum and amplitude of this source of B-mode polar-
ization can be predicted using knowledge of the E-mode
spectrum, which is generated directly from the well-
understood adiabatic, scalar perturbations from inflation.
B-modes from gravity waves, however, are quite model
dependent in their amplitude. Gravity waves are tensor
mode sources of perturbation that contribute to the tem-
perature anisotropies primarily at low multipoles. Because
of this, it has become standard practice in the literature to
characterize the size of the gravity wave contribution to the
primordial anisotropies through a simple model-
independent parameter,

 r �
CTT
‘�2�tensor�
CTT
‘�2�scalar�

:

As mentioned in the introduction, this ratio can reach
values as high as r ’ 0:5 in some large-field models of
inflation, but is typically low in hybrid and brane inflation
models. The current limits from WMAP3 are r < 0:33 at
95% C.L. [67].

With a large number of experiments hoping to measure
CMB polarization either underway or in planning [68], we
cannot easily give an exhaustive account of the ability of
each to detect cosmic string-sourced B-modes.
Nonetheless, it is instructive to compare a few relatively
near-term experiments, which give us some idea about
what kind of detection thresholds will be achieved in the
next couple of years. Similar reviews have been conducted
in Refs. [21,27]. Experimental targets can roughly be
divided into ‘‘high’’ and ‘‘low’’ ‘ sensitivity ranges. The
low range is roughly ‘ � 100, where gravity wave-sourced
B-modes would dominate if they exist. The high range is
100< ‘< 1500, the range of multipoles where E to B

10 100 1000

FIG. 3 (color online). Here we focus on how detectability varies with the correlation length. We do not enforce that the TT power
sourced by strings is 10% of the total CMB TT power. Instead we fix G� � 3� 10�7. On the left, we plot the spectrum, with the
overall amplitude normalization factored out (see label on y-axis). On the right, we plot (top) total BB power, (middle) BB power
summed over ‘ < 100, and (bottom) the location of the peak of the spectrum. Higher low-‘ power means a stronger signal in the
gravity wave region. A lower peak ‘ makes it easier to distinguish string-sourced B-modes from the E to B lensing signal. Of note here
is the nearly linear dependence of low-‘�<100� power on correlation length.

B-MODES FROM COSMIC STRINGS PHYSICAL REVIEW D 77, 083509 (2008)

083509-7



lensing is expected to dominate; this is also the range
where the peak of string-sourced B-modes lies.

To make estimates of experimental sensitivity in the low
range, we devised a simple factor for translating between
gravity wave and cosmic string-sourced CBB

‘ power. Most
experimental groups estimate what r they will be able to
reach. This estimate amounts to reporting their sensitivity
to B-mode power in the low range. Since strings also make
B-mode power in this range, albeit with a different spec-
trum, we can calculate what G� would be necessary to
produce the same B-mode power as gravity waves for a
given tensor-to-scalar ratio, r. Practically, we convert from
r to G� as follows: we generated the CBB

‘ spectrum using
CMBFAST for a particular r. We then summed the total
power in the CBB

‘ s between 2< ‘ � 100. We then used our
own code to repeat the calculation for string-sourced CBB

‘ s
for our fiducial G�. Then, since CBB

‘ / r for tensor modes
and CBB

‘ / �G��
2 for cosmic strings generally, while

CBB
‘ / ��=0:3��vrms=0:65�2 in the low-‘ region, we were

able to infer a ‘‘translation’’ equation—the string tension
G� necessary to create the same BB power between 2<

‘ � 100 for a given scalar-to-tensor ratio, r, given a set of
network parameters. For our string model this is given
approximately by

 G�$ 1:4� 10�6
���
r
p
�
0:65

vrms

� �������
�

0:3

s
�; 2< ‘< 100:

In the high range, lensing of E-mode to B-mode polar-
ization is expected to be the dominant source of BB power.
However, this is also the range where the string-sourced B-
mode spectrum peaks. Hence, we were able to do a calcu-
lation in this range similar to the one described above to
discover how much at what G� strings would source the
same amount of B-mode power as lensing in this high
range. To calculate this, we summed the power in the
CBB
‘ s for 100< ‘< 1000. Our result is that the string-

sourced B-modes have the same power as lensed B-modes
in the high region forG� � 1:8� 10�7, assuming smooth
strings. Again, this is a different kind of comparison than
the one given above, in the low region. For low ‘, it is quite
possible that there will be no signal from gravity waves at

v = 0.1

v = 0.2

v = 0.3

v = 0.4

v = 0.5

v = 0.6

v = 0.7

v = 0.8

FIG. 4 (color online). Here we focus on how detectability varies with the string segments’ rms velocity. We do not enforce that the
TT power sourced by strings is 10% of the total CMB TT power. Instead, we fix G��0:3=�� � 3� 10�7. On the left, we plot the
spectrum, with the overall amplitude normalization factored out (see label on y-axis). On the right, we plot (top) total BB power,
(middle) BB power summed over ‘ < 100, and (bottom) the location of the peak of the spectrum. Higher low-‘ power means a
stronger signal in the gravity wave region. A lower peak ‘ makes it easier to distinguish string-sourced B-modes from the E to B
lensing signal. Of note is the quadratic dependence of low-‘�<100� power on the strings’ rms velocity.
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all, and that a possible string signal will be the only source
of power in this region. For high ‘, though, we will
certainly find the lensed E to B-mode spectrum. So the
proper approach in the high range is to look for a system-
atic excess in B-mode power over what is expected from
lensing. This sort of excess is plotted in Fig. 5, and was
analyzed in some detail for the experiment C‘over by [27].
The fraction of TT power sourced by strings in this case
would be only 3%, yet B-mode signal in the high region is
doubled.

For the experiments listed below, we designate each as L
if it covers the low range and H if it covers the high range.

(i) QUaD [69] (L=H): This South Pole based bolometric
array that has completed data collection. It explores
the range 25< ‘< 1000, with sensitivity enough
eventually to reach r � 0:14! G� � 5:2� 10�7

in the low range, and with a good chance of seeing
E to B lensing (and with it, a string-sourced excess)
in the high range. Results from its first season of
operation were reported in [70], while the full results
should be available soon [71].

(ii) BICEP [72] (L): This experiment is presently taking
its first season of data. Similar to QUaD, it is located
at the South Pole and explores between 20< ‘<
100, 120, with enough sensitivity to reach r � 0:1!
G� � 4:4� 10�7 by its third year (2009).

(iii) EBEX [73] (L=H): A balloon-based experiment that
is expected to begin taking data in 2008. It will

observe in the range 20< ‘< 1000, with greatest
sensitivity at high-‘. Though its proposal is not ex-
plicit on this point [73], they appear to be able to
observe r � 0:06! G� � 3:4� 10�7 at low-‘,
and have enough sensitivity at higher ‘ that they
should be able to detect E to B lensing, and hence
observe a string-sourced excess in the high range. If
G� * 3� 10�7, EBEX could definitively detect
and confirm cosmic string-sourced B-mode
polarization.

(iv) C‘over [74] (L=H): Located in the Atacama desert of
Chile, C‘over should begin taking data in 2009. It
will explore between 20< ‘< 1000, and has
enough sensitivity to see r � 0:02! G� �
2� 10�7 in the low-‘ band. Like EBEX, C‘over
should be able to detect E to B lensing, and so could
detect and confirm a cosmic string signal down to
G� � 10�7.

(v) QUIET [75] (L=H): Also to be located in the
Atacama, QUIET operates in two ‘ ranges, and
expects to operate through two operational phases.
In phase one, it will observe at (1) ‘� 100, reaching
at least r � 0:18! G� � 6� 10�7 and (2) between
500< ‘< 1000 with enough sensitivity to measure
E to B lensing. In phase two, they hope to give best-
of-breed measurements between 50< ‘< 250 and
450< ‘< 1700, though it is unclear what r they
hope to reach. Construction for this instrument is
underway.

(vi) PolarBearR [76] (H): An experiment to be placed on
the VIPER South Pole telescope, concentrating on
the range 100< ‘< 2000. PolarBeaR-I, the first
phase, should be able to detect r � 0:1 in the
low-‘ range and give a very well characterized mea-
surement of the E to B lensing signal up to ‘� 900,
with at least 9 ‘ bins in the H range. This level of
resolution in ‘ space could allow a cosmic string
signal to be differentiated from a lensing signal for
G� * 10�7. A possible later upgrade, PolarBeaR-II,
would give a very fine-grained (� 20 ‘-bins) mea-
surement of the H region.

V. CONCLUSION

Cosmic string networks can produce B-mode polariza-
tion in the CMB at observable levels if the strings source
between 1% and 10% of the TT power in the CMB. This
prediction holds across a wide variety of string network
parameter values, as we have discussed above. Smooth
(�� 1) and/or slow-moving (vrms � 0:1) strings produce
the strongest B-modes, because they generate the largest
ratio of anisotropic to isotropic stress sourced by cosmic
strings.

The first B-mode polarization experiments will bin
many ‘ multipoles together. We calculate that a cosmic
string-sourced B-mode signal could mimic the B-mode

FIG. 5 (color online). A possible high-‘ detection scenario, in
which a systematic excess of B-mode power over what is
expected from E to B lensing is observed. The black solid line
is the sum of the string and lens-sourced B-mode power. The
dotted blue line is the string-sourced portion, while the red
dashed line is the expected lensing spectrum. Here we have
taken G��0:3=�� ’ 1:5� 10�7.
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power expected from inflationary gravity waves in the
range between 2< ‘< 100. Since low-‘ power from
strings versus inflationary gravity waves scale approxi-
mately as G�$ 1:4� 10�6

���
r
p
��0:65=vrms�

������������
�=0:3

p
, ex-

pectations that future experiments could probe r� 10�3

[77] imply that cosmic strings with tensions as low as 5�
10�8 may eventually be detectable via their low-‘ B-mode
polarization. In the meantime, without fine resolution in ‘,
the only way to discriminate between these two sources
would be to look at high-‘ (100< ‘< 1500), where the
string-sourced B-mode spectrum reaches its peak. In this
range, gravitational lensing of E-mode polarization into B-
mode polarization is expected to dominate, so a string
contribution would appear as a systematic excess of power
over what is expected (see Fig. 5).

Disentangling the string-sourced and primordial gravity
wave signals will require either good spectral information,
via narrow ‘ bins, or accurate and reliable calculations of
the spectrum and amplitude of the E to B lensing signal.
Some existing methods for calibrating lensing, however,
rely on the assumption that all of the B-mode polarization
present for ‘ > 150 is sourced by lensing [78]. In our
model, strings generate the same B-mode power as is
expected from the E to B lensing signal for G� ’ 1:8�
10�7 (for standard network parameters and smooth
strings); thus, strings with a tension in this range would
lead to a doubling of the B-mode power in the high region.

If low-‘ B-modes or an excess of power in the high-ell
region are seen, we should look for cosmic strings with
tensions G� * 10�8 in another observational probe, such
as gravitational lensing [79,80] or small-angle anisotropies
in the CMB temperature [81,82]. Such an observation
would also motivate a reworking of lensing reconstruction
algorithms to account for the cosmic string contribution.
Even in the absence of such an analysis, detailed spectral
information should potentially allow one to distinguish

between the inflationary and stringy reionization peaks at
low-‘. In practice, we expect that this will give only
ambiguous results in the near term. Accurately calibrating
the E to B lensing spectrum and amplitude is more prom-
ising, since it allows direct access to the peak in string-
generated B-mode power, which—as noted before—will
be present as an apparent excess of power in this high
multipole range.

The discovery of a cosmic string signal in the B-mode
polarization of the CMB would teach us about the string
network that generated it since the shape of the string-
sourced spectrum is sensitive to network parameters. It
would also help us to determine the energy scale at which
inflation occurred. As we have demonstrated, the expected
string-sourced B-mode spectrum is robust to theoretical
uncertainty in the string network model. Thus, as these
experiments turn on and collect polarization data, a cosmic
string network will either be seen through its polarization
spectrum or will be restricted to a considerably lower
tension in the case of nonobservation, with polarization-
based limits on G� being comparable to those expected
from the analysis of the data from PLANCK [22].
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