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The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large
class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM). The
results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized
Zeldovich-Kantowski-Dyer-Roeder distance which is characterized by a smoothness parameter ��z�
and a power index �, and, second, we provide a statistical analysis to angular size data for a large sample
of milliarcsecond compact radio sources. As a general result, we have found that the � parameter is totally
unconstrained by this sample of angular-diameter data.
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I. INTRODUCTION

An impressive convergence of recent astronomical ob-
servations are suggesting that our world behaves like a
spatially flat scenario dominated by cold dark matter
(CDM) plus an exotic component endowed with large
negative pressure, usually named dark energy [1–3]. In
the framework of general relativity, besides the cosmologi-
cal constant, there are several candidates for dark energy,
among them: a vacuum decaying energy density, or a time
varying ��t� [4], the so-called ‘‘X-matter’’ [5], a relic
scalar field [6], and a Chaplygin gas [7]. Some recent
review articles discussing the history, interpretations, as
well as the major difficulties of such candidates have also
been published in the past few years [8].

In the case of X-matter, for instance, the dark energy
component is simply described by an equation of state
px � !�x. The case ! � �1 reduces to the cosmological
constant, and together the CDM defines the scenario usu-
ally referred to as ‘‘cosmic concordance model’’ (�CDM).
The imposition ! � �1 is physically motivated by the
classical fluid description [9]. However, as discussed by
several authors, such an imposition introduces a strong bias
in the parameter determination from observational data. In
order to take into account this difficulty, superquintessence
or phantom dark energy cosmologies have been recently
considered where such a condition is relaxed [10]. In
contrast to the usual quintessence model, a decoupled
phantom component presents an anomalous evolutionary
behavior. For instance, the existence of future curvature
singularities, a growth of the energy density with the
expansion, or even the possibility of a rip-off of the struc-
ture of matter at all scales are theoretically expected ([11]
for a thermodynamic discussion). Although possessing
such strange features, the phantom behavior is theoreti-
cally allowed by some kinetically scalar field driven cos-
mology [12], as well as by brane world models [13], and,
perhaps, more important to the present work, a

PhantomCDM cosmology provides a better fit to type Ia
Supernovae observations than does the �CDM model [14].
Many other observational and theoretical properties phan-
tom driven cosmologies (more generally, of XCDM sce-
narios) have been successfully confronted to standard
results (see, for instance [15–19]).

In this context, one of the most important tasks for
cosmologists nowadays is to confront different cosmologi-
cal scenarios driven by cold dark matter (CDM) plus a
given dark energy candidate with the available observatio-
nal data. As widely known, a key quantity for some cos-
mological tests is the angular distance-redshift relation,
DA�z�, which for a homogeneous and isotropic background
can readily be derived by using the Einstein field equations
for the Friedmann-Robertson-Walker (FRW) geometry.
From DA�z�, one obtains the expression for the angular
diameter ��z� which can be compared with the available
data for different samples of astronomical objects [20].

Nevertheless, the real Universe is not perfectly homoge-
neous, with light beams experiencing mass inhomogene-
ities along their way. Actually, from small to intermediate
scales ( � 100 Mpc), there is a lot of structure in the form
of voids, clumps, and clusters which is probed by the
propagating light [21]. Since the perturbed metric is un-
known, an interesting possibility to account for such an
effect is to introduce the smoothness parameter � which is
a phenomenological representation of the magnification
effects experienced by the light beam. From general
grounds, one expects a redshift dependence of � since
the degree of smoothness for the pressureless matter is
supposed to be a time varying quantity [17,18]. When � �
1 (filled beam), the homogeneous FRW case is fully re-
covered; �< 1 stands for a defocusing effect while � � 0
represents a totally clumped universe (empty beam). The
distance relation that takes these mass inhomogeneities
into account was discussed by Zeldovich [22] followed
by Kantowski [23], although a clear-cut application for
cosmology was given only in 1972 by Dyer and Roeder
[24]. Later on, by considering a perturbed Friedmannian
model Tomita [25] performed N-body simulations with the
CDM spectrum in order to determine the distribution for �
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(see also Ref. [26] for a more general analysis involving
distances in perturbed models). Many references may also
be found in the textbook by Schneider, Ehlers, and Falco
[27], as well as Kantowski [28–30].

Many studies involving the Zeldovich-Kantowski-Dyer-
Roeder (ZKDR) distances in dark energy models have
been published in the literature. Analytical expressions
for a general background in the empty beam approximation
(� � 0) were derived by Sereno et al. [31]. By assuming
that both dominant components may be clustered they also
discussed how the critical redshift, i.e., the value of z for
which DA�z� is a maximum [or ��z� minimum], and
compared to the homogeneous background results as given
by Lima and Alcaniz [32], and further discussed by Lewis
and Ibata [33], and Araújo and Stoeger [34]. More recently,
Demianski et al. [35] derived a useful analytical approxi-
mate solution for a clumped concordance model (�CDM)
valid on the interval 0 � z � 10. Additional studies on this
subject involving time delay (Lewis and Ibata [33]; Giovi
and Amendola [36]), gravitational lensing (Kochanek;
Kochanek and Schechter [37]) or even accelerated models
driven by particle creation have also been considered
[38,39].

Although carefully investigated in many of their theo-
retical and observational aspects, an overview in the litera-
ture shows that a quantitative analysis on the influence of
dark energy in connection with inhomogeneities present in
the observed universe still remains to be studied.
Analytical expression for a general applied for the ��z�
statistics with basis on a �CDM cosmology with constant
� [40]. It was concluded that the best fit model occurs at
�M � 0:2 and � � 0:8 whether the characteristic angular
size l of the compact radio sources is marginalized. More
recently, the smoothness � parameter was constrained
through a statistical analysis involving Supernovae Ia
data [41]. A �2-analysis based on the 182 SNe Ia data of
Riess et al. [2] constrained the pair of parameters ��M;��
to be �M � 0:33�0:09

�0:07 and� � 0:42 (2�). Such an analysis
has also been carried out in the framework of a �CDM
cosmology.

In this paper, we focus our attention on X-matter cos-
mologies with special emphasis to phantom models (!<
�1) by taking into account the presence of a clustered cold
dark matter. The mass inhomogeneities will be described
by the ZKDR distance characterized by a smoothness
parameter ��z� which depends on a positive power index
�. The main objective is to provide a statistical analysis to
angular size data from a large sample of milliarcsecond
compact radio sources [42] distributed over a wide range of
redshifts (0:011 � z � 4:72) whose distance is defined by
the ZKDR equation. As an extra bonus, it will be shown
that a pure CDM model (�M � 1) is not compatible with
these data even for the empty beam approximation (��0).

The manuscript is organized as follows. In Sec. II we
outline the derivation of the ZKDR equation for a XCDM

cosmology. We also provide some arguments (see the
Appendix) for a locally nonhomogeneous Universe where
the homogeneous contribution of the dark matter obeys the
relation �h � ��o��M=�o��, where � is a positive num-
ber, �M is the average matter density, and �o its present
value. In Sec. III we analyze the constraints on the free
parameters � and �M from angular size data. We end the
paper by summarizing the main results in Sec. IV.

II. THE EXTENDED ZKDR EQUATION

Let us now consider a flat FRW geometry (c � 1)

 ds2 � dt2 � R2�t��dr2 � r2d�2 � r2sin2�d�2�; (1)

where R�t� is the scale factor. Such a space-time is sup-
ported by the pressureless CDM fluid plus a X-matter
component of densities �M and �x, respectively. Hence,
the total energy momentum tensor, T�	 � T�	

�M� �

T�	�x�, can be written as

 T�	 � ��M � �1�!��x	U�U	 �!�xg�	; (2)

where U� � 
�o is the hydrodynamics 4-velocity of the
comoving volume elements. In this framework, the inde-
pendent components of the Einstein field equations

 G�	 
 R�	 � 1
2g
�	R � 8�GT�	; (3)

take the following forms:
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(5)

where an overdot denotes derivative with respect to time
and Ho � 100h Kms�1 Mpc�1 is the Hubble parameter.
By the flat condition, �x � 1��M is the present day dark
energy density parameter. As one may check from (2)–(5),
the case ! � �1 describes effectively the favored ‘‘cos-
mic concordance model’’ (�CDM).

On the other hand, in the framework of a conformally
flat FRW metric, the optical scalar equation in the geomet-
ric optics approximation reads (optical shear neglected)
[43]

 

����
A
p

00 � 1
2R�	k

�k	
����
A
p
� 0; (6)

where A is the beam cross sectional area, plicas means
derivative with respect to the affine parameter describing
the null geodesics, and k� is a 4-vector tangent to the
photon trajectory whose divergence determines the optical
scalar expansion [17,31,36]. The circular frequency of the
light ray as seen by the observer with 4-velocity U� is! �
U�k�, while the angular-diameter distance, DA, is propor-
tional to

����
A
p

[27].
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As widely known, there is no acceptable averaging
procedure for smoothing out local inhomogeneities. After
Dyer and Roeder [24], it is usual to introduce a phenome-
nological parameter, ��z� � 1� �cl

h�Mi
, called the ‘‘smooth-

ness’’ parameter. For each value of z, such a parameter
quantifies the portion of matter in clumps (�cl) relative to
the amount of background matter which is uniformly dis-
tributed (�M). As a matter of fact, such authors examined
only the case for constant �; however, the basic conse-
quence of the structure formation process is that it must be
a function of the redshift. Combining Eqs. (2), (3), and (6),
after a straightforward but lengthy algebra, one finds that
the angular-diameter distance, DA�z�, obeys the following
differential equation:

 �1� z�2F
d2DA

dz2 � �1� z�G
dDA

dz
�HDA � 0; (7)

which satisfies the boundary conditions:

 

8><
>:
DA�0� � 0;

dDA
dz

��������0
� 1:

(8)

The functions F , G, and H in Eq. (7) read
 

F � �M�1� z�
3 � �1��M��1� z�
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The smoothness parameter ��z�, appearing in the expres-
sion of H , assumes the form below (see the Appendix for
a detailed discussion)

 ��z� �
�o�1� z�

3�

1� �o�1� z�3�
; (10)

where �o and � are constants. Note that the fraction �o �
�o=�1� �o� is the present day value of ��z�. In Fig. 1 we
show the general behavior of ��z� for some selected values
of �o and �.

At this point, it is interesting to compare Eq. (7) together
with the subsidiary definitions (8)–(10) with other treat-
ments appearing in the literature. For � � 0 (constant �)
and ! � �1 (�CDM) it reduces to Eq. (2) as given by
Alcaniz et al. [40]. In fact, for ! � �1 the function H is
given by H � 3�

2 �M�1� z�3. Further, recalling the exis-
tence of a simple relation between the luminosity distance
and the angular-diameter distance [from Etherington prin-
ciple [44], DL � �1� z�

2DA], it is easy to see that Eq. (3)
of Santos et al. [41] is recovered. A more general expres-
sion for the �CDM model (by including the curvature
term) has been derived by Demianski et al. [35]. As one

may check, for � constant, by identifying ! 
 m=3� 1,
our Eq. (7) is exactly Eq. (10) as presented by Giovi and
Amendola [36] in their time delay studies [see also Eq. (2)
of Sereno et al. [45]]. Different from other approaches
appearing in the literature (see, for instance,
Refs. [25,26]), we stress that in this paper the � parameter
is always smaller than unity. In addition, the � parameter
may also depend on the direction along the line of sight (for
a discussion of such effects see Linder [18], Sereno et al.
[45], Wang [46]).

FIG. 1 (color online). The smoothness parameter as a function
of the redshift for some selected values of �o and �. All curves
approach the filled beam result (� � 1) at high redshifts regard-
less of the values of �o and �. Note that �o determines �o �
��z � 0�. For a given �o the curves start at the same point but
the rate approaching unit (filled beam) depends on the � pa-
rameter.
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FIG. 2 (color online). Angular-diameter distance for a flat
FRW phantom cosmology. The curves display the effect of the
equation of state parameter for �o � 0:5 and � � 0. The thick
curve corresponds to the �CDM model. Note that, for a given
redshift, the distances always increase for! beyond the phantom
divide line (!<�1).
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Let us now discuss the integration of the ZKDR equation
with emphasis in the so-called phantom dark energy model
(!<�1). In what follows, assuming that ! is a constant,
we have applied for all graphics a simple Runge-Kutta
scheme (see, for instance, [47]).

In Fig. 2 one can see how the equation of state parame-
ter, !, affects the angular-diameter distance. For fixed
values of �M � 0:3, �o � 0:5, and � � 0, all the dis-
tances increase with the redshift when ! diminishes and
enters in the phantom regime (!<�1). For comparison,
we have also plotted the case for �CDM cosmology (! �
�1).

In Fig. 3 we show the effect of the � parameter on the
angular-diameter distance for a specific phantom cosmol-

ogy with ! � �1:3, as requested by some recent analyses
of Supernovae data [2]. For this plot we have considered
�o � 0:5. As shown in the Appendix, �o � ��h=�cl�z�0 is
the present ratio between the homogeneous (�h) and the
clumped (�cl) fractions. It was fixed in such a way that �o
assumes the value 0.33. Until redshifts of the order of 2, the
distance grows for smaller values of �, and after that, it
decreases following nearly the same behavior.

In Fig. 4 we display the influence of the �o parameter on
the angular-diameter distance for two distinct sets of �
values. The cosmological framework is defined �M � 0:3
and the same equation of state parameter ! � �1:3 (phan-
tom cosmology). For each branch (a subset of 3 curves with
fixed �), the distance increases for smaller values of �o, as
should be expected.

III. ZKDR DISTANCE AND ANGULAR SIZE
STATISTICS

As we have seen, in order to apply the angular-diameter
distance to a more realistic description of the universe, it is
necessary to take into account local inhomogeneities in the
distribution of matter. Similarly, such a statement remains
true for any cosmological test involving angular-diameter
distances, as for instance, measurements of angular size,
��z�, of distant objects. Thus, instead of the standard FRW
homogeneous diameter distance, one must consider the
solutions of the ZKDR equation.

Here we are concerned with angular diameters of light
sources described as rigid rods and not isophotal diameters.
In the FRW metric, the angular size of a light source of
proper length l (assumed free of evolutionary effects) and
located at redshift z can be written as

 ��z� �
‘

DA�z�
; (11)

where ‘ � 100lh is the angular size scale expressed in
milliarcsecond (mas) while l is measured in parsecs for
compact radio sources (see below).

Let us now discuss the constraints from angular size
measurements of high z objects on the cosmological pa-
rameters. The present analysis is based on the angular size
data for milliarcsecond compact radio sources compiled by
Gurvits et al. [42] (see also [20] for applications to the
unclustered FRW case). This sample is composed by 145
sources at low and high redshifts (0:011 � z � 4:72) dis-
tributed into 12 bins with 12–13 sources per bin (for more
details see Gurvits et al. [42]). In Fig. 5 we show the binned
data of the median angular size plotted as a function of
redshift z to the case with � � 0 and some selected values
of �M and �o � �o=�1� �o� � constant. As can be seen
there, for a given value of �M the corresponding curve is
slightly modified for different values of the smoothness
parameter �.

Now, in order to constrain the cosmic parameters, we
first fix the central value of the Hubble parameter obtained

β ω Ω

γ
γ
γ
γ
γ

FIG. 3 (color online). Effects of the � parameter on the
angular-diameter distance. For all curves we fixed ! � �1:3,
�o � 0:5, and �M � 0:3. Note that the distances increase for
smaller values of �.

ω Ω

β γ
β γ
β γ
β γ
β γ
β γ

FIG. 4 (color online). Influence of the �o parameter on the
angular-diameter distance for �M � 0:3 and ! � �1:3. The
curves are separated in two sets corresponding to the values of
� � 0:5, 0.9 as indicated in the box. As expected, both sets
present the same behavior at low redshifts.
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by the Hubble Space Telescope (HST) key project Ho �
72� 8 km s�1 Mpc�1 (Freedman et al. [48]). Nowadays,
this HST result has been confirmed by many different
classes of estimators like the Sunyaev-Zeldovich effect
and the ages of old high redshifts galaxies [49]. This value
is also in accordance with the 3 years release of the WMAP
team [3]; however, it is greater than the recent determina-
tion by Sandage and collaborators [50]. Following standard
lines, the confidence regions are constructed through a �2

minimization

 �2�l; !; �� �
X12

i�1

���zi; l; !; �� � �oi	2

�2
i

; (12)

where ��zi; l; !; �� is defined from Eq. (7) and �oi are the
observed values of the angular size with errors �i of the ith
bin in the sample. The confidence regions are defined by
the conventional two-parameters �2 levels. In this analysis,
the intrinsic length l is considered a kind of ‘‘nuisance’’
parameter, and, as such, we have also marginalized over it.

In Fig. 6 we show confidence regions in the!� � plane
fixing �M � 0:263, and assuming a Gaussian prior on the
! parameter, i.e.,! � �1� 0:3 (in order to accelerate the
universe). The ‘‘�’’ indicates the best fit model that occurs
at ! � �1:03 and � ’ 0:9.

In Fig. 7 the confidence regions are shown in the �M �
� plane. We have now assumed a Gaussian prior on �M,
i.e., �M � 0:3� 0:1 from the large scale structure. From
Figs. 6 and 7, it is also perceptible that, while the parame-
ters ! and �M are strongly restricted, the entire interval of
� is still allowed. This shows the impossibility of tightly
constraining the smoothness parameter � with the current
angular size data. This result is in good agreement with the
one found by Lima and Alcaniz [4], where the same data
set were used to investigate constraints on quintessence
scenarios in homogeneous background, and is also in line
with the one obtained by Barber et al. [51] who argued in
favor of �o � ��z � 0� near unity (see also Alcaniz,
Lima, and Silva [40] for constraints on a clustered
�CDM model).

IV. SUMMARY AND CONCLUDING REMARKS

All cosmological distances must be notably modified
whether the space-time is filled by a smooth dark energy
component with negative pressure plus a clustered dark
matter. Here we have addressed the question of how the
angular-diameter distance of extragalactic objects are
modified by assuming a slightly inhomogeneous universe.

xΩΩ

αα

ωω

FIG. 6 (color online). Confidence regions in the !� � plane
according to the sample of angular size data by Gurvits et al.
[42] and fixed �M � 0:263 as shown in the panel. The con-
fidence levels of the contours are indicated. The point ‘‘x’’ marks
the best fit values, ! � �1:03 and � � 0:90.

ωωx

αα

ΩΩ

FIG. 7 (color online). Confidence regions in the �M � � plane
according to the sample of angular size data by Gurvits et al.
[42]. For a phantom cosmology with ! � �1:023, the confi-
dence levels of the contours are indicated. As in Fig. 6, the x also
points to the best fit values shown in the panel.

Ω

θθ α ω
α ω
α ω
α ω
α ω

FIG. 5 (color online). Angular size versus redshift according to
the ZKDR distance. Curves for �M � 0:3, � � 0, and different
values of ! are shown. The data points correspond to 145
compact radio sources binned into 12 bins (Gurvits et al.
[42]). For comparison, the filled beam �CDM has been in-
cluded.
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The present study complements our previous results [20]
by considering that the inhomogeneities can be described
by the Zeldovich-Kantowski-Dyer-Roeder distance (in this
connection, see also Giovi and Amendola [36]; Lewis and
Ibata [33]; Sereno et al. [45]; Demianski et al. [35]). The
dark energy component was described by the equation of
state px � !�x. A special emphasis was given to the case
of phantom cosmology (!<�1) when the dominant en-
ergy condition is violated. The effects of the local clustered
distribution of dark matter have been described by the
smoothness phenomenological parameter ��z�, and a sim-
ple argument for its functional redshift dependence was
given in the Appendix (see also Fig. 1).

The influence of the dark energy component was quan-
tified by considering the angular diameters for sample of
milliarcsecond radio sources (Fig. 5) as described by
Gurvits et al. [42]. By marginalizing over the characteristic
angular size l, fixing �M � 0:263, and assuming a
Gaussian prior on the equation of state parameter, i.e.,! �
�1� 0:3, the best fit model occurs at! � �1:03 and� �
0:9. This phantom model coincides with the central value
recently determined by the Supernova Legacy Survey
(Astier et al. [3]). On the other hand, fixing ! � �1:023
and assuming a Gaussian prior for �M, that is, �M �
0:3� 0:1, we obtained the best fit values (�M � 0:29,
� � 0:9).

Finally, in order to improve the present results, a statis-
tical study is necessary for determining the intrinsic length
of the compact radio sources. Further, unlike what happens
with SNe data [41], the angular-diameter sample of com-
pact radio sources of Gurvits et al. [42] does not provide
useful constraints on the � parameter (see Figs. 6 and 7).
Naturally, these results reinforce the interest for measure-
ments of angular size from compact radio sources at inter-
mediary and high redshifts in order to constrain the �
parameter with basis on the ZKDR distance.
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APPENDIX: ON THE REDSHIFT DEPENDENCE
OF ��z�

In this Appendix, we discuss the functional redshift
dependence of the smoothness parameter, ��z�, adopted
in this work. By definition

 ��z� � 1�
�cl�z�
�M�z�

; (A1)

where �cl denotes the clumped fraction of the total matter
density, �M, present in the considered FRW-type Universe.
This means that the ratio between the homogeneous (�h)
and the clumped fraction can be written as �h=�cl �
��z�=�1� ��z�	. How does this ratio depend on the red-
shift? In this concern, we first remember that ��z� lies on
the interval [0,1]. Second, in virtue of the structure for-
mation process, one expects that the degree of homoge-
neity must increase for higher redshifts, or equivalently, the
clumped fraction should be asymptotically vanishing at
early times, say, for z � 100. This means that ��z� ! 1
at high z. On the other hand, � must be zero for a com-
pletely clustered matter which is disproved at low redshifts
by the data of galaxy clusters [3]. It thus follows that at
present (z � 0), the related fraction assume an intermedi-
ate value, say �o. In addition, it is also natural to suppose
that the redshift dependence of the total matter density, �M,
must play an important role in the evolution of their
fractions. In this way, for the sake of generality, we will
assume a power law

 

�h
�cl



��z�
1� ��z�

� �o

�
�M
�o

�
�
; (A2)

where �o � ��h=�cl�z�0 and � are dimensionless num-
bers. Finally, inserting �M�z�, and solving for ��z� we
obtain

 ��z� �
�o�1� z�

3�

1� �o�1� z�3�
; (A3)

which is the expression adopted in this work [see Eq. (10)].
As one may check, for positive values of �, the smooth-

ness function (A3) has all the physically desirable proper-
ties above discussed. In particular, the limit for high values
of z does not depend on the values of �o and � (both of the
order of unity). Note also that if the clumped and homoge-
neous portions are contributing equally at present (�o �
1), we see that ��z � 0� � 1=2 regardless of the value of
�. Figure 1 displays the general behavior of ��z� with the
redshift for different choices of �o and �. The above
functional dependence should be compared with the other
ones discussed in the literature (see, for instance,
[17,18,39] and references therein). One of the most inter-
esting features of (A3) is that its validity is not restricted to
a given redshift interval.

R. C. SANTOS AND J. A. S. LIMA PHYSICAL REVIEW D 77, 083505 (2008)

083505-6



[1] S. Perlmutter et al., Nature (London) 391, 51 (1998);
Astrophys. J. 517, 565 (1999).

[2] A. G. Riess et al., Astron. J. 116, 1009 (1998); Astrophys.
J. 659, 98 (2007).

[3] G. Efstathiou et al., Mon. Not. R. Astron. Soc. 330, L29
(2002); S. W. Allen et al., Mon. Not. R. Astron. Soc. 353,
457 (2004); P. Astier et al., Astron. Astrophys. 447, 31
(2006); D. N. Spergel et al., Astrophys. J. Suppl. Ser. 170,
377 (2007).
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Kochanek, and J. A. Muñoz, Astrophys. J. 494, 47
(1998); D. Rusin and C. S. Kochanek, Astrophys. J. 623,
666 (2005); A. R. Cooray and D. Huterer, Astrophys. J.
513, L95 (1999); I. Waga and Ana Paula M. R. Miceli,
Phys. Rev. D 59, 103507 (1999);I. Waga and J. A.
Frieman, Phys. Rev. D 62, 043521 (2000); Q.-J. Zhang,
L.-M. Cheng, and Y.-L. Wu, arXiv:0708.2164.

[17] M. Kasai, T. Futamase, and F. Takahara, Phys. Lett. A 147,
97 (1990).

CLUSTERING, ANGULAR SIZE, AND DARK ENERGY PHYSICAL REVIEW D 77, 083505 (2008)

083505-7



[18] E. V. Linder, Astron. Astrophys. 206, 190 (1988);
Astrophys. J. 497, 28 (1998).

[19] P. Schneider and A. Weiss, Astrophys. J. 327, 526 (1988);
330, 1 (1988); M. Bartelmann and P. Schneider, Astron.
Astrophys. 248, 349 (1991); K. Watanabe, M. Sasaki, and
K. Tomita, Astrophys. J. 394, 38 (1992).

[20] J. A. S. Lima and J. S. Alcaniz, Astron. Astrophys. 357,
393 (2000); Gen. Relativ. Gravit. 32, 1851 (2000);
Astrophys. J. 566, 15 (2002); L. I. Gurvits, New Astron.
Rev. 48, 1211 (2004); J. C. Jackson, J. Cosmol. Astropart.
Phys. 11 (2004) 007; J. C. Jackson and A. L. Jannetta, J.
Cosmol. Astropart. Phys. 11 (2006) 002.

[21] C. S. Kochanek, B. Mochejska, N. D. Morgan, and K. Z.
Stanek, Astrophys. J. 637, L73 (2006); M. Oguri et al.,
Astron. J. 135, 512 (2008).

[22] Ya. B. Zeldovich, Sov. Astron. 8, 13 (1964).
[23] R. Kantowski, Astrophys. J. 155, 89 (1969).
[24] C. C. Dyer and R. C. Roeder, Astrophys. J. 174, L115

(1972); 180, L31 (1973).
[25] K. Tomita, Prog. Theor. Phys. 100, 79 (1998).
[26] K. Tomita, H. Asada, and T. Hamana, Prog. Theor. Phys.

Suppl. 133, 155 (1999).
[27] P. Schneider, J. Ehlers, and E. E. Falco, Gravitational

Lenses (Springer-Verlag, Berlin, 1992).
[28] R. Kantowski, Astrophys. J. 507, 483 (1998).
[29] R. Kantowski, J. K. Kao, and R. C. Thomas, Astrophys. J.

545, 549 (2000).
[30] R. Kantowski, Phys. Rev. D 68, 123516 (2003).
[31] M. Sereno, G. Covone, E. Piedipalumbo, and R. de Ritis,

Mon. Not. R. Astron. Soc. 327, 517 (2001).
[32] J. A. S. Lima and J. S. Alcaniz, Astron. Astrophys. 357,

393 (2000); Gen. Relativ. Gravit. 32, 1851 (2000).
[33] G. F. Lewis and R. A. Ibata, Mon. Not. R. Astron. Soc.

337, 26 (2002).
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