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Interpretation of precision measurements of the cosmic microwave background (CMB) will require a
detailed understanding of the recombination era, which determines such quantities as the acoustic
oscillation scale and the Silk damping scale. This paper is the second in a series devoted to the subject
of helium recombination, with a focus on two-photon processes in He I. The standard treatment of these
processes includes only the spontaneous two-photon decay from the 21S level. We extend this treatment
by including five additional effects, some of which have been suggested in recent papers but whose impact
on He I recombination has not been fully quantified. These are: (i) stimulated two-photon decays; (ii) two-
photon absorption of redshifted He I line radiation; (iii) two-photon decays from highly excited levels in
He I (n1S and n1D, with n � 3); (iv) Raman scattering; and (v) the finite width of the 21Po resonance. We
find that effect (iii) is highly suppressed when one takes into account destructive interference between
different intermediate states contributing to the two-photon decay amplitude. Overall, these effects are
found to be insignificant: they modify the recombination history at the level of several parts in 104.
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I. INTRODUCTION

The anisotropy of the cosmic microwave background
(CMB) has proven to be one of the most versatile and
robust cosmological probes. The Wilkinson Microwave
Anisotropy Probe (WMAP) satellite has recently measured
these anisotropies at the percent level on degree scales
[1,2], and several experiments are ongoing or planned to
make precise measurements of the polarization and the
subdegree temperature fluctuations [3–16]. The CMB
data, whose precision and robustness are so far unmatched
by low-redshift observations, have provided some of the
strongest tests of the standard cosmological model, includ-
ing the adiabaticity and Gaussianity of the primordial
perturbations and the spatial flatness of the universe.
Most recently, the CMB has provided intriguing evidence
for departure of the spectrum of the primordial perturba-
tions from scale invariance (ns < 1), as predicted by many
models of inflation [17].

The robustness of the CMB stems from the fact that the
primary anisotropy can be calculated from first principles
with reasonable computing time to a numerical accuracy of
�0:1% (i.e. good enough that this is not a limiting factor)
[18]. The major exception to this statement is recombina-
tion, which affects the CMB anisotropy because it deter-
mines the Thomson opacity and the visibility function. The
subject of cosmological recombination has a long history,
with the early simple approximations [19,20] being re-
placed by more sophisticated radiative transfer and multi-
level atom analyses [21–25]. Several papers have appeared
recently suggesting that the treatment of recombination in

the current generation of CMB anisotropy codes [24,25] is
incomplete [26–30] and that the remaining errors may be
large enough to be relevant for next-generation experi-
ments such as Planck [31]. It is especially worrisome that
some of the errors in the standard recombination history, in
particular, helium recombination, are partially degenerate
with the scalar spectral index ns, a key parameter for
constraining models of inflation [32,33]. It is therefore
necessary to take a fresh look at the recombination
problem.

This paper (‘‘Paper II’’) is the second in a series devoted
to cosmological helium recombination. The first of these is
E. R. Switzer and C. M. Hirata, preceding Article, Phys.
Rev. D 77, 083006 (2008), hereafter ‘‘Paper I,’’ which
reexamined helium recombination, taking into account
the effects of semiforbidden and forbidden transitions,
spectral distortion feedback, and H I bound-free continuum
opacity. We believe these are the major effects in helium
recombination that are not included in the standard treat-
ment. This paper considers several revisions to the standard
treatment of two-photon transitions; these revisions do not
have a major influence on helium recombination, but need
to be included in order to establish that they are not
important. The emphasis is on helium although some of
the discussion (particularly that in Secs. II and III) also
applies to hydrogen. The third paper of the series E. R.
Switzer and C. M. Hirata, following Article, Phys. Rev. D
77, 083008 (2008), hereafter ‘‘Paper III’’) will consider the
effects of 3He scattering, electron scattering, rare decays,
collsions, and peculiar velocities and summarize the major
results.

The standard treatment of two-photon transitions in
helium includes only the spontaneous two-photon decays
from He I 21S to the ground level 11S, and their inverse
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process, two-photon absorption. The first correction con-
sidered in this paper is stimulated two-photon decay of 21S
to 11S, which was first analyzed by Chluba and Sunyaev
[26] in the context of H I recombination. We reanalyze the
effect here and also include two-photon absorption of the
spectral distortion as suggested by Kholupenko and
Ivanchik [30], which delays recombination by reexciting
atoms. The stimulated two-photon transitions and absorp-
tion of the spectral distortion are found to play no signifi-
cant role in He I or He II recombination, producing
corrections to xe of the order of a few times 10�5.

The second correction considered is the two-photon
decay from highly excited levels (n1L, where n � 3 and
L � 0, 2), which was responsible for the largest correction
to recombination in the recent paper by Dubrovich and
Grachev [27], hereafter DG05. The treatment of such
decays is a subtle issue because the two-photon spectrum
from (for example) 31D! 11S contains a resonance asso-
ciated with the allowed sequence of one-photon transitions
31D! 21Po ! 11S. Since these ‘‘1� 1’’ decays are al-
ready included in the level code one must be careful to
distinguish which parts of the two-photon spectrum should
be added into the level code and which parts should be left
out to avoid double-counting the rate. DG05 circumvented
this difficulty by excluding the intermediate states associ-
ated with energetically allowed 1� 1 decays. This clearly
avoids the double-counting problem, but of course it af-
fects the accuracy of the computed two-photon spectrum:
in Sec. III we will see that, particularly for large n, DG05
overestimated the two-photon rate because they neglect
destructive interference from the various intermediate
states.

In order to correctly implement two-photon rates from
n � 3 in a level code, we must recall why they could be
important even though they are much slower than the 1� 1
decays. The physical reason is that in a 1� 1 decay, the
higher photon is emitted in a He I n01Po � 11S line, and is
likely to immediately reexcite another atom. There is no
net production of the ground state He �11S� except in the
unlikely circumstance that the photon redshifts out of the
line or is absorbed by H I before it excites a He I atom. In
contrast, the nonresonant two-photon decays in which
neither photon is emitted within a He I line will produce
a net gain of one ground-state helium atom (except for the
subtlety that one of the photons could later redshift into a
He I line). Therefore, for the purposes of the level code, the
way to distinguish ‘‘resonant’’ (1� 1) from ‘‘nonreso-
nant’’ decays is not to make the distinction based on which
intermediate state appears in the decay amplitude, but
rather to impose a cutoff in frequency space: decays in
which one of the photons is within ��cut of a He I n01Po �
11S line are treated as resonant (1� 1), and the rest are
nonresonant. The choice of ��cut (described in Sec. IV) is
arbitrary, reflecting the fact that the 1� 1 decay is not a
distinct physical process from two-photon decay—rather,

the damping tails of the He I n01Po � 11S line merge
smoothly with the two-photon continua from all initial
states that can decay to n01Po.

Our approach to considering two-photon decays in this
paper is to first consider the nonresonant decays for our
choice of ��cut, and set an upper bound on how much they
can speed up He I recombination by neglecting reabsorp-
tion of the nonresonant photons. The resonant two-photon
decays (and the related processes of resonant two-photon
absorption and resonant Raman scattering) can be consid-
ered as an alteration to the line profile of He I n01Po � 11S,
which is no longer well described by a Voigt profile if one
goes far enough out into the damping wings. Further, the
21Po � 11S line now has a significant linewidth: for our
choice of ��cut, it requires �0:02 Hubble times for a
photon to redshift through the line (i.e. to redshift from
frequency �line � ��cut to �line ���cut). Because of this,
one must be careful about assuming the radiation field
within the line is in steady state. All of these issues will
be considered in Sec. V.

After this paper was submitted, Chluba and Sunyaev
[34] presented a detailed treatment of two-photon transi-
tions in hydrogen recombination. Their analysis finds
many of the same features that we find in helium.

The outline in this paper is as follows. In Sec. II, we
consider the effect of stimulated two-photon decays from
the n � 2 level (21S) in He I and a related process, two-
photon absorption of the spectral distortion. In Sec. III, we
discuss the two-photon decay rates from highly excited
levels in He I (n � 3) and show that they were significantly
overestimated by DG05. In order to evaluate the impor-
tance of the two-photon rates, we separate the two-photon
spectrum into ‘‘nonresonant’’ and resonant pieces. The
nonresonant contribution is considered in Sec. IV, and
the resonant contribution in Sec. V. We conclude in
Sec. VI.

The notation in this paper is consistent with that in Paper
I, but there are several new additions. Here we will denote
the Rydberg constant by R. The reduced matrix element of
a spin k tensor operator hj0jjT�k�jjji is defined in accor-
dance with Ref. [35]. (This differs by a factor of ik from
Ref. [36], but is more convenient for our purposes because
it makes the matrix elements real.) We will also use the
symbol L> � max�L; 1�, which makes many appearances
in our matrix elements. Spontaneous two-photon decay
rates will be denoted by �, while the finite-temperature
rates will be denoted �2�. Differential rates as a function of
photon frequency or energy will be written d�2�=d� or
d�2�=dE.

II. TWO-PHOTON DECAYS FROM n � 2

The two-photon transitions from the metastable H I 2s
and He I 21S levels are an important contribution to the
recombination rates. It is usually assumed that stimulated
two-photon emission plays a negligible role in the decay of
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the n � 2 states in H I and He I [25]. Chluba and Sunyaev
[26] found that stimulated emission in H I 2s! 1s modi-
fies TT and TE anisotropies at the percent level on small
scales. We use a similar method to include He I and He II

stimulated two-photon emission in addition to H I. We also
include the reabsorption of the spectral distortion via two-
photon excitation [30]. We do not find any significant
effects in He I or He II.

In this section, we present a general treatment of the
two-photon decays from n � 2 levels, including stimulated
emission and the effects of absorption of the spectral
distortion. For He I n � 2 states, we consider first the usual
two-photon decay:

 He �21S� ! He�11S� � �spon � �spon (1)

and the two-photon excitation

 He �11S� � �bb � �bb ! He�21S�; (2)

where �spon refers to a spontaneously emitted photon and
�bb refers to a photon drawn from the blackbody radiation.
These two equations are the only ones considered in stan-
dard recombination codes, and they are typically included
with a rate coefficient of �HeI � 51 s�1 for Eq. (1) and the
detailed balance rate �HeIe

��E=kBTr for Eq. (2), where
�E � E�21S� � E�11S�. As pointed out for H I by
Chluba and Sunyaev [26], one should also consider the
analogous stimulated decays in He I:

 He �21S� ! He�11S� � �spon � �stim (3)

and

 He �21S� ! He�11S� � �stim � �stim; (4)

where �stim means that the photon’s emission is stimulated.
[Chluba and Sunyaev [26] replaced �HI in their level code
with the sum of rates for Eqs. (1), (3), and (4).] Note that it
is not self-consistent to leave out these reactions, since the
reverse reaction of Eq. (2) is not just Eq. (1) but rather the
combination of Eqs. (1), (3), and (4).

If there is a spectral distortion from redshifted He I line
photons, one should also consider the possibility of two-
photon absorption of a thermal photon and a distortion
photon [30]:

 He �11S� � �bb � �dist ! He�21S�; (5)

where �dist refers to a spectral distortion photon. In prin-
ciple, there is an additional contribution where both ab-
sorbed photons come from the spectral distortion. This is
negligible since the blackbody spectrum dominates over
the spectral distortion for photons with h� < �E�21S�=2
except at z < 1400 when He I recombination is finished
(xHeII < 10�14). All of these equations have analogues in H
I and He II.

The two-photon decay rate is
 

_x21S!11S � �HeI

Z �
11S�21S=2

0
����fx21S	1�N ���


� 	1�N ��0�
 � x11SN ���N ��
0�gd�; (6)

where���� is the two-photon emission profile, normalized
to

 

Z �
11S�21S=2

0
����d� � 1; (7)

and the frequency of the higher-frequency photon is �0 �
�11S�21S � �. Note that decay term 	1�N ���
�
	1�N ��0�
 can be expanded to give a spontaneous piece,
a singly stimulated piece N ��� �N ��0�, and a doubly
stimulated piece N ���N ��0�. The phase space density for
the higher-energy photon is much less than unity: at z �
2600 it is 2� 10�4 at the midpoint of the H I spectrum,
�1s�2s=2, and it is even less above the midpoint, for He I, or
for lower redshifts). Therefore we make the replacement in
the downward rate 1�N ��0� ! 1, i.e. we neglect stimu-
lated emission of the higher-energy photon. Similarly since
the spectral distortion phase space density is� 1, we may
replace 1�N ��� ! 1�N bb���. This enables us to
write Eq. (6) as

 _x 21S!11S � _x�thermal�
21S!11S

� _x�nonthermal�
21S!11S

; (8)

where
 

_x�thermal�
21S!11S

� �HeI

Z �
11S�21S=2

0

����d�

1� e�h�=kBTr

� �x21S � x11Se
�h�

11S�21S=kTr� (9)

and

 _x �nonthermal�
21S!11S

� ��HeI

Z �
11S�21S=2

0

����d�

eh�=kTr � 1
N dist��0�x11S:

(10)

[Here N dist��
0� is the distortion phase space density de-

fined by taking the actual phase space density and subtract-
ing the blackbody contribution.]

In the level code, the profiles for H I and He II are based
on the fits by Nussbaumer and Schmutz [37], and for He I

we use the fit to Drake [38] described in Appendix A of
Paper I.

The results of including Eqs. (9) and (10) in the level
code are shown in Fig. 1. We can see that for He I and He II

the effect is very small—only a few times 10�5. A larger
effect in �xe during hydrogen recombination was found by
[30], for several reasons. First, the absolute abundance of
hydrogen is greater, so a similar fractional change in its
recombination history leads to a larger effect. Second, the
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2s and 2p levels in H I are essentially degenerate, whereas
in He I the 21Po level lies 0.6 eV above the 21S level. This
changes the shape of the two-photon spectrum at low
frequencies, where ���� / �3 in He I (due purely to the
available phase space for emitting a low-energy photon) as
opposed to ���� / � in H I (where there is a pole corre-
sponding to the 2p intermediate state in the matrix element
at zero frequency). Stimulated emission and reabsorption
of the spectral distortion will play a larger role in the case
of H I where the two-photon spectrum has more probability
at the ends of the spectrum. A third reason is that, due
largely to the lower abundance of helium versus hydrogen,
the He I 21Po � 11S optical depth during He I recombina-
tion is much less than that of Ly� during H I recombina-
tion; therefore the importance of two-photon decays
relative to resonance escape is less for He I than for H I.

III. TWO-PHOTON RATES FROM n � 3

In this section, we consider the effect of two-photon
decays from the higher excited levels of He I (n � 3).
Such decays were discussed by DG05 as a potential means
to dramatically speed up He I recombination. The inclusion
of these decays introduces a new subtlety, however, which
is not present for the n � 2 two-photon decay 21S! 11S.
The 21S level does not have any allowed decay routes, so it
is correct to take a multilevel atom code and add in a new
rate �21S!11S for this decay. In contrast, the higher levels in
He I (n1L, n � 3, L 2 f0; 2g) that can undergo two-photon
decay to 11S all have ‘‘1� 1’’ decays in which the atom
first undergoes an allowed single-photon emission to an
intermediate level, and then undergoes a second allowed

one-photon emission to reach the ground level: n1L!
n01Po ! 11S (where 2 
 n0 < n). These 1� 1 decays
are automatically included in the calculation of the two-
photon spectrum using Fermi’s Golden Rule [we will see
this explicitly in Eq. (13)] and they turn out to dominate the
net two-photon rate. In order to include two-photon tran-
sitions from n � 3 levels in the multilevel atom code, we
need to distinguish ‘‘true’’ two-photon decays from 1� 1
decays. It is sometimes said that in a two-photon decay the
two photons are emitted ‘‘simultaneously,’’ but one must
be careful in making this statement because the uncertainty
principle dictates that one cannot measure the time of
emission of the photons more accurately than the recipro-
cal of the frequency resolution. Rather, one must return to
the physical picture of recombination and remember that
rare processes such as two-photon decay are potentially
important because the He I resonance lines have a high
optical depth and hence a high probability of reabsorption
of any radiation emitted in those lines. In contrast, photons
emitted outside of the resonance lines have a low proba-
bility of reabsorption (unless they later redshift into a line).

Based on this picture, we can construct a ‘‘practical’’
definition for two-photon decays as follows: radiation
emitted farther than some arbitrarily specified distance
��cut from the nearest He I resonance line will be said to
originate from a ‘‘nonresonant two-photon decay,’’ and
radiation emitted within ��cut of a resonance will be said
to originate from a resonant or ‘‘1� 1 decay.’’ The non-
resonant decays exhibit a continuous spectrum and can be
treated in the same way as two-photon decays from 21S.
The full emission spectrum of the resonant decays is not
identical to the usual Voigt profile, and the differences will
have to be treated by modifying the line radiative transfer
analysis. We will consider nonresonant two-photon decays
in Sec. IV and resonant decays in Sec. V; the corrections to
the recombination history turn out to be small in both
cases. This section will be concerned exclusively with
obtaining the rate coefficients for two-photon decay, which
we will find to be much less than estimated by DG05 across
most of the two-photon spectrum. This is the reason why
we find only a small correction from the n � 3 two-photon
decays whereas DG05 found an effect of several percent in
xe.

We will also consider Raman scattering from the excited
levels to the ground level; the two processes, while physi-
cally distinct, are related by crossing symmetry and hence
share many characteristics, including the existence of 1�
1 resonances and the associated subtleties.

The outline of this section is as follows. The formulas
for two-photon decay and Raman scattering in quantum
electrodynamics are introduced and summarized in
Sec. III A. The DG05 estimate for the rate coefficients is
recalled in Sec. III B, and in Sec. III C we explain why their
rates are too large for the high n levels. Finally, Sec. III D
presents our calculation of the two-photon decay rates,

4x10-5

3x10-5

2x10-5

10-5

0

-10-5

60005000400030002000

∆x
e

z

∆xe from modifications of two-photon transitions from n=2

FIG. 1. A comparison of the effect of stimulated two-photon
emission and nonthermal two-photon absorption relative to the
reference model. The net effect is a delay in recombination,
�xe > 0. The two peaks correspond to the effect on He II

recombination (z� 5500) and He I recombination (z� 2500).
Note that in both cases the effect on the recombination history is
small, i.e. a few parts in 105.
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which are much less than those of DG05, except near
resonance.

A. Rates

On account of the electric dipole selection rules, two-
photon transitions to the ground state of He I are allowed
only from spin-singlet levels with even parity and L 2
f0; 1; 2g. In two-electron atoms only doubly excited levels
can have L � 1 and even parity, and these are inaccessible
at recombination-era temperatures (they lie�60 eV above
the ground state, whereas the ionization energy is 24.6 eV);
thus we restrict our attention to the n1L levels with L 2
f0; 2g. Also, the two photons emerge with frequencies �
and �0 that satisfy the energy conservation condition

 �� �0 �
E�n1L� � E�11S�

h
�

�E�n1L�
h

: (11)

The two-photon decay rate from the n1L level to the 11S
level of helium is then given by

 

d�

d�
�

�6�3�03

108�2L� 1�R6
	1�N ���
	1�N ��0�
jM2�j

2;

(12)

where R � 3:29� 1015 Hz is the Rydberg in frequency
units, and the dimensionless amplitude is

 M 2� � a�3
0

X
n0
h11Sjjdjjn01Poihn01Pojjdjjn1Li

�

�
1

�E�n01Po� � h�
�

1

�E�n01Po� � h�0

�
;

(13)

where d is the electric dipole moment operator and we
have used cgs units. [Eq. (12) is equivalent to Eq. (59.28) of
Ref. [36] after appropriate manipulation of reduced matrix
elements.] Note that the summation here is over continuum
levels with 1Po symmetry as well as discrete levels. The
total two-photon decay rate is

 �2��n
1L! 11S� �

1

2

Z �E�n1L�=h

0

d�

d�
d�; (14)

where the factor of 1=2 occurs because we count each
decay twice by integrating over the whole spectrum.

One can see that the amplitude M possesses a pole at
each frequency � corresponding to an intermediate n01Po

level. Correspondingly, there is a branch cut (i.e. a con-
tinuous distribution of poles) for frequencies correspond-
ing to the n01Po continuum. Since the rate � / jMj2, the
poles give rise to resonances in the cross section, which
have the characteristic / ��2 structure. As is usual in
quantum mechanics (e.g. Sec. Vx18 of Ref. [39]), the total
rate is rendered finite by giving the energies E�n01Po� a
small imaginary part E! E� i�=2, where � is the width
of the state. The imaginary part changes the cross section in
the resonance to the characteristic Lorentz form (which

becomes a Voigt profile in the comoving frame due to
thermal motion of the atoms). The resonances at 0< h� <
�E�n1L� give rise to the allowed decays where the atom
decays from n1L to n01Po by emission of a single electric
dipole photon, and then proceeds to decay to 11S by
emitting a second photon. These ‘‘1� 1’’ decays are in
fact not distinct physical processes from two-photon emis-
sion. Rather, the damping wings of the lines from 1� 1
decays merge continuously into the two-photon
continuum.

A phenomenon related to two-photon decay is Raman
scattering from n1L to 11S through an intermediate n01Po

state. This has the same selection rules as two-photon
decay. If the incoming photon frequency is � and the
outgoing frequency is �0, we have

 �0 � ��
�E�n1L�

h
; (15)

and the scattering rate (in number of scatterings per atom in
the n1L level per second) is

 

d�

d�
�

�6�3�03

108�2L� 1�R6
N ���	1�N ��0�
jMRamanj

2:

(16)

Because of crossing symmetry, we may obtain the Raman
scattering matrix element by analytic continuation of
Eq. (13) to negative frequencies:

 M Raman � a�3
0

X
n0
h11Sjjdjjn01Poihn01Pojjdjjn1Li

�

�
1

�E�n01Po� � h�
�

1

�E�n01Po� � h�0

�
:

(17)

The total Raman scattering rate is

 �Raman �
Z 1

0

d�

d�
d�: (18)

The summations in Eqs. (13) and (17) are in general
nontrivial as they depend on the helium wave functions.
Accurate calculations are available only for the 21S level,
which is the only singlet level for which two-photon tran-
sitions are the dominant mode of decay. In the case of
cosmic recombination however, the ‘‘blocking’’ of allowed
one-photon electric dipole decays by high line optical
depth means that subdominant decay modes of highly
excited states can become significant, and estimates of
their rates are required. DG05 was the first paper to con-
sider these two-photon decays in the context of the cosmic
recombination, and they introduced a simple scaling argu-
ment for the rates. We revisit the issue here and conclude
that the decay rate is significantly smaller.
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B. DG05 estimate

This section reviews the derivation by DG05 of the two-
photon rate from highly excited states in He I. We present
the key points of the derivation in the notation of this paper
in order to highlight the most important assumptions in
their paper and how they differ from a more detailed
treatment.

DG05 noted that the dipole matrix elements of the form
hn01Pojjdjjn1Li are largest for n0 � n. In particular, in the
limit of hydrogenic wave functions they show that for large
n,

 jhn1Ljjdjjn1Poij2 �
9

10

X
n0
jhn1Ljjdjjn01Poij2: (19)

Therefore DG05 argued that far from the 1� 1 resonances
in the two-photon rate, the matrix element M2� should be
dominated by the n0 � n term. They also noted the near-
degeneracy of the n1Po and n1L levels. If one treats this
degeneracy as exact, and keeps only the n0 � n term in the
sum, one can show that the vacuum decay rate is

 

d��DG�

d�
�
�6�3�03jhn1Pojjdjjn1Lij2jhn1Pojjdjj11Sij2

108�2L� 1�a6
0R

6

�

�
1

�E�n01Po� � h�
�

1

�E�n01Po� � h�0

�
2
;

(20)

where the �DG� superscript indicates that the DG05 approxi-
mation is being used. The frequency integral is a polyno-
mial, and hence is trivially performed. It results in a total
decay rate of

 � / �2L� 1��1

�

�
�E�n1L�
hR

�
5
jhn1Pojjdjjn1Lij2jhn1Pojjdjj11Sij2:

(21)

Note that within the DG05 approximation all the two-
photon spectra are scaled versions of each other. DG05
thus used Eq. (21) to rescale the H I 2s! 1s decay rate of
8:2 s�1 to the highly excited levels in hydrogen and he-
lium, i.e. they rescaled � in proportion to the squares of the
dipole matrix elements and the fifth power of the energy
difference. This leads to the result (using hydrogenic val-
ues for the hn1Pojjdjjn1Li matrix elements)

 

X
L�0;2

�2L� 1���DG��n1L� � 10 540
�
n� 1

n� 1

�
2n

�
11n2 � 41

n
s�1: (22)

The most important result of this is the scaling for large
values of n. At large values of n, �E�n1L� approaches the
ionization energy �HeI, whereas the dipole matrix elements
scale as hn1Pojjdjjn1Li / n2 and hn1Pojjdjj11Si / n�3=2.

This explains the large-n scaling of Eq. (22):

 ��DG�
2� �n

1L� / n: (23)

This results in a very large contribution to the two-photon
rate from large values of n. In fact, since the occupation
probability of the large-n states approaches a constant as
n! 1, the total 2-photon decay rate to the ground state
from highly excited helium atoms diverges as /

P
n / n2

in the DG05 approximation. DG05 cut off the sum at n�
40, since for larger n the ‘‘size’’ (� a0n

2) of the excited
atom is comparable to the wavelength of the photon and
hence the dipole emission formula is no longer valid. This
nevertheless leads to a very large speed-up of He I

recombination.

C. Large n behavior

Unfortunately, the simple approximation of taking only
the n0 � n term in the summation fails for large n. Indeed,
it has been found for the highly excited states of hydrogen
that the actual scaling of the two-photon decay rate is
d�=d� / n�3 [40]. Here we recall the physical argument
why the scaling is n�3, and then show that this arises due to
a near-exact cancellation of matrix elements for large n.
The argument has been given in a rather complicated and
general form in Refs. [41,42], however we present a sim-
plified version here in order to highlight the key pieces of
physics required, and see that the same argument applies to
helium.

Suppose we rewrite the analogue of Eq. (13) for H I in
the form

 M 2� � a�3
0 	h����jjdjjnli � h���

0�jjdjjnli
; (24)

where the states j�m���i are defined by [43]

 j�m���i � 	H � E�1s� � h�
�1dmj1si: (25)

(Since the dipole operator dm is spin 1 it has three compo-
nents m � �1, 0, �1 and hence j�m���i actually consists
of three states.) Now the wave function of the j1si state is
localized near the nucleus, with an exponential falloff in
the classically forbidden region. The dipole operator dm
simply multiplies this wave function by a polynomial
which does not affect the fact that there is an exponential
falloff. The state j�m���i is then determined by the solu-
tion of the inhomogeneous Schrödinger equation,

 

�
�

@
2

2me
r2 �

e2

r
� E�1s� � h�

�
�m��; r� � dm 1s�r�:

(26)

This equation has been extensively studied in the context of
the response of a hydrogen atom to electromagnetic radia-
tion (e.g. Ref. [44]). At large r, the source falls off ex-
ponentially. Since E�1s� � h� < 0, the operator on the
left-hand side of this equation takes the form of a wave
equation with imaginary wave number (‘‘k2 < 0’’) at large
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r. Therefore its solution is exponentially decaying with r.
Now we know that as n! 1, the wave functions of jnli
states near the origin approach the solution of the
Schrödinger equation at zero energy:

 

�
�

@
2

2me
r2 �

e2

r

�
 nl�r� � 0 �small r�; (27)

so that the  nl�r�’s near the origin are all solutions to the
same linear homogeneous differential equation with regu-
lar boundary conditions at r � 0. Therefore they are scaled
versions of each other, with the normalization determined
by the condition

R
j nlj

2d3r � 1. The normalization inte-
gral is dominated by regions with r� a0 and it is well
known that it enforces  nl / n�3=2 in the large n limit.
Given that  nl / n�3=2 near the origin, and that �m��; r� is
only significantly different from zero near the origin, it
follows that M2� / n�3=2 and that d�2�=d� / n�3.

Essentially the same argument applies to helium. Like
the j1si state of hydrogen, the j11Si state of helium is
concentrated near the origin with an exponential falloff
as either electron is moved to large distances from the
nucleus.

Mathematically, the only way to reconcile the M2� /

n�3=2 scaling from the above argument with the / n1=2

scaling obtained by including only the n0 � n intermediate
state is that there must be a near-exact cancellation of
contributions to M2�. We can show that this will happen
by examining the behavior of the matrix elements for large
n and small s � n0 � n. This is considered in Appendix A,
where it is shown that

 hn1Ljjdjjn01Poi � ��1�L>L1=2
> ��1�sea0n2fcyc�s� �1L�

(28)

(cf. Eq. (A17)), where �1L is the differential quantum
defect (�10 � 0:152 and �12 � 0:014) and fcyc is the
Fourier transform of the cycloid function (Eq. (A18)).
[The existence of an asymptotic limit of the form in
Eq. (28) appears to have been noticed by Refs. [45,46],
and the analytic expression for fcyc was derived, albeit in a
different form, by Ref. [47].] The function fcyc is plotted in
Fig. 2. What is of note here is that the matrix elements with
s equal to a few are of the same order of magnitude as those
with s � 0 (n0 � n). Therefore one should include them
when obtaining the matrix element M2�. Since the matrix
element h11Sjjdjjn01Poi scales asymptotically as n0�3=2,
and the energy �E�n01Po� approaches a constant at large
n0, these can be considered constant for jsj � n. We may
thus include the values with smin 
 s 
 smax by writing

 

M2� �
en2

a0
h11Sjjdjjn1Poi��1�L>L1=2

>

�
Xsmax

s�smin

��1�sfcyc�s� �1L�

�

�
1

�E�n1Po� � h�
�

1

�E�n1Po� � h�0

�
: (29)

The first line in this equation scales as n1=2, which when
squared gives the DG05 scaling d�2�=d� / n. One must
be mindful of the second line, however, which modifies the
prefactor of n1=2 in the asymptotic scaling of M2�. One
would expect to get a better estimate of the asymptotic
scaling by taking the limits smin ! �1 and smax ! 1.
However we show in Appendix A that (see Eq. (A19))

 

X1
s��1

��1�sfcyc�s� �1L� � 0: (30)

Therefore for large n one expects the contribution to M2�

from states with n0 near n to be n1=2 times something
approaching 0. This of course implies that one cannot
find the large-n behavior of M2� by the DG05 argument
(except possibly by considering higher-order corrections to
Eq. (28))—one can only say that it scales slower than n1=2.
The near-cancellation is illustrated graphically in Fig. 3 for
the 251S! 11S decay.

In summary, we conclude that (i) the actual large-n
behavior of the two-photon decay rate is d�=d� / n�3,
and (ii) the apparent discrepancy between this and DG05 is
due to a cancellation of the matrix elements as summarized
by Eq. (30).
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FIG. 2. The function f��� appearing in Eq. (28), which de-
scribes the radial matrix elements for large n. Note that f��� is
largest for small �, implying that hn1Ljjdjjn01Poi is largest for
small n0 � n. The points mark integer values of �.
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D. Rate estimates

We have estimated the two-photon transition rates for
small n by direct summation of the matrix element prod-
ucts in Eq. (13). We note that such a calculation does not
require a detailed reanalysis of the atomic physics, at least
to a first approximation, because all one needs to know are
the energies and dipole matrix elements for the 1S, 1Po,
and 1D levels, which have already been calculated. (The
exceptions are the continuum levels, for which the infor-
mation available is more sparse, nevertheless as we argue
below there are detailed calculations for the first several eV
of the continuum, which are dominant.) We have obtained
these as follows:

(1) For the n1S� n01Po with n, n0 
 9, we use the
oscillator strengths from Ref. [48].

(2) The 11S� 101Po oscillator strength is from
Ref. [49]. For 11S� n01Po transitions with n0 >
10, we have used the asymptotic formula for the
oscillator strength from Ref. [50].

(3) For the n1S� n01Po transitions with n, n0 � 10, we
used the Coulomb approximation [45].

(4) For transitions from n1S to the 1Po continuum, we
used the TOPBase photoionization cross sections
[51] converted to matrix elements in accordance
with

 � �
4�

3e2 h�
dn0

dE
jhn1Sjjdjjn01Poij2; (31)

where dn0=dE is the density of continuum states.
This turns the continuum contribution to Eq. (13)
into an integral over energy.

(5) Dipole matrix elements for S� Po transitions are
obtained from the standard formula,

 jhn1Sjjdjjn01Poij2 �
3e2a2

0Rfn1S!n01Po

E�n01Po� � E�n1S�
: (32)

The helium atom wave functions for m � 0 are all
real and hence hn1Sjjdjjn01Poi is purely real, how-
ever a sign ambiguity exists. We have taken the sign
for S� Po to be negative for n � n0 and positive for
n � n0, as this is what is found using the Coulomb
approximation or hydrogenic wave functions.

(6) The Po �D dipole matrix elements are taken to be
hydrogenic.

Note that this approach is expected to break down for
continuum 1Po levels with very large energies. In particu-
lar the continuum 1Po wave functions become less hydro-
genic at higher energies where the outer electron penetrates
deeper into the He� ‘‘core,’’ and it becomes very non-
hydrogenic as one approaches the double-excitation reso-
nance region 60 eV above the ground state. At still higher
energies there are multiple continua, so it is no longer valid
to compute bound-free matrix elements using Eq. (31)—
the matrix elements actually contain information that is not
contained in the cross section. Fortunately, these subtleties
have little effect at the level of accuracy required here: we
find that neglecting continuum levels with energies more
than 0:5R (6.8 eV) above threshold makes at most a
change of 30% (31S! 11S) or 1% (31D! 11S) to
d�=d�, except in the immediate vicinity of the nulls
(whose positions are slightly shifted). Since we will find
that the total correction to the recombination history due to
nonresonant two-photon decays is �4� 10�4, we believe
that our basic conclusion that nonresonant two-photon
decays are unimportant is robust even if the rate estimates
are off by several tens of percents.
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FIG. 4. The 2-photon spectrum from the 21S level of He I.
Note that there are no resonances in the spectrum since there are
no energetically allowed 1� 1 electric dipole decays from 21S.
The points are the more detailed calculations by Drake [38].
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interfere destructively with the n1Po intermediate level in the
matrix element M2�.
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We show the two-photon decay rates we obtain for the
He I 21S level in Fig. 4. The total decay rate we obtain is
49 s�1, in comparison with the more detailed atomic phys-
ics calculations, which give 51 s�1 [38]. This provides a
check on the accuracy of our method.

Also of interest are the two-photon rates from the n � 3
(Fig. 5) and n � 4 (Fig. 6) levels. These two-photon spec-
tra show resonances at the positions of allowed 1� 1
transitions. We have shown the results using only the n0 �
n terms as a series of points in each plot; one can see that
this is a poor approximation across most of the spectrum.
In particular, far from the resonances, this substantially
overestimates the rate because it neglects destructive inter-
ference between different intermediate levels.

IV. EFFECT OF NONRESONANT TWO-PHOTON
TRANSITIONS

Now that we have obtained the two-photon rates, we
would like to understand how much He I recombination is
modified by including them. The main contribution comes
from the lower values of n, both because of their faster
rates and because the lower-n states have higher occupa-
tion probabilities. This section considers the addition of
nonresonant two-photon decays from 3 
 n 
 5 and non-
resonant Raman scattering from 2 
 n 
 5, and finds a
negligible effect.

There is one subtlety involved in including higher-order
two-photon transitions, which was recognized already in
DG05. It is the existence of the 1� 1 resonances, which
cause the two-photon rate to be very large when the pho-
tons are emitted in allowed electric dipole lines. Photons
emitted in these lines (i) have a high probability of being
reabsorbed, and (ii) are in any case already included in the
treatment of Paper I, which included all of the one-photon

transitions. In this paper, we will handle this issue by
dividing the two-photon spectrum into nonresonant and
resonant pieces, which are treated separately. Here ‘‘non-
resonant’’ simply means that the emitted photons are de-
tuned from the 1� 1 resonance by some minimum
frequency offset ��cut. The idea is to show in this section
that the nonresonant transitions have no significant effect
on He I recombination, and then in the next section con-
sider whether the approximations made in Paper I about
resonant two-photon transitions are valid. The offset ��cut

is arbitrary and was chosen so as to make both the argu-
ments in this section and the following section valid.
Precisely the same subtlety arises in considering Raman
scattering, which has resonances such as 21S! 21Po !
11S, and we handle the problem in precisely the same way.
The choice of the frequency offset that we use is
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FIG. 6. The 2-photon spectrum from the 41S and 41D levels of
He I. There are two pairs of resonances corresponding to the 1�
1 decays via the 2, 31Po intermediate levels. The series of points
are the results considering only the n0 � n term in the matrix
element, Eq. (13), for 41S (upper series) and 41D (lower series).

TABLE I. Fitting formulas for the two-photon rates
�2��n

1L� � �Raman�n
1L� appearing in Eq. (33) for the n � 3,

4, and 5 levels of helium. The rate in units of s�1 is written as
a� bt, where t � Tr=4000 K. The formulas are valid in the
range 1< t < 2 of interest to helium recombination. Note that
these numbers include only the nonresonant contribution, de-
fined as having the emitted photon at least 0:14n0�3R from the
He I n01Po � 11S line.

Upper level a b Upper level a b

31S 20.5 16.0 31D 94.0 8.0
41S 10.2 12.5 41D 42.3 6.0
51S 6.1 9.2 51D 21.5 5.0
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FIG. 5. The 2-photon spectrum from the 31S and 31D levels of
He I. Note the resonance at 21.2 eV corresponding to the 21Po

intermediate level. There are also resonances at much lower
energies corresponding to the optical transitions in He I, 31S�
21Po and 31D� 21Po. Also note the nulls in the two-photon rate
from 31S. The series of points are the results considering only
the n0 � n term in the matrix element, Eq. (13), for 31S (upper
series) and 31D (lower series). Note that keeping only this term
is a poor approximation except at the very ends of the spectrum.
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0:14n�3 R � 460n�3 THz for the offset from the He I

n1Po � 11S line; the motivation is that we do not want our
definition of resonant photons to overlap with the inter-
combination line He I] n3Po � 11S. (There is an overlap
with the quadrupole lines [He I] n1D� 11S, however as we
argue in Paper III, these lines do not matter anyway.)

In the absence of the spectral distortion, nonresonant
two-photon transitions and Raman scatterings can be trivi-
ally included in a level code as an additional rate,

 _xjn1L!11S � 	�2��n1L� � �Raman�n1L�

�
xn1L

�
gn1L

g11S
x11Se

�En1L=kBTr

�
; (33)

where the term with x11S accounts for thermal reexcitations
of ground-state helium atoms determined via the principle
of detailed balance. The two-photon and Raman scattering
rates, �2��n1L� and �Raman�n1L�, are obtained by integra-
tion of Eqs. (14) and (18) with blackbody radiation pro-
files, except that regions in the integral where the higher-
energy photon lies within ��cut of an allowed resonance
are excluded. We have obtained fitting formulas for the
two-photon rates, which are given in Table I. We have also
included nonresonant Raman scattering from the 21S level,
which is well fitted by

 �Raman�2
1S� � 12:8t1:5e�2:125=ts�1; (34)

where t � Tr=4000 K is in the range 1 
 t 
 2. For 1 

t 
 2, Eq. (34) and the formulas in Table I agree with our
numerical calculations to within 1%, which is probably
better than the accuracy of our rates.

Figure 7 shows the change in the electron abundance due
to nonresonant two-photon transitions. The effect is at the
level of a few times 10�4 and can be neglected.

V. THE 1� 1 RESONANCES AND FINITE
LINEWIDTH

In Sec. IV, we considered the influence of the nonreso-
nant two-photon transitions on He I recombination. We
know, however, that the total two-photon transition rate is
dominated by the 1� 1 resonances (except in the case of
the 21S level, which has no such resonances). If this addi-
tional rate is naively added to the recombination equations
in the manner of Eq. (33), He I recombination becomes
described by the Saha equation. However we know that this
naive addition is incorrect because photons emitted within
resonance lines with lower level 11S will likely be reab-
sorbed. In order to understand the effect of resonant two-
photon transitions, we must understand the transport of
radiation within the He I n1Po � 11S lines. We presented
a simplified analysis of this in Paper I, where photons were
injected into the line by resonant two-photon emission and
H I recombination, transported by coherent (Rayleigh)
scattering and Hubble redshifting, and finally removed by
resonant two-photon absorption and H I photoionization.
The analysis in Paper I makes the approximation that the
He I line is infinitesimally thin relative to variation in the
radiation phase space density and phase space factors. The
purpose of this section is to test the validity of these
assumptions in certain special cases and understand the
errors introduced. The basic method here is to reconsider
the 21Po � 11S line including the deviation from Voigt
profile in the far damping wings, and including the devia-
tion of the radiation profile from steady state. We incorpo-
rate these corrections into the level code and show that the
modification to recombination is small (j�xej � 3�
10�4).

The specific assumptions made in Paper I that we would
like to test are:

(1) The two-photon emission profile can be described
by a Voigt distribution, i.e. we neglected the possible
interference with neighboring 1� 1 resonances, and
the variation of the photon phase space factor �3�03

and the phase space density factor 	1�N ���
�
	1�N ��0�
 (cf. Eq. (12)) across the linewidth. (A
similar assumption applies to our treatment of
Raman scattering and two-photon absorption.)

(2) The He I line was treated as being in steady state, i.e.
we assumed that the rate of injection of photons
equaled the loss rate. In reality, there are always a
few photons within the line, and as this number of
photons increases (or decreases) there is a corre-
sponding speed-up (or slow-down) of He I

recombination.
We will examine these assumptions here in the context

of the 21Po � 11S line, which was found in Paper I to
produce the most important effect. To simplify the calcu-
lation, we will also assume when calculating line shapes
that the excited levels in He I are in equilibrium. (This was
found in Paper I to be a good approximation and is
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FIG. 7. The contribution of the nonresonant part of the two-
photon rate in He I for n > 2 produces a maximum change in the
free electron fraction of several �10�4.
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described quantitatively in Paper III.) We will introduce the
notation �� and �� to denote the minimum and maximum
frequencies of the resonance, i.e.

 �� � �11S�n1Po � 0:14n�3R; (35)

where here n � 2.

A. Finite linewidth

The calculations involving transport and incoherent
scattering in Paper I made use of an approximate symmetry
of the thermal radiation field in the neighborhood of the
line. Here, so long as the linewidth is negligible compared
to kBTr=h, differences in the thermal radiation field on
either side of the line can be neglected. In this section we
will elaborate on this and argue that: (1) a linewidth of
much less than kBTr=hmeans that photons are just as likely
to be absorbed on either the red or the blue side of the line,
and (2) that introducing a finite width to the line means that
photons will be scattered differentially depending on
whether they are on the red or the blue side of the line.
This will result in photons being ‘‘pumped’’ redward by the
asymmetry in the thermal radiation field across the line.

Incoherent scattering is inherently a multiphoton pro-
cess. Here, a photon is scattered and another is reemitted
and distributed over the line’s profile, with no memory of
the incoming energy. The only way for this reaction to
proceed is for some number of other particles to recoup the
change in energy (as compared to coherent scattering,
where the photon’s energy is exactly conserved in the
atom’s rest frame).

Consider the case of incoherent scattering off He I 11S
through 21Po with an excursion to 31D, as shown in Fig. 8.
Here the incoming photon (A) in the He I �584 line excites
the atom to the 21Po level. This excited atom resonantly
scatters a second photon (B! C) in the He I �6678 line via
the 31D resonance. Finally the atom decays back to the
ground state, emitting a photon in the �584 line (D). This
process can be viewed as a resonant two-photon absorption
of photons A and B, followed by two-photon decay emit-
ting C and D.

In principle photon B could be any photon drawn from
the blackbody radiation field, however, because of the
narrow 31D resonance in helium, the photon absorbed
will almost always have energy EB � �E�31D� � EA.
The excited He I 31D atom then undergoes two-photon

decay to the ground state via the 21Po intermediate level
(i.e. it emits photons C and D). To a very good approxi-
mation, the energy distribution of D is independent of
EA—hence the term ‘‘complete redistribution’’—and in
the vicinity of resonance it has the form of a Lorentz profile
(or a Voigt profile in the comoving instead of atom frame).

Now, suppose that the atom absorbs photon A on the
blue side of the �584 line. Then it can be absorbed in
combination with a photon B on the red side of �6678,
whereas if photon A is on the red side of the �584 line then
it requires B to be on the blue side of �6678. Since in a
blackbody distribution for photon B there are more photons
on the red side of the line, this means that there is an
enhancement in the cross section for absorbing photon A
from the blue side of �584, and a suppression for absorbing
it from the red side of �584. This means that (even in the
absence of Hubble redshifting) �584 photons spend on
average more time on the red side of the line, so that N
is greater there; see Fig. 9.

The same conclusion could also have been reached by a
thermodynamic argument: since incoherent scattering
changes the energy of the �584 line photons by exchanging
their energy with that of the �6678 photons (and with other
low-energy photons if we consider the other lines connect-
ing He I 21Po to other excited levels), and the radiation in
these lines is essentially blackbody, it follows that photons
near the �584 line will then be driven toward a Bose-
Einstein distribution with temperature Tr and some chemi-
cal potential determined by the total number of such pho-
tons. Since N � 1, this is equivalent to a Boltzmann
distribution, N / e�h��=kBTr . We will see this behavior
mathematically from Eq. (39). (Note that whether N /

e�h��=kBTr is actually achieved depends on whether inco-
herent scattering can operate efficiently before Hubble
redshifting moves the photons out of the line, a question
that can only be settled by solving the equations.)

In summary, we have argued that incoherent scattering
through a finite linewidth enhances the phase space density
on the red side of the �584 line. In the limit that the width
of a line is taken to be negligible compared to kBTr=h,
incoherent scattering redistributes photons and pushes the
radiation phase space density near line center to some
constant N L, in equilibrium with the line. This flattening
tendency is implicit in the analysis of Paper I, and has been
noted several times in the recombination literature [21,22].

Viewed in this way, incoherent scattering is the sum of
two-photon scattering processes for which the excited level
is an intermediate state (resonance) in the full two-photon
rate. The goal, then, is to consider the full expression for all
two-photon processes, and separate the transport physics
around one of the intermediate state resonances, e.g. 21Po.
It is possible, then, to write an effective one-photon trans-
port equation (where the other photon is drawn from the
blackbody) for incoherent scattering to this intermediate
state. Aside from the change in the line profile, the finite

FIG. 8. An example of an incoherent scattering process in He I

considered in Sec. VA.
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linewidth introduces two new pieces of physics: the ten-
dency to drive the radiation spectrum to N / e�h�=kBTr

instead of a constant, and the fact that the line is not exactly
in steady state (i.e. there is a @N =@t term in the transport
equation). This section considers these issues and introdu-
ces a crude correction to the rate equations. We incorporate
this in the level code and find only a small correction (a few
times 10�4). This correction is not included in the final
version of the recombination history presented in Paper III.

B. Line transport with complete redistribution and no
H I opacity

The case we consider here is that where the H I opacity
within the line and frequency diffusion due to Doppler shift
in repeated resonant scatterings can be neglected. This is
useful for testing assumption #1 on our list (Sec. V). The
assumption of negligible H I opacity is valid in the early
stages of He I recombination, i.e. 2200< z< 2800. The
frequency diffusion was included in Paper I and neglecting
it was found to introduce no significant error: j�xej< 2�
10�4.

The resonances in consideration are optically thick and
the radiation rapidly approaches equilibrium around their
line centers. Because of this, Doppler broadening can be
neglected to a good approximation and we can consider the
radiative processes as occurring in the atom’s rest frame.
The differential equation describing the radiation field is

 

@N
@t
� H�

@N
@�
�
c3nH

8	�2

X
i

xi
d�i
d�

� nHc
X
i

��2��Raman�
i ���N ; (36)

where the sum is over excited levels of He I that can
undergo two-photon decay or Raman scattering to the
ground state, d�i=d� is their rate of producing line photons
per unit frequency, and ��2��Raman�

i is the cross section for
removing line photons via two-photon absorption or
Raman scattering to level i. This is a strong function of
�, but we will drop the explicit argument to stay concise.
(Though officially a three-body process, it is possible to
define a cross section for two-photon absorption of a
21Po � 11S line photon since the other photon comes
from much lower energies where the CMB can be treated
as a blackbody.) By detailed balancing of the level i con-
tributions to the second and third terms on the right-hand
side, we find

 

c3nH
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d�i
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e��Ei=kBTr � nHc�
�2��Raman�
i e�h�=kBTr ;

(37)
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FIG. 10. The phase space density in the 21Po � 11S line using
the parameters z � 2175, xHeI � 0:028 25, N L � 6:307�
10�16, N ���� � 5:277� 10�19, _xHeI � 0:1596H, _N L �
�2:444� 10�15H, and _N ���� � �4:073� 10�17H. These
parameters occurred during the first feedback iteration of the
recombination history. The solid line shows the steady-state
solution N 0, while the long-dashed line is the first-order cor-
rection N 0 �N 1. The short-dashed line is the analytic ap-
proximation to the steady-state solution from Eq. (B17); note
that it is plotted only for �� < 0.

FIG. 9. Representation of complete redistribution as a two-
photon process, with one photon from the thermal distribution.
In the left frame, a photon is absorbed on the red side of the line,
then assisted to 31D by a blackbody photon. In the right frame, a
photon is absorbed on the blue side of the line and assisted by a
lower energy blackbody photon. The virtual levels have energies
offset from E�21Po�; the fractional difference between the for-
ward and backward scattering rates is of order the frequency
difference times h=kBTr. Because there are more low-energy
thermal photons, scattering to the blue side of the line is slightly
preferred.
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which allows us to derive the cross sections for two-photon
absorption to each level. Then since the excited levels are
in equilibrium with each other we have

 xi �
gi
g21Po

x21Poe
�	Ei�E�21Po�
=kBTr : (38)

Combining Eqs. (36)–(38), we get

 

@N
@t
� H�

@N
@�
� nHcx11S�

�2��Raman�

�
N

�
x21Po

3x11S
e�h��=kBTr

�
: (39)

There are several approaches available for solving
Eq. (39). We will take an approach that allows us to
separate the effects of the line profile from the steady-state
approximation. The method is to multiply the left-hand
side of Eq. (39) by an artificial expansion parameter 
,
which will eventually be taken to equal 1. We may then
expand

 N �N 0 � 
N 1 � 
2N 2 � . . . ; (40)

equating coefficients of 
j in Eq. (39) then leads to the
following situation. For j � 0, we find

 0 � H�
@N 0

@�
� nHcx11S�

�2��Raman��N 0

�N Le�h��=kBTr�; (41)

where N L � x21Po=3x11S. That is, N 0 satisfies the
steady-state equation. The higher-order terms satisfy

 

@N j�1

@t
� H�

@N j

@�
� nHcx11S�

�2��Raman�N j (42)

for j � 1. Since photons enter from the blue side of the
line, the boundary condition N ���� is satisfied; the Taylor
expansion of this condition in 
 is that N 0���� �
N ����, and N j���� � 0 for j � 1. We may think of
the N j for j � 1 as successive corrections to the steady-
state solution. For each j, a numerical solution may be
obtained by starting at � � �� and using a stiff ordinary
differential equation (ODE) integrator in the redward di-
rection until we reach ��.

In order to translate our results for the line profile into
effects on recombination, we need two numbers. One of
these is the photon phase space density N ���� emerging
from the red side of the line, necessary to compute feed-
back. The other is the net decay rate to the ground state,
which is obtained by subtracting the downward from the
upward rates:

 _x # �
Z ��

��

�X
i

xi
d�i
d�
�

8	�2

c2 x11S

X
i

��2��Raman�
i N

�
d�:

(43)

The downward and upward rates nearly cancel, so numeri-

cally the best way to compute this is not to evaluate
Eq. (43) directly from the solution, but rather to use
Eq. (36) to rewrite it as

 _x # � �
Z ��

��

8	�2

nHc
3

�
H�

@N
@�
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@N
@t

�
d�: (44)

The steady-state solution is obtained in Eq. (44) by setting
N �N 0 and 
 � 0 (i.e. dropping the time derivative
term). The first-order solution in 
 is

 _x # � �
Z ��

��

8	�2

nHc3

�
H�

@�N 0 �N 1�

@�
�
@N 0

@t

�
d�:

(45)

The line profile is shown in Fig. 10 for a typical set of
parameters, and is compared with the infinitesimal line-
width approximation, the steady-state solution, and the
analytic model of Appendix B. The most important prop-
erty of the solution, which is generic, is that N >N L for
�� < 0. That is, the effect of using the full N 0 �N 1 in
Eq. (45) instead of just a step function at the line is to
enhance the decay rate and accelerate recombination. On
the other hand, @N 0=@t < 0, so the correction due to the
line not being exactly in steady state is of the opposite sign:
it delays recombination.

C. Inclusion in the level code and the effect on
recombination

The basic strategy in including the finite linewidth ef-
fects in the level code is to determine the corrections to the
phase space density N ���� on the red side of the line and
the net downward transition rate _x#. This section describes

4x10-4

2x10-4

0

-2x10-4

-4x10-4

32002800240020001600

∆x
e

z

∆xe from modified treatment of 21Po-11S resonance

FIG. 11. The change in the recombination history from the
modified treatment of the 21Po � 11S resonance. Note that the
effect on the electron abundance is very small: a few parts in 104.
This figure should only be interpreted as an estimate of the
magnitude of the correction (see text).
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how we do this, and the results when the correction is
incorporated in the level code.

The recombination level code depends on N ���� and
the reaction rates implied by finite linewidth. In general
these depend on the parameters fz; xHeI; _xHeI;N L;

_N L;N ����; _N ����g. Since the equation for N is lin-
ear, N 0 depends linearly on the parameters
fN L;N ����g, and N 1 depends linearly on the parame-
ters fN L; _N L;N ����; _N ����g. Also _xHeI enters only
via _N 0, which is the source for N 1 (cf. Eq. (42)). From
this one can see that the phase space density may be written
as

 N ��� � c0���N L � c1��� _N L � c2���N ����

� c3��� _N ���� � _xHeI	c4���N L

� c5���N ����
; (46)

where the ci��� depend on z, xHeI, and cosmological pa-
rameters. Thus if we want N ����, then for each cosmol-
ogy an interpolation grid can be constructed to give ci����
in terms of the independent variables z and xHeI. A similar
result holds for _x# since it is a linear function of N 0, _N 0,
and N 1.

The easiest way to incorporate the new effect in the level
code is actually to calculate the correction to N ���� and
_x#. In the case of infinitesimal linewidth, no continuum
opacity, and high optical depth (literally, negligible proba-
bility of a photon redshifting through the line without
undergoing an incoherent scattering—see Appendix D of
Paper I), we have Pesc � ��1

S . In this case, the photon
phase space density on the red side of the line is N L

and the downward transition rate is 8	H�3
line�N L �

N ��=nHc
3. If we ask about the photon phase space den-

sity at �� < �line, and specify the incoming (blue side)
phase space density at �� > �line, this becomes

 N ���; z�� !N L�z� and

_x#�z� !
8	H�3

line

nHc3 	N L�z� �N ���; z��
;
(47)

where

 1� z� �
��
�line
�1� z� (48)

since it takes a finite amount of time for photons to redshift
through the line. One may thus define a ‘‘finite linewidth
correction’’

 �N ���; z�� �N ���; z�� �N L�z� (49)

for the phase space density on the red side of the line (used
for feedback), and a similar correction

 � _x#�z� � _x#�z� �
8	H�3

line

nHc3 	N L�z� �N ���; z��
 (50)

for the transition rate.
We have rerun the level code with Eqs. (49) and (50)

incorporated and ‘‘turned on’’ from z � 1500 to 3400. The
change in xe is shown in Fig. 11. The correction is believed
to be most accurate for z � 2200 when continuum opacity
is negligible. At lower redshifts, the corrections of
Eqs. (49) and (50) are not reliable. For Eq. (49) this is
not a major deficiency because at these redshifts feedback
[the only process affected by N ���; z��] is unimportant.
For Eq. (50) there is an error introduced, however, we
expect that the change in xe at z < 2200 (when continuum
opacity is significant) is small because it is only in the far
damping wings that the corrections described in this sec-
tion are significant, and continuum opacity makes the line
center more important relative to the damping wings. (This
is because continuum opacity allows photons to be re-
moved from the line center, whereas without continuum
opacity photons can only escape the line by redshifting out
of the red damping wing.)

The modification to the recombination history resulting
from these changes is shown in Fig. 11. We see that the
total effect reaches a maximum of 0.03% in the free
electron fraction. This is much smaller than the other
effects and comparable to other errors in the code, so we
have made no attempt to correct for the deviation from
Voigt profile or change in e�h�=kBTr across the line in the
rest of this series of papers. Since the correction is of order
the numerical accuracy of the code and involved such a
major change to the treatment of the all-important 21Po �
11S resonance line, we do not claim that the details of
Fig. 11 are robust; rather we view the results only as
confirmation that the effects considered are small.

VI. DISCUSSION

This was the second paper in a series devoted to cosmo-
logical helium recombination. Here, we examined the
problem of two-photon decays in He I, extending the
standard treatment which only accounts for the decay
from the 21S level and ignores the effect of stimulated
transitions and absorption of the spectral distortion. We
also considered Raman scattering from excited levels in He
I to the ground level (11S), an effect that is distinct from,
but closely related to, two-photon decay. All of these
effects change the electron abundance xe at the level of
several hundredths of a percent at redshifts z � 1800. This
results in a change of similar magnitude in the Cls (the
precise relation will be quantified in more detail in Paper
III), which is negligible for cosmic He I recombination
studies.

Our findings regarding the significance of two-photon
decays from the n � 3 levels of He I differ from some
recent statements in the literature, most notably Dubrovich
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and Grachev [27], who found a much larger effect. The
main reason for the difference is that we find smaller two-
photon rates dA2�=d� because of destructive interference
among different intermediate states in the two-photon
amplitude (Eq. (13)) in most parts of the two-photon con-
tinuum. An exception occurs in cases where the two pho-
tons emitted in a two-photon decay are near an allowed
‘‘1� 1’’ sequence of decays such as 31S! 21Po ! 11S.
These 1� 1 decays correspond to resonances in the two-
photon decay rate at the frequencies corresponding to the
one-photon lines (in our example, the 31S! 21Po and
21Po ! 11S lines). This results in the total (frequency-
integrated) rate being very large. This does not lead to a
rapid speed-up of recombination, however, because the
photons emitted in the optically thick resonance lines
have a very high probability of reabsorption. In order to
complete the recombination calculation it is necessary to
split the photons into resonant and nonresonant regions.
The nonresonant regions are handled in the usual way for
two-photon decays, i.e. they lead to an additional rate that
is included in the rate equations. The two-photon decays in
the resonant regions are treated as sequences of one-photon
decays, with the two-photon effects leading to a modified
line profile since with multiple intermediate states the
Lorentz curve no longer accurately describes the line pro-
file (in the atom’s rest frame). It is essential in this analysis
that the treatment of the resonant region takes into account
the fact that the line is optically thick, otherwise unrealisti-
cally fast recombination would be obtained.

The analysis presented in this paper was aimed primarily
at helium recombination, however most of the underlying
physics is the same for hydrogen recombination. There are
two-photon decays from the n � 3 levels in H I, and their
rates dA2�=d� scale as n�3 [40] for the same reasons
described here. These rates also possess resonances at the
frequencies corresponding to 1� 1 decays such as 3s!
2p! 1s. In general hydrogen recombination matters more
for the CMB power spectrum than helium recombination,
and, in particular, Wong and Scott [29] have found changes
in the Cls of several tenths of a percent using rates much
smaller than those of DG05. A full calculation for hydro-
gen would use the two-photon spectra dA2�=d�, which
could be computed by the same methods used here, and
take into account the modification of the Lyman line
profiles due to two-photon corrections. Such a calculation
is beyond the scope of this series of papers, but should be a
high priority for the CMB community.

ACKNOWLEDGMENTS

C. H. acknowledges support from the Institute for
Advanced Study. E. S. acknowledges the support from
grants from NASA No. LTSAA03-000-0090 and NSF
No. PHY-0355328. We acknowledge useful conversations
with Jens Chluba, Bruce Draine, Jim Peebles, Doug Scott,
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APPENDIX A: DIPOLE MATRIX ELEMENTS FOR
LARGE n

This appendix evaluates the dipole matrix elements of
the form hn1Ljjdjjn01Poi for large n and small s � n0 � n
using the Wentzel-Kramers-Brillouin (WKB) method. This
approach is useful since the dipole matrix elements of this
form are dominated by large radii where the WKB method
works (it breaks down at radii of order a0 or less). Our goal
is to demonstrate the near-exact cancellation of contribu-
tions to M2� in Eq. (13) that we mentioned in Sec. III C.
We note that WKB-type solutions to the Coulomb approxi-
mation wave function have been previously used for sev-
eral other applications [47,52]. The formula presented here
is actually equivalent to the special case of Ref. [47] in
which the eccentricity of the orbit goes to 1, however we
provide a simplified derivation here in order to show the
fastest route to the key result (Eq. (A19)).

For large n, the helium atom can be treated by the
Coulomb approximation in which the outer electron (of
charge�e) moves in the Coulomb potential defined by the
combination of the inner electron and nucleus (of charge
�e). Except at small r, its radial wave function R�r� thus
satisfies the Schrödinger equation R00�r� � �k2�r�R�r�,
where

 k2�r� �
2me

@
2

�
E�

e2

r
�

@
2L�L� 1�

2mer
2

�
: (A1)

For E< 0, this equation possesses a classically forbidden
region r > rmax, where rmax is the solution to k2�rmax� � 0.
In the classically allowed region, the WKB solution for
R�r� is

 R�r� � ��1�n�L�1 N���������
k�r�

p cos’�r�; (A2)

where the ��1�n�L�1 factor is chosen by convention to
make the wave function positive near the origin for N > 0
(it has n� L� 1 radial nodes) and the radial phase is

 ’�r� � �
	
4
�
Z rmax

r
k�r�dr: (A3)

The normalization constant is taken to be positive, and to
enforce the condition

R
jR�r�j2dr � 1. For small L, we

have rmax � e2=��E�, the classically allowed region ex-
tends down to r� rmax, and then (for small L)

 k�r� �
e
@

����������������������������������
2me�r�1 � r�1

max�
q

: (A4)

From this we find

 

Z 1
0
jR�r�j2dr �

N2

2

Z rmax

0

dr
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	@r3=2
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4
���������
2me
p

e
N2; (A5)
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where we have replaced cos2’�r� with 1=2 since we inte-
grate over many oscillations of the wave function. This
gives

 R�r� �
��1�n�L�12

�	rmax�
1=2�rmax=r� 1�1=4

cos’�r�: (A6)

In order to compute radial matrix elements with these
wave functions for small s, we need to consider the effect
on the wave function of small changes in k2�r� resulting
from changes in E and L. In general there will be a very
small change in k�r�, and hence a small change in the
amplitude of the solution, but if s is of order a few then
we may get a significant change in the phase ’�r�. Indeed
the phase difference can be written as

 �’�r� �
Z rmax

r
�k�r�dr� k�rmax��rmax

�
Z rmax

r

�	k2�r�

2k�r�

dr: (A7)

(The second term goes away because rmax is a zero of k2.)
The change in k2�r� has a contribution 2me�E=@

2 if we
change the energy, and another contribution ��	L�L�
1�
=r2 if we change the angular momentum. Thus we have
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e �E���
2
p
e@
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r

dr�����������������������
r�1 � r�1

max

p
�

@�	L�L� 1�


2
���������
2me
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e

Z rmax

r

dr

r2
�����������������������
r�1 � r�1

max

p : (A8)

It is easy to verify that for �	L�L� 1�
 of order unity (it is
2 for S� P transitions and 4 for P�D transitions) and
r=a0 greater than a few, the second integral produces a
phase shift of �’�r� � 1. Therefore we drop it. The
function �’�r� can be solved analytically but is most
easily expressed through the following parametric form.
Let us define the dimensionless function

 � � 2r�3=2
max

Z rmax

r

dr�����������������������
r�1 � r�1

max

p (A9)

so that �’�r� � �m1=2
e r3=2

max�E=2
���
2
p
e@��. Then by the sub-

stitution r � rmax�1� cos��=2 we can derive � �
�� sin�, i.e. the relation between r and � is a cycloid
function. Note that � � 0 at r � rmax and � � 	 at r � 0.

The matrix elements between two levels n1L and n01Po

depend on the integral

 Rn;n0;L �
Z
R�
n1L
�r�Rn01Po�r�rdr; (A10)

noting that L changes by 1 between the initial and final
states, and that for small s � n0 � n the normalizations of
the wave functions are very similar, we may write

 Rn;n0;L �
��1�s�14

	rmax

Z rmax

0

cos’�r� cos	’�r� � �’�r�
�����������������������
rmax=r� 1

p rdr:

(A11)

If we note that ’�r� is rapidly varying but �’�r� is not,
then the product of cosines can be averaged over several
cycles to get

 Rn;n0;L �
��1�s�12

	rmax

Z rmax

0
r

cos�’�r������������������������
rmax=r� 1

p dr: (A12)

Changing variables to � gives

 Rn;n0;L �
��1�s�1

2	
rmax

Z 	

0
�1� cos�� cos�’d�: (A13)

The integrand is even in � so we may extend the range of
integration down to �	 and divide by 2. We may also
replace the cosine by a complex exponential since the
imaginary part is odd in � and hence vanishes. This gives

 Rn;n0;L �
��1�s�1

4	
rmax

Z 	

�	
�1� cos��ei��d�; (A14)

where � � m1=2
e r3=2

max�E=2
���
2
p
e@. Now for large n, the

energies are given by

 E � �
e2

2a0�n� �L�
2 ; (A15)

where �L is the quantum defect for angular momentum L
[53]. Note that �L � 0 for the hydrogenic case, but in
helium there is a nonzero value due to the complicated
physics occurring at small r (of order a0). The quantum
defects for He I singlets are �0:1397 (1S), 0.0121 (1Po),
and �0:0021 (1D) [53,54]. Therefore we have �E �
�e2=a0n

3��s� �1 � �L� and rmax � 2a0n
2, which implies

� � s� �1 � �L. Thus

 Rn;n0;L �
��1�s�1

2	
a0n

2
Z 	

�	
�1� cos��ei�s��1��L��d�:

(A16)

Thus we see that the radial matrix element is simply the
Fourier transform of the cycloid function. This is consis-
tent with semiclassical intuition since the cycloid is the
classical trajectory of a particle in a Coulombic potential
with very small angular momentum. The reduced matrix
element required to compute Eq. (13) is obtained by multi-
plying by the relevant angular factors:

 hn1Ljjdjjn01Poi � ��1�L>�s�1L1=2
> ea0n

2fcyc�s� �1L�;

(A17)

where we have introduced the shorthand �1L � �1 � �L
and

 fcyc��� �
1

2	

Z 	

�	
�1� cos��ei��d�: (A18)
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The key result—the cancellation of contributions to
M2� for large n—comes from the following identity:
 X1
s��1

��1�sfcyc�s� �� �
Z 	

�	
�1� cos��

�

� X1
s ��1

��1�sei�s����
�
d�
2	

�
Z 	

�	
�1� cos��ei���

�

�
�

2	
�

1

2

�
d�
2	
� 0; (A19)

since 1� cos� � 0 when � is an odd multiple of 	. (Here
� is the sampling function.)

APPENDIX B: STEADY-STATE LINE WITH FINITE
LINEWIDTH

In this appendix we consider a simple analytic model for
the steady-state line profile in the vicinity of a resonance,
i.e. an approximate solution to Eq. (41). This approxima-
tion is valid when the half-width of the resonant part of the
spectrum, ��cut, is small compared to the frequency dif-
ference between neighboring resonances as well as com-
pared to the thermal scale kBTr=h. As an example, for the
He I 21Po � 11S line, we have used ��cut � 58 THz; the
frequency distance to the next allowed resonance (31Po �
11S) is 452 THz; and the thermal scale is 110	�1�
z�=2000
 THz.

It is easily seen that the matrix element M2� for the i!
11S two-photon process possesses a simple pole at each
resonance �, �0 � �E�n01Po�=h. Therefore the two-photon
decay rate, which is the square of the matrix element times
phase space factors, can be written in a power series

 

d�2�

d�
�

X1

��2

qi;
��
; (B1)

where �� � �� �11S�n01Po . The power series cuts off at

 � �2 because the square of a function with a simple
pole can have a pole of no higher than the second order. It is
easy to read off from Eqs. (12) and (13) that the leading
term for the i! n01Po ! 11S pole is
 

qi;�2 �
�6�3

11S�n01Po
�3
n01Po�i

108�2L� 1�a6
0R

6
	1�N ��n01Po�i�


� jh11Sjjdjjn01Poihn01Pojjdjjiij2; (B2)

where we have taken N ��11S�n01Po� � 1 in the Wien tail
of the CMB. Using the conversion from dipole matrix
element to Einstein coefficient, and replacing the phase
space density with its blackbody value, this can be rewrit-
ten as

 qi;�2 �
Ai!n01PoAn01Po!11S

4	2�1� e�h�n01Po�i=kBTr�
: (B3)

It follows from this and Eq. (37) that the absorption cross
section to level i is

 ��2��i �
X1

��2

Qi;
��
; (B4)

where the leading order term is

 Qi;�2 �
c2gi

32	3�2
11S�n01Po

Ai!n01PoAn01Po!11S

eh�n01Po�i=kBTr � 1
: (B5)

This could alternatively be written as

 Qi;�2 �
c2gi

32	3�2
11S�n01Po

An01Po!11S�n01Po!i: (B6)

A similar argument shows that Eq. (B6) applies to the
resonance in the Raman scattering cross section corre-
sponding to 11S! n01Po ! i as well.

Equation (41) thus becomes

 

@N 0

@�
� �	N 0 �N Le

�h��=kBTr
; (B7)

where N L � xn01Po=3x11S and

 � �
nHcx11S�

�2��Raman�

H�
: (B8)

Expanding � as a power series, � �
P
1

��2 �
��
, we

find that the lowest-order term is

 ��2 �
X
i

nHcx11S

H�11S�n01Po
Qi;�2

�
nHcx11SAn01Po!11S

32	3H�3
11S�n01Po

X
i

�n01Po!i: (B9)

In the final expression, the prefactor outside the sum is
easily recognized as �S=4	2, where �S is the Sobolev depth
through the line. The sum is the total width of the n01Po

level (which is the line width �line of n01Po � 11S since the
11S level has negligible width) times the fraction of tran-
sitions from n01Po that go to other excited states. Therefore
the sum is �linefinc and we may write

 ��2 �
�S�linefinc

4	2 � ��line: (B10)

Note that the coefficient � goes to infinity on resonance. In
principle this should be cut off by the Lorentzian width of
the line (i.e. the pole displacement in M2�), and the
resonance will also be widened by the Doppler width of
the line. In practice as long as the line center is optically
thick this subtlety does not matter: we will have N �N L

at �� � 0.
Our next objective is to solve Eq. (B7) for small ��.

Here we take ‘‘small’’ to mean that we can work to first
order in h��=kBTr and the correction terms f�
g1
��1. We
may begin by writing the solution,
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 N 0 � �X
Z
X�1�N Le

�h��=kBTrd�; (B11)

where X � exp
R
�d�. The constant of integration in X is

arbitrary (it trivially cancels out in obtaining N 0), while
that of the integral in Eq. (B11) is determined by boundary
conditions. We will separately solve for the �� > 0 and
�� < 0 regions since X is singular at �� � 0. The solution
for X is

 X � exp
�
�

��line

��
� ��1 ln

��
��cut

�
X1

�0

�

��
�1




�
;

(B12)

where the choice of denominator in the logarithm is arbi-
trary (but ��� is convenient). Substitution into Eq. (B11)
gives
 

N 0 � �N Le���line=��
�

��
���

�
��1

e
P
1


�0
�
��
�1=


�
Z
e��line=��

�
��

��cut

�
���1

� e�
P
1


�0
�
��
�1=


�
��line

��2 �
X1

��1

�
��

�

� e�h��=kBTrd�: (B13)

Expanding this to first order in h��=kBTr and f�
g1
��1

gives
 

N 0��N Le���line=��
�
1���1 ln

��
��cut

�
X1

�0

�

��
�1




�

�
Z
e��line=����line

��2

�
1�

h��
kBTr

���1 ln
��

��cut

�
X1

�0

�

��
�1



�

X1

��1

�
��
�2

��line

�
d�: (B14)

The integral can be shown by direct differentiation to
evaluate to

 � e��line=��
�
1� ��1 ln

��
��cut

�
X1

�0

�

��
�1




�

�
h��line

kTr
E1

�
���line

��

�
� C; (B15)

where C is a constant of integration and E1 is the expo-
nential integral function. Therefore, to first order in
f�
g

1

��1 and h��=kBTr,

 

N 0 �N L

�
1�

h��line

kBTr
e���line=��E1

�
�

��line

��

�

� Ce���line=��
�

1� ��1 ln
��

��cut

�
X1

�0

�

��
�1




��
: (B16)

The photon phase space density on the red side of the
line is easiest to obtain: since the term multiplying C in
Eq. (B16) goes to infinity as ��! 0�, we must have C �
0. We thus have

 N 0���� �N L

�
1�

h��line

kBTr
e��line=��cutE1

�
��line

��cut

��
:

(B17)

Using the expansion of the exponential integral for small
values of the argument, we find that if ��line � ��cut �
kBTr=h, then

 N 0���� �N L

�
1�

h��line

kBTr
ln

��cut

1:78��line

�
; (B18)

where 1:78 � e� is the exponential function of Euler’s
constant.
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