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We estimate the probability of detecting a gravitational wave signal from coalescing compact binaries
in simulated data from a ground-based interferometer detector of gravitational radiation using Bayesian
model selection. The simulated wave form of the chirp signal is assumed to be a spinless post-Newtonian
(PN) wave form of a given expansion order, while the searching template is assumed to be either of the
same post-Newtonian family as the simulated signal or one level below its post-Newtonian expansion
order. Within the Bayesian framework, and by applying a reversible jump Markov Chain Monte Carlo
simulation algorithm, we compare PN1.5 vs PN2.0 and PN3.0 vs PN3.5 wave forms by deriving the
detection probabilities, the statistical uncertainties due to noise as a function of the signal-to-noise ratio,
and the posterior distributions of the parameters. Our analysis indicates that the detection probabilities are
not compromised when simplified models are used for the comparison, while the accuracies in the
determination of the parameters characterizing these signals can be significantly worsened, no matter what
the considered post-Newtonian order expansion comparison is.
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I. INTRODUCTION

Kilometer-size ground-based interferometric detectors
of gravitational radiation have become operational at sev-
eral laboratories around the world [1–4]. From locations in
the United States of America, Italy, Germany, and Japan,
these instruments have started to search, in the kilohertz
frequency band, for gravitational waves emitted by astro-
physical sources such as spinning neutron stars, superno-
vae, and coalescing binary systems.

Among the various sources of gravitational radiation
that these instruments will attempt to observe, coalescing
binary systems containing neutron stars and/or black holes
are expected to be the first to be detected and studied.
These signals have a unique signature that enables them
to be extracted from wide-band data by digital filtering
techniques [5]. This signature is their accelerating sweep
upwards in frequency as the binary orbit decays because of
energy loss due to the emission of gravitational radiation.
Coalescing binaries have a potential advantage over other
sources in signal-to-noise ratio (SNR) by a factor that
depends on the square root of the ratio between the corre-
sponding number of cycles in the wave trains [6].

The standard technique used for extracting these
‘‘chirps’’ from the noisy data is called matched filtering.
In the presence of colored noise, represented by a random
process n�t�, the noise-weighted inner product between the
data stream d�t� recorded by the detector and the gravita-
tional wave form template h�t� is defined as

 hd; hi :� 2 Re
Z fU

fL

~d�f�~h��f�
S�f�

df; (1)

where the symbol� over d and h denotes their Fourier
transform, S�f� is the one-sided power spectral density of
the noise n�t�, fL, fU are the limits of the frequency band
of interest, and the � represents complex conjugation. From
this definition the expression of the SNR can be written in
the following form [5]

 SNR 2 :�
hd; hi2

Varhn; hi
: (2)

By analyzing the statistics of the SNR2, it is possible to
make statements about the presence (or absence) of such a
gravitational wave signal in the data. This operation of
course needs to be performed over the entire bank of
templates over which the SNR statistics are built, since a
gravitational wave signal is in principle determined by a
(finite) set of continuous parameters.

The effectiveness of the matched filtering procedure
relies on the assumption of exactly knowing the analytic
form of the signal (possibly) present in the data. Recent
breakthroughs in numerical relativity [7–9] have started to
provide a complete description of the radiation emitted
during the inspiral, merger, and ringdown phases of generic
black hole merger scenarios. Although the ability of ob-
taining numerically all the templates needed in a data
analysis search (perhaps hundreds of thousands of them)
might be practically impossible, in principle we should be
able to compare these numerically derived wave forms
against various analytic templates obtained under different
approximating assumptions. Work in this direction has
already started to appear in the literature [10–12] within
the so-called ‘‘frequentist framework,’’ in which estimates
in the reduction in SNRs and inaccuracies of the determi-
nation of the parameters characterizing the signal, due to
the use of approximated wave forms, have been derived.
Depending on the magnitude of these degradations one can
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decide whether to use these approximated wave forms as
templates in a data analysis search.

Since it can be argued that contiguous post-Newtonian
(PN) approximations should well characterize the differ-
ences between the ‘‘true signal’’ present in the data and the
highest-order PN approximation, in this paper we perform
such a comparison within the Bayesian framework. An
analogous, frequentist analysis has recently been per-
formed by Cutler and Vallisneri [13] for the case of super-
massive black hole binaries observed by the Laser
Interferometer Space Antenna (LISA). Their approach
relied on the use of the Fisher-Information matrix, which
is known to give good results in the case of large (hundreds
to thousands) SNRs. In the case of ground-based interfer-
ometers instead, since the expected SNRs will be probably
smaller than 10, a parameter estimation error analysis
based on the Fisher-Information matrix would lead to
erroneous results [14].

In this paper we will estimate the loss in probability of
detection (i.e. loss of evidence of a signal to be present in
the data) as a function of the SNR in the following two
cases: (i) the true signal present in the data is a spinless
PN3.5 wave form and the search model is represented by a
spinless PN3.0, and (ii) the true signal is a spinless PN2.0
wave form and the model is a spinless PN1.5 wave form.
We have limited our analysis to these two separate cases in
order to cover the region of the PN approximations that
have already been, or are in the process of being, used in
the analysis of the data collected by presently operated
ground-based interferometers.

Our approach relies on a Bayesian Markov Chain Monte
Carlo (MCMC) technique, as MCMC methods have suc-
cessfully been applied to a large number of problems
involving parameter estimations [15] in experimental
data sets. In our analysis the chirp signals (the one present
in the data and the one used as the model) are characterized
by five parameters: the two masses of the system, m1 and
m2, their time to coalescence tC, the coalescence phase�C,
and their distance r from Earth.

Bayesian MCMC methods have already been proven to
be capable of estimating the five parameters of a PN2.0
chirp signal embedded into noisy data of a single interfer-
ometer when using a PN2.0 based model [16], and in a
coherent search in the time domain for nine parameters
using a PN2.5 model [17] and a PN3.5 model [18] for the
phase. However, it has never been shown before how the
resulting evidence and probability distributions of the pa-
rameters are affected by the usage of different PN models.
Here we will estimate the evidence of a signal being buried
in noise and, at the same time, derive the probability
distribution of its parameters when the gravitational wave
form of the model is a simplified version of the signal
present in the data. A Bayesian analysis naturally justifies
Occam’s Razor [19,20] due to the penalization of unrea-
sonably complex models by the integration over the pa-

rameter space. The paper is organized as follows. In Sec. II
we provide a brief summary of the Bayesian framework
and its implementation in our problem. After deriving the
expressions of the likelihood function and the priors for the
parameters searched for, in Sec. III we describe the Markov
Chain Monte Carlo sampling technique adopted for calcu-
lating the posterior distributions. We then specify in
Sec. IV the different simulations we have conducted by
introducing the wave forms, noise specifications, and pa-
rameter sets. The final results of our simulations are pre-
sented in Sec. V, displaying the MCMC based posterior
distributions for the parameters and involved models. The
estimated posterior probabilities of the models are pre-
sented as a function of SNR with the corresponding un-
certainties over the noise realizations. We find that the
difference in detection probability when using a simplified
model rather than the true one is negligibly small in
comparison to these uncertainties. The posterior credibility
regions of the parameters reveal offsets from the true
parameter values that can be much larger than the statisti-
cal uncertainty, for both the PN1:5=2:0 and PN3:0=3:5
model comparisons. The PN2:0=2:0 and PN3:5=3:5 com-
parisons on the other hand, always yield credibility regions
that cover the true parameter values. Finally, in Sec. VI we
provide our comments and concluding remarks.

II. BAYESIAN FORMULATION

In this section we will derive the Bayesian full proba-
bility model for our problem, which involves the compari-
son between the two possibilities of having either a signal
and noise or just noise in the data. This requires the
determination of the likelihoods, the prior distributions
for the parameters associated with the models, and the
resulting posterior distributions.

A. Model definition

Let us suppose we observe a data stream d�t� �
st��; t� � n�t� containing the instrumental noise n�t� and
a chirp signal st��; t� that we will regard as the ‘‘true’’
signal. Here, � is the vector representing all the parameters
associated with the signal, and the noise is assumed to be a
stationary Gaussian random process of zero mean. In the
Fourier domain the observed data can equivalently be
written as ~d��; f� � ~st��; f� � ~n�f� (where tilde denotes
the Fourier transform operation) and we will refer to this
expression as model Mt.

In what follows we will assume the true signal ~st��; f� to
be the gravitational wave emitted by a coalescing binary
system and represented by a spinless post-Newtonian ap-
proximation in phase and Newtonian in amplitude for
which � � fm1; m2; r; tC; �Cg

T . Here m1 and m2 are the
masses of the rotating objects, tC is the coalescence time, r
the absolute distance to the binary system, and �C the
phase of the signal at coalescence.
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We will then describe the detection and estimation of the
parameters of the true signal by relying on a spinless lower-
order post-Newtonian wave form, ~ss��; f�. This simpler
model will be referred to as model Ms.

The derivation of the detection probability implies a
comparison between model Ms and the null-model, which
postulates mere noise ~n�f�within the data. This model will
be referred to as model Mn. Note that no parameter enters
into this model.

B. Likelihood function

Since we have assumed the distribution of the random
process associated with the noise of the detector to be
Gaussian of zero mean, it follows that the likelihood
function is proportional to the exponential of the integral
of the squared and normalized residuals between ~d��t; f�
and signal template ~s��; f� over the frequency band of
interest �fL; fU�. We define the data ~d�f� :� ~d��t; f� to
be modeled by Mt with their true parameter vector �t. The
comparison with the simplified model Ms results in the
following expression for the likelihood function

 p�~djMs;�� / exp
�
	2

Z fU

fL

j~d�f� 	 ~ss�f;��j2

Sn�f�
df
�
; (3)

where Sn�f� is the one-sided power spectral density of the
noise.

By substituting ~d�f� � ~st�f;�t� � ~n�f� into Eq. (3), the
likelihood function becomes

 p�~djMs;��/ exp
�
	2

Z fU

fL

j~st�f;�t�� ~n�f�	~ss�f;��j
2

Sn�f�
df
�
:

(4)

In analogy to Eq. (4), under model Mn (with no parame-
ters) the likelihood assumes the following form

 p�~djMn� / exp
�
	2

Z fU

fL

j~st�f;�t� � ~n�f�j2

Sn�f�
df
�
: (5)

For comparison reasons, in the case of using the true
model the likelihood function becomes

 p�~djMt;��/ exp
�
	2

Z fU

fL

j~st�f;�t�� ~n�f�	~st�f;��j
2

Sn�f�
df
�
;

(6)

which will then give information about the impairment in
detection when using model Ms instead of Mt. Note that
the investigation of this question requires doing the two
different model comparisons separately, i.e. Mn vs Ms
and Mn vs Mt [21].

The next step needed for completing our Bayesian full
probability model is the identification of suitable prior
distributions for the five parameters characterizing the
chirp signal. Our derivation will closely follow that de-
scribed in [16,17].

C. Prior distributions

The derivation of appropriate priors p��� bears signifi-
cant influence on the evidence of a signal presence within
noise, since the prior identifies the size of the parameter
space which the evidence is based on.

A detailed description of the derivation of the prior
distributions, and, in particular, for the masses m1, m2,
and distance r, can be found in [16,17]. In short, the masses
are assumed to be uniformly distributed over a specified
range �mmin; mmax� and the prior distribution for the dis-
tance is chosen to be a cumulative distribution having
systems out to a distance x smaller than r, P�x < r�,
proportional to the cube of the distance, x3. In order to
obtain a proper prior distribution that does not diverge once
integrated to infinity, it is down-weighted by including an
exponential decaying. This accounts for the Malmquist
effect [22] and includes the assumption of uniform distri-
bution for the masses. The resulting distribution function
p�m1; m2; r� can be written as follows [16]

 

p�m1; m2; r� / I�mmin;mmax�
�m1�I�mmin;mmax�

�m2�r
2




�
1� exp

�
logA	 a

b

��
	1
; (7)

where

 A � M5=6
c =r �

������������
m1m2
p

�m1 �m2�
1=6r

; (8)

and I�mmin; mmax��m� is the so-called ‘‘indicator function,’’
equal to 1 when mmin � m � mmax and zero elsewhere.
The latter term containing the log-amplitude in the sigmoid
function of Eq. (7) is the down-weighing term mentioned
earlier, and it depends on two constants a and b. These are
determined by requiring a smooth transition of a m1, m2

inspiral system being detectable with two specified proba-
bilities at two given distances. In [16,17] a and b are
determined by choosing a �2	 2�M� inspiral system to
be detectable with probabilities 0.1 and 0.9 out to distances
95 Mpc and 90 Mpc, respectively. Since the choice of those
constants depends also on the assumed noise model, we
have taken this to roughly coincide with the noise sensi-
tivity curve of the LIGO-I detector [23].

Figure 1 shows the joint prior distribution of the masses
m1, m2, and marginal distribution of the distance r, using
Eq. (7). Although initially a uniform distribution is as-
signed to the masses, the conjunction of distance and
masses results in a higher detectability of large masses.
The number of possible binary systems increases quadrati-
cally with the distance but the down-weighing of the prior
is significantly seen above 500 Mpc as we allow masses of
up to 50M�. In [16,17] for example, the masses were
restricted to 3M� and therefore the prior values on the
distance were much smaller with a distribution mode at
around 75 Mpc.
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As far as the time to coalescence is concerned, we have
assumed it to be uniformly distributed over a time interval
of 1 s centered around the value identified by the masses of
the binary and the lower frequency cutoff of the detector
[24]. This search range for the time to coalescence tC is
larger than that used in [16] because when using the
simplified model the posterior peak can be offset from
the true value by more than the posterior width.

Finally, we have chosen the phase of the signal at
coalescence �C to be uniformly distributed over the inter-
val �0; 2��, i.e. p��C� � I�0;2����C�=�2��.

The choice of priors is different when it comes to the
analysis of model Mn. Since this model postulates mere
noise, there are no parameters entering the likelihood,
which is therefore a constant.

The final remaining step in defining the Bayesian pro-
cedure is to assign prior probabilities to the models them-
selves. Since we have no a priori knowledge, the unbiased
choice is equal probability for each. Different choices will
result in different posterior probabilities which will be
discussed in detail later in Sec. V.

D. Posterior distribution

By applying Bayes’ theorem using the likelihoods and
priors defined above, we then derive the multidimensional
posterior probability distribution for the model and its
parameters

 p�i;�ij~d�

�

�
p�Mn� 
 p�~djMn� if i � 0
p�Ms;�� 
 p�~djMs;�� if i � 1R

p�Ms;�� 
 p�~djMs;��d� � p�Mn� 
 p�~djMn�
;

(9)

where i 2 f0; 1g corresponds to the two models
fMn;Msg. In the same way, it is possible to derive the

posterior for the comparison of Mn vs Mt. A Bayesian
analysis naturally justifies Occam’s Razor [19,20] due to
the penalization of unreasonably complex models by in-
tegrating over the parameter space resulting in the prefer-
ence for a simpler model.

III. BAYESIAN MODEL SELECTION AND
PARAMETER ESTIMATION

There exist various techniques for tackling this multi-
dimensional problem. One possible approach is to calcu-
late the so-called Bayes factors [21,25,26], which are the
ratios of the global likelihoods of the models that are
involved. The Bayesian information criterion [27] can be
used as an approximation to the Bayes factor. However, it
is possible to address the problem of sampling from the
multidimensional posterior distribution in Eq. (9) by im-
plementing a relatively new procedure, called reversible
jump MCMC (RJMCMC) technique [28,29], which simul-
taneously addresses the problems of model selection and
parameter estimation. The RJMCMC is combined with
traditional fixed dimension MCMC techniques that sample
from the parameters of the current model. In the following
we will briefly review the MCMC algorithm that we will
use in our analysis.

A. Metropolis Coupled Markov Chain Monte Carlo

In simulated tempering [30], the ‘‘temperature’’ be-
comes a dynamic variable on which a random walk is
conducted during the entire sampling process. The joint
distribution of temperature and remaining parameters,
however, requires the normalization constants of the dis-
tributions given the temperature. Other approaches like the
tempered transition method [31] or the Metropolis Coupled
Chain (also known as parallel tempering algorithm) [32] do
not need normalization constants. The latter approach has
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FIG. 1. Joint prior distribution of the masses m1, m2, and marginal distribution of the distance r using Eq. (7). Although initially a
uniform distribution is assigned to the masses, the conjunction of distance and masses results in a higher detectability of large masses.
The number of possible binary systems increases quadratically with the distance. The down-weighing of the prior is significantly seen
at around 500 Mpc and above as we allow masses of up to 50M�.

RICHARD UMSTÄTTER AND MASSIMO TINTO PHYSICAL REVIEW D 77, 082002 (2008)

082002-4



been advocated in the astrophysical literature [21] and it
has also been implemented in [17,33].

In a Metropolis Coupled Chain [32], sampling is done in
parallel from k different distributions pj�i;�ij~d�; j 2
f1; . . . ; kg. The real posterior distribution of interest is
denoted by pj�i;�ij~d� with parameter vector �i, whereas
the distributions of higher orders j > 1 are chosen in such

way that the sampling process is facilitated. Usually, differ-
ent temperature coefficients are applied [34] that flatten out
the posterior modes. During the sampling from the k dis-
tributions, from time to time, attempts are made to swap
the states of a randomly chosen pair of distributions.

The posterior in the present context can be regarded as a
canonical distribution

 pj�i;�ij~d� �

�p�Mn� 
 exp�	2�j
RfU
fL
j~d�f�j2

Sn�f�
df� if i � 0

p�Ms;�� 
 exp�	2�j
RfU
fL
j~d�f�	~ss�f;��j2

Sn�f�
df� if i � 1

C
; (10)

where
 

C�
Z
p�Ms;�� 
 exp

�
	2�j

Z fU

fL

j~d�f�	 ~ss�f;��j
2

Sn�f�
df
�
d�

�p�Mn� 
 exp
�
	2�j

Z fU

fL

j~d�f�j2

Sn�f�
df
�

(11)

with inverse temperatures �j, j 2 f1; . . . ; kg. For higher
values of j, the posterior modes are flattened out and the
sampling process is eased. A temperature scheme for our
Metropolis Coupled Chain uses k � 10 different �j values
with j 2 f1; . . . ; kg, where�1 � 1 is the temperature of the
original posterior distribution. As in [17,33], the prior
distribution is purposely not involved in the temperature
scheme as the prior information at high temperatures is
preserved. Equation (10) converges to the prior distribution
if �! 0 whereas a temperature scheme, had it been
applied to the entire posterior distribution, would merely
yield a uniform distribution.

The inverse temperatures �j, j 2 f1; . . . ; kg are un-
known parameters that must be determined prior to each
simulation. It is obvious that the highest temperature needs
to account for the nature of the likelihood surface. The
stronger the signal, the higher the modes and the more
likely it becomes for the MCMC sampler to get trapped.
The acceptance probability of a proposed jump in a basic
Metropolis-Hastings algorithm is determined by the prod-
uct of the ratios between the proposals, the priors, and the
likelihoods [15,35,36] of the proposed parameter vector
and current state parameter vector. For a coarse assessment
of the nature of the posterior surface, we can neglect the
prior distribution as it is much smoother than the likelihood
surface. With symmetric proposals, the likelihood ratio is
therefore the key factor in analyzing the depth of the modes
in the posterior surface.

Although in the simplified model comparison the pa-
rameter estimates can be far off the true parameter values,
in the true model comparison the true parameter values are
expected to be good estimates of the parameters. This fact
can be used for a coarse assessment of the nature of the
likelihood surface. Since the log-likelihood of the true

model at the true parameter values is logLHt �

	2
RfU
fL
j~d�f�	~st�f;�t�j2

Sn�f�
df, it can be compared to the log-

likelihood of the null model logLHn � 	2
RfU
fL
j~d�f�j2

Sn�f�
df.

The probability to overcome a proposed MCMC jump
between these two likelihood values determines the con-
vergence of a MCMC sampler. The acceptance probability
is therefore related to the difference of the log-likelihoods
logLHt 	 logLHn. We want the hottest temperature to
allow jumps within the posterior surface and we want
this to happen about every, say, 1000 iterations. This
number allows occasional jumps at the hottest temperature
(smallest inverse temperature) which is therefore chosen to
be

 �min �
log�1000�

logLHt 	 logLHn
: (12)

We then use an exponential temperature scheme for k � 10
chains:

 �j � ��j	1�=�k	1�
min ; j � f1; . . . ; kg: (13)

For each iteration and each chain, new parameter values
are proposed. Of course this is only meaningful when the
current state of the chain is not the null model. If the
present state of the sampler is model Ms (or Mt depend-
ing on the comparison), independent normal distributions
are chosen to propose new jumps. Pilot runs are first used
to find appropriate proposal variances. The acceptance
probability for a proposed candidate is derived by comput-
ing the Metropolis-Hastings ratio [15,35,36]. The proposed
swaps between arbitrary pairs of chains are done in the way
described in [32] with the temperature scheme highlighted
above.

The transdimensional jumps between null model Mn
and model Ms (or Mt) are conducted by RJMCMC steps
[28]. We implemented a death and a birth proposal which
either attempts to jump from model Ms (or Mt) to model
Mn or from model Mn to model Ms (or Mt).
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B. Reversible jump Markov Chain Monte Carlo

The reversible jump approach requires a random vari-
able � with distribution q��� that matches the dimensions
of the parameter space across models. In addition, a func-
tion is defined that does the dimension matching. In the
present case it is a function based on death and birth events.
The one-to-one transformation in the birth transition cre-
ates a new signal with parameter vector �0 and has the form
t0�1��� � � � �

0. The inverse death transformation that
annihilates the signal, t	1

0�1
:� t	1

1�0, has form t1�0��
0� �

�0 � �. The Jacobian of both transformations is equal to 1.
The acceptance probability for the creation process is
therefore

 �0�1 � min
�
1;
p�Ms�p��0�p�~djMs;�0�

p�Mn�q��0�p�~djMn�

�
; (14)

where �0 � � is drawn from q���. The annihilation process
is in turn given by

 �1�0 � min
�
1;

p�Mn�q��0�p�~djMn�

p�Ms�p��0�p�~dj�0;Ms�

�
; (15)

where �0 is the parameter vector of the current existing
signal. Since we have chosen equal prior probabilities for
both models, we have p�Ms�=p�Mn� �
p�Mn�=p�Ms� � 1.

As one can see in Eq. (14), for the creation process, the
prior distribution p��0� at an existing parameter �0 is found
in the numerator while the proposal distribution q��0� at
the existing parameter is present in the denominator. On
the other hand, in Eq. (15), for the annihilation process, the
proposal value q��� of a new proposed parameter vector
�0 � � is found in the numerator while the prior p��0� is in
the denominator. This means that a larger parameter space,
which naturally yields smaller prior values, results in more
likely accepted deaths than accepted births. As a conse-
quence, the sampler will prefer sampling from the null
model which means that the evidence of a signal will be
smaller if we increase the parameter space. This makes
perfect sense as we expect the evidence of a signal to fade
if we integrate over a larger parameter space.

The other fact [that the proposal distribution enters on
opposite sides of the fraction in Eqs. (14) and (15)] reveals
the difficulty on the choice of the proposal distribution. In
order to understand the effect of the proposal distribution,
let us consider the following three scenarios.

(1) Suppose we do not know the major posterior mode
and therefore choose the parameter vector of a new
signal to be drawn from a widespread proposal
distribution. We could choose the proposal distribu-
tion to be the same as the prior distribution, in which
case prior and proposal would cancel out. From the
sampling point of view, the samples would account
for the prior distribution and the acceptance proba-
bility would merely contain the likelihood.

However, it would be unlikely to find the narrow
mode in the likelihood surface by ineptly poking
around in the entire parameter space restricted by
the prior. Such a RJMCMC sampler would rarely
accept jumps between the models. Only very long
runs would give sufficient information about what
proportion of a run the sampler naturally stays in
which model in order to draw reliable conclusions.

(2) Suppose we wrongly assume the posterior mode to
be concentrated in some area of the parameter space
far away from the actual posterior mode. We would
choose the proposal distribution to have the major
probability in some wrong area of the parameter
space. Naturally the draws from such distribution
would privilege proposals in the wrong area of the
parameter space but the acceptance probability
would repress births and support deaths in the area
as the proposal values would be naturally high. The
sampler is balanced but mixing would be poor as
proposals in the correct area of the parameter space
are rare, even though their acceptance would be
facilitated. The mixing would be even worse than
in the first scenario and even longer runs would be
needed to reveal reliable information about how
long the sampler naturally stays on average in which
model.

(3) Suppose we have a vague idea about where the
major posterior mode is located and choose our
proposal density to be centered around that area.
The samples would be drawn preferentially in that
particular area of parameter space but the ratio of
proposal and prior would compensate for that in the
acceptance probability. However, the likelihood ra-
tio in this area would have a major impact and the
sampler is more likely to jump between the models
revealing the proper ratio and model probability in a
much shorter sampling period.

We see that the choice of a proper proposal distribution
is very important. A good proposal distribution ought to
have the major probability mass concentrated around the
expected posterior mode but with long tails in order to
cover the entire prior. This is achieved by a mixture dis-
tribution between a normal distribution with small variance
and a uniform distribution that covers the prior range. If we
are to compare the null model Mn and the true model Mt,
we are in a lucky position. The mean of the proposal
distribution is most likely to be found around the true
parameter values and we only need to find a variance in
the same order of magnitude as the posterior mode which
can be determined by pilot runs.

Things are different when we compare null model Mn

and the simplified model Ms. The posterior mode cannot
be expected at the true parameter values as the wave form
of the simplified model is definitely not best fit at the true
parameter values. Just augmenting the variance of a pro-
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posal distribution with mean at the true parameter values
would result in bad mixing. We therefore need pilot runs at
higher signal-to-noise ratio in order to determine the vague
center of the posterior mode in the simple model case. The
information acquired from such runs serves to determine a
suitable proposal distribution.

C. Within-model Metropolis-Hastings sampling and
reparametrization

The sampling process of the individual chains, when the
current state of the Markov chain is in the model that
postulates a signal, is done by a common Metropolis-
Hastings step [15,35,36]. The proposals here are tailored
to the expected posterior shape by choosing a very heavy
tailed distribution. This was accomplished by mixing a
normal distribution with exponentially varying variance
[33,37,38].

The high correlation of the mass parameters m1 and m2

in the posterior distribution needed to be accounted for by
reexpressing them in terms of the following Newtonian and
1.5 PN time to coalescence [39]

 �1 � F1 
 �m1 �m2�
	8=3 �m1 �m2�

3

m1m2
; (16)

 �2 � F2 
 �m1 �m2�
	5=3 �m1 �m2�

3

m1m2
; (17)

where F1 �
5

256 ��f0�
	8=3 and F2 �

�
8 ��f0�

	5=3. This
turned out to work very well as a reparametrization tech-
nique for our sampler.

Since m1 and m2 can be written in terms of �1 and �2

according to the following expressions

 m1 �
1

2
�C1 	

������������������������
C2

1 	 4C1=3
2

q
�; (18)

 m2 �
1

2
�C1 �

������������������������
C2

1 	 4C1=3
2

q
�; (19)

where C1 �
�2F1

�1F2
and C2 �

�2

F2
�F1

�1
�4, it follows that the

Jacobian of this transformation is equal to

 detJ � 	
F1F2C

1=3
2

������������������������
C2

1 	 4C1=3
2

q
�F1�2�

2 	 4�F2�1�
2C1=3

2

: (20)

Since in the original parameter space we defined a joint
density for fm1; m2; rg, the new joint prior distribution of
�1, �2, and r is given by

 p��1; �2; r� �
�
p�m1��1; �2�; m2��1; �2�; r�j detJj if mmin � m1��1; �2� � mmax and mmin � m2��1; �2� � mmax

0 otherwise

(21)

wherem1��1; �2� andm2��1; �2� are given by Eqs. (18) and
(19).

The sampling techniques described in the previous sub-
sections are then used to sample from this new multidimen-
sional parameter space f;; ��1; �2; �C; tC; r�Tg.

IV. DESCRIPTION OF THE SIMULATIONS

For our simulations we have created data sets from true
wave forms of three hypothetical binary inspiral systems.
We will consider two scenarios where the true wave form is
either of PN2.0 or PN3.5 order. The detection of each
scenario is attempted by either a PN1.5 or a PN3.0 wave
form, respectively.

In the first scenario, PN3:0=3:5, true model Mt con-
taining a PN3.5 wave form is used for creating the observed
data ~d��; f� � ~st��; f� � ~n�f�. In the frequency domain a
PN3.5 signal has the form [13,40]

 ~s t��; f� �Af	7=6 exp�i�G��; f� �H��; f� 3:5��; f���

(22)

where

  3:5��; f� � �1:5��; f� � �2:0��; f� � �2:5��; f�

� �3:0��; f� � �3:5��; f� (23)

with

 

�1:5��; f� � 1�
20

9

�
743

336
�

11�
4M

�
��Mf�2=3 	 16�2Mf �2:0��; f� � 10

�
3 058 673

1 016 064
�

5429�
1008M

�
617�2

144M2

�
��Mf�4=3

�2:5��; f� � �
�

38 645

756
�

38 645

252
log�

���
6
p
��Mf�1=3� 	

65�
9M
�1� 3 log�

���
6
p
��Mf�1=3��

�
��Mf�5=3

�3:0��; f� �
��

11 583 231 236 531

4 694 215 680
	

640�2

3
	

6848 
 0:577 21

21

�
�
�
M

�
	

15 335 597 827

3 048 192
�

2255�2

12

	
1760

3

	11 831

9240
�

12 320

9

	1987

3080

�
�

76 055�2

1728M2 	
127 825�3

1296M3 	
6848

21
�log�4���Mf�1=3�

�
��Mf�6=3

�3:5��; f� � �
�

77 096 675

254 016
�

378 515�
1512M

	
74 045�2

756M2

�
��Mf�7=3 (24)
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and

 H��; f� �
3

128
��Mcf�	5=3 (25)

and

 G��; f� � 2�ftC 	�C 	 �=4 (26)

with coalescence time tC and coalescence phase �C, in-
volved masses m1 and m2, total mass M � m1 �m2,
reduced mass � � m1m2=M, and chirp mass Mc �
�m3

1m
3
2=M�

1=5.
The amplitude A is related to the intensity of gravita-

tional wave [39] and in the stationary phase approximation
A / M5=6

c =r where r is the distance between detector and
source. The model is determined by the five parameters
� � fm1; m2; r; tC; �Cg

T . The proportional factor depends
on the relative orientation between detector and source,
and we will assume it to be constant and equal to 1 since we
are more generally interested in the broad assessment of
the evidence of a signal.

The signal used for detection is the 3.0 PN approxima-
tion, which will serve as the simplified model Ms. The
PN3.0 approximation formulated in the frequency domain
is given by the following expression

 ~s s��; f� �Af	7=6 exp�i�G��; f� �H��; f� 3:0��; f���;

(27)

where

  3:0��; f� � �1:5��; f� � �2:0��; f� � �2:5��; f�

� �3:0��; f�: (28)

In the exact same way the second scenario involving
PN1:5=2:0 wave forms is approached where the data are
created using a supposedly true signal

 ~s t��; f� �Af	7=6 exp�i�G��; f� �H��; f� 2:0��; f���;

(29)

where

  2:0��; f� � �1:5��; f� � �2:0��; f�: (30)

The simplified model Ms uses the lower 1.5 PN expansion

 ~s t��; f� �Af	7=6 exp�i�G��; f� �H��; f��1:5��; f���:

(31)

The distance of each binary system is varied in order to
obtain different signal-to-noise ratios. The noise realiza-

tions are drawn in such a way that they correspond to the
approximated expression of the one-sided power spectral
density of initial LIGO [39]

 Sn�f� �
S0

5

��
f0

f

�
4
� 2

�
1�

�
f
f0

�
2
��

(32)

with S0 � 8:0 10	46 Hz	1 being the minimum noise of
the detector and f0 � 175 Hz the frequency at which the
sensitivity of the detector reaches its maximum. The noise
samples are generated directly in the Fourier domain by
first simulating white noise samples, and then by scaling
their amplitudes according to the required noise spectrum
Sh�f�.

Since the time required to perform a single-signal simu-
lation was several days on the Jet Propulsion Laboratory
Dell Xeon cluster (running 1024 Intel Pentium 4 Xeon
processors), we decided to perform only three simulations
for three different binary systems. These were selected to
be close to the ‘‘corners’’ of the (�1, �2) region of the mass-
space, corresponding, respectively, to the mass pairs given
in Table I. The reason why we have chosen binary systems
of such particular mass constellations can be seen in the
following Fig. 2 where the masses are drawn in the repar-
ametrized ��1; �2� plane. Here, the chirp mass is defined as

TABLE I. Table of the parameters of the three example binary systems B1–B3.

System Mc � m1 m2 tC �C r

B1 0:879 05M� 0.1875 1:8M� 0:6M� 42.769 33 s 0.2 rad 16–24 Mpc
B2 3:089 506M� 0.011 293 1 45:0M� 0:52M� 5.264 26 s 0.2 rad 22–35 Mpc
B3 31:855 76M� 0.24 45:0M� 30:0M� 0.107 78 s 0.2 rad 100–250 Mpc

0.0 0.5 1.0 1.5 2.0 2.5
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FIG. 2. Three example binary systems in the �1, �2 plane.
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Mc � �m
3
1m

3
2=M�

1=5 and the mass function � � m1m2

�m1�m2�
2 ,

which is the ratio between the reduced mass and the total
mass of the binary system. Figure 2 shows the three mass
constellations close to the three corners of the ��1; �2�
triangular plane. The bottom left corner corresponds to
large masses with low mass ratio, in the top left corner
mass constellations are found with large and small masses
(large mass ratio). Towards the right corner, the masses
become small.

V. RESULTS

We created data sets for the three different binary sys-
tems given in Table I, and changed their distances in such a
way that the resulting SNRs would give a detection proba-
bility varying within its extremes. This resulted in varying
the SNR within the interval (3, 12). For the binary system
B1, we simulated 12 different distances of varying step
width between 16 and 24 Mpc. We found this step width to
be sufficient in order to capture the variability of the
calculated detection probability as a function of the SNR.
For binary system B2 we similarly took 12 different dis-
tances between 22 and 35 Mpc, while for system B3 we
considered 16 different distances in the range of 100–
250 Mpc in steps of 10 Mpc. Note that for the binary
system B2, with its large mass ratio, for sake of simplicity
we have not accounted for post-Newtonian amplitude cor-
rections. For each of the 40 distances considered we gen-
erated 20 different noise realizations, resulting in a total of
800 data sets. Our MCMC sampler was applied 4 times on
each data set for covering the specified model compari-
sons. This yields a total of 3200 10 simulated Metropolis
Coupled MCMC chains, each of which was stopped after
300 000 iterations after inspecting that such a number was
sufficient for our purpose.

The simulated data were sampled at 4096 Hz for a
duration of about 24 s, and they were produced by embed-
ding the different signals into noise samples that where
generated in the Fourier domain as described in Sec. IV.
Since all MCMC runs were conducted after pilot runs at
higher SNRs, the burn-in period was kept very short as the
proposal distributions were optimized to the target distri-
bution and mixing was very efficient. Therefore, from the
MCMC output we discarded just the first 10 000 iterations
as burn-in due to the quick convergence that was shown in
the outputs. Short-term correlations in the chain were
eliminated by ‘‘thinning’’ the remaining terms: every
100th item was kept in the chain. This figure is based on
the fact that the algorithm usually shows acceptance rates
between 10–30% within model proposals. These accep-
tance rates imply about 1030 acceptances within 100 iter-
ations which results in rather small autocorrelations. The
MCMC standard error, for example, gives a measure of
how much the sample mean, as a point estimate of the true
posterior mean, changes over repeated MCMC simula-
tions. This accuracy depends on the number of iterations

and the degree of autocorrelation within the sample. In our
case, the MCMC standard error is usually 1 order of
magnitude smaller than the posterior standard deviation,
implying the effects introduced by the autocorrelation can
be disregarded.

The integration bandwidth for the likelihood was chosen
from 12 Hz up to the frequency of the last stable orbit or
600 Hz, whichever is the smaller. Since the SNR is negli-
gible above 600 Hz, we fixed this to be the upper frequency
cutoff. For the B1 system, we derived a frequency of
1832.2 Hz at the last stable orbit which gives an integration
limit of 600 Hz for B1. This translates in 14 355 complex
samples that contribute to the posterior distribution. In the
case of system B2 instead, the last stable orbit is at 96.6 Hz,
resulting in 2065 complex samples involved in the deter-
mination of the likelihood function. Finally, for the high
mass binary system B3 in our set of systems the last stable
orbit is at 58.6 Hz, implying now only 1138 complex
samples over which the likelihood is calculated.

After we conducted the MCMC simulations we derived
the posterior detection probabilities for the competing
models from the MCMC outputs regarding the three ex-
ample binary systems, the four different model compari-
sons, and the different sets of SNRs. For each binary
system we computed the posterior probabilities for the
considered scenarios and contrasted the probability of
detection based on a lower-order PN expansion against
the one using the true wave form. This is displayed in
Figs. 3–5 respectively.

In order to derive the detection curves we computed the
proportions of the states in which the Markov chain re-
curred to the null model or the model containing a signal.
This was done for the entire set of noise realizations for a
given SNR. Lines connect the estimates of the posterior
detection probabilities resulting in an interpolated function
of the SNR. This is a monotonically increasing function of
the SNR, reaching asymptotically 1 as the SNR goes to
infinity. A common feature to these figures is the uncer-
tainties due to the noise that the signal detection probabil-
ity shows at a given SNR. In particular, these uncertainties
are more pronounced when the gradient of the detection
probabilities is at its maximum. Note also that the differ-
ence between the detection probabilities associated to the
true model and the approximated one is much smaller than
these uncertainties. The uncertainties are displayed as
vertical bars: the 50% quartiles (thick bars), and the outer
quartiles (thin lines) associated with the 20 noise realiza-
tions. The inner 50% quartiles are divided by a small line
which represents the median. It is interesting to see in
Fig. 3 that, in some cases, for a given binary system and
SNR, detection probabilities as low as 0 or as high as 1 are
possible, merely on the effect of the noise realization.

It is worth mentioning that analyses performed within
the frequentist framework [12,39,41] and aimed at com-
paring the detectability of a signal by using a simplified
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wave form were focused entirely on estimating the result-
ing loss of SNR. The Bayesian model comparison pre-
sented here has the inherent ability to estimate
probabilities and their uncertainties due to noise, providing
much more insight into this issue.

Another interesting feature shown by the detection
probability curves is their asymptotic dependence on the
SNR. While the probability of detection always converges
to 1 as the SNR goes to infinity, it does not necessarily
always goes to zero with the SNR. The reason for this lies
in the Bayesian approach in which we assumed equal prior
probability for both the null model and the model that
contains a signal. In the Bayesian context, all probabilities
represent a degree of belief. They are based on the prior

information and on the information that is given by the data
by means of the likelihood. The more data we have, the
more new information we obtain from the posterior distri-
bution. The less data we have, the more impact the prior
has on the posterior. In an extreme scenario with no data at
all, the posterior is equal to the prior. We used this fact to
test the correctness of our RJMCMC sampler as it must
sample properly from the prior distributions and prior
model probabilities when no data are present. The three
binary systems considered in this paper each imply differ-
ent likelihoods. For example B1, with its small masses, has
a spectrum that nicely falls into the part of the observable
band of the detector where the instrumental noise is at its
minimum. On the other hand, the system B3 shows an
energy spectrum whose upper frequency cutoff is equal
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FIG. 4. Probability detection curves of B2 for (a) the
PN1:5=2:0 and PN2:0=2:0 comparisons and (b) the PN3:0=3:5
and PN3:5=3:5 comparisons. The vertical gray bars indicate the
50% quartiles, and the thin lines refer to the outer quartiles
associated with the 20 noise realizations. The inner 50% quar-
tiles are divided by a small line which represents the median. The
lower PN vs higher PN comparisons are shown as solid lines
(detection curves) and light gray bars (quartiles) while the equal
PN comparisons are displayed as dashed lines and dark gray
quartile bars.
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FIG. 3. Probability detection curves of B1 for (a) the
PN1:5=2:0 and PN2:0=2:0 comparisons and (b) the PN3:0=3:5
and PN3:5=3:5 comparisons. The vertical gray bars indicate the
50% quartiles, and the thin lines refer to the outer quartiles
associated with the 20 noise realizations. The inner 50% quar-
tiles are divided by a small line which represents the median. The
lower PN vs higher PN comparisons are shown as solid lines
(detection curves) and light gray bars (quartiles) while the equal
PN comparisons are displayed as dashed lines and dark gray
quartile bars.
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to 58.6 Hz, with therefore 1138 frequency bins over which
the likelihood is calculated.

The diverse data sets are reflected in Figs. 3–5. For B1
with its 14 355 involved samples, the detection probability
converges to almost zero for low SNRs as the data provide
sufficient evidence for the nonexistence of a signal even
though the prior suggests a probability of 0.5. It is in the
nature of the Bayesian approach that the scarcer data for
B2 and B3 provide less evidence resulting in a posterior
detection probability of around 0.2 and 0.4, respectively,
when the SNR approaches zero. A different choice for the
prior probability on P�Mn� � 1	 P�Ms� would change
the course of the posterior detection curves but with in-
creasing number of data samples and SNR, the likelihood
dominates the posterior distribution.

In order to point this up, we created a graph comparable
to Fig. 5 (bottom) in which the results of B3 based on the
PN3:0=3:5 comparison are shown with a different prior
probability of P�Mn� � 0:99 for the null model. The
model that contains a signal has consequently a prior
probability of 0.01. The result is illustrated in Fig. 6. This
plot corresponds to bottom graph of Fig. 5 with the only
difference that a more pessimistic prior probability
P�Mn� � 0:99 on the null model has been applied.
When comparing Fig. 6 to Fig. 5 (bottom), we see that
the detection probability is significantly lower at SNR< 7
due to the higher prior probability on the null model.
However, at an SNR of around 6, the detection curve jumps
up quickly in Fig. 6 and a detection probability of 1 is
reached in both figures roughly at an SNR of 8 because the
evidence of a signal in the data is overruling the prior
probability in both cases.

The impact of changing the prior probabilities of the
models can be quantified through an approximated analy-
sis. We refer the reader to the Appendix where we derive an
expression for the required increase in SNR (described by a
factor F), when the prior probabilities of the models
p�Ms� � 1	 p�Mn� are changed to new values
p�Ms�

0 � 1	 p�Mn�
0. In Eq. (A4) we derived the fol-

lowing expression for F

 F �
2

3
�

1

3

��������������������������������������
1	 6F�MP=SNR2

q
; (33)

where F�MP :� F0MP 	 FMP � log�p0�Ms�� 	 log�1	
p0�Ms�� � log�p�Ms�� 	 log�1	 p�Ms�� expresses the
change in the model prior probabilities.
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FIG. 5. Probability detection curves of B3 for (a) the
PN1:5=2:0 and PN2:0=2:0 comparisons and (b) the PN3:0=3:5
and PN3:5=3:5 comparisons. The vertical gray bars indicate the
50% quartiles, and the thin lines refer to the outer quartiles
associated with the 20 noise realizations. The inner 50% quar-
tiles are divided by a small line which represents the median. The
lower PN vs higher PN comparisons are shown as solid lines
(detection curves) and light gray bars (quartiles) while the equal
PN comparisons are displayed as dashed lines and dark gray
quartile bars.
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From Fig. 5(a) and 6, corresponding to a prior of the
signal being present equal to 0.5 and 10	2 respectively, we
find that in order for the probability of detection to remain
equal to 1 the SNR of the signal has to be increased from a
value of 7 to 7.7 (a 10% increase). The corresponding result

obtained by our analytical approach described in the
Appendix is in good agreement with this numerical result.
If we now would assume p�Ms� � 10	9 instead, our
analysis indicates that the SNR would need to increase
from a value of 7 (corresponding to a posterior probability

TABLE II. Required change in SNR (from SNR�SNR0) when the model prior probability is
changed from p�Ms� � 0:5 to a new selected value.

SNR p�Ms��p�Ms�
0 SNR0 SNR p�Ms��p�Ms�

0 SNR0 SNR p�Ms��p�Ms�
0 SNR0

7 0:5�0:01 7.58 7 0:5�10	6 8.49 7 0:5�10	9 9.06
8 0:5�0:01 8.52 8 0:5�10	6 9.37 8 0:5�10	9 9.91
9 0:5�0:01 9.47 9 0:5�10	6 10.27 9 0:5�10	9 10.78
10 0:5�0:01 10.43 10 0:5�10	6 11.17 10 0:5�10	9 11.66
50 0:5�0:01 50.09 50 0:5�10	6 50.27 50 0:5�10	9 50.41
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FIG. 7. MCMC generated posterior densities for B1. Part (a) shows the comparison with data of a PN2.0 wave form and (b) uses data
with the PN3.5 wave form. Each of the figures in (a) and (b) shows two different model comparisons based either on a lower PN order
signal or the same PN order that was used in the data. The left column shows the joint posterior density of the mass parameters Mc and
� in form of the 95% credibility area that contains 95% of the probability mass and the inner 50% credibility region colored in gray.
The middle column shows the MCMC generated kernel density estimate (KDE) of the distance r and the right column the KDE for the
time to coalescence tC. The true parameter values are indicated as dashed lines.
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of 1 when the prior of the model is equal to 0.5) to SNR �
9:06 in order to compensate this new prior belief. Table II
provides a set of other examples corresponding to various
selected prior probabilities.

We will now focus on the parameter estimates. We have
compiled plots which address the impact of the use of
lower PN order wave forms on the bias of posterior dis-
tributions of the parameters. Along the lines of Figs. 3–5,
we plot the posterior distributions of the parameters when
the posterior detection probability reaches a value of 1. The
posterior distribution of the parameters is hereby an inte-
gration over the noise by incorporating all 20 realizations
of the MCMC outputs. Each output corresponds to the
SNRs at which the detection probabilities in Figs. 3–5
reach their maximum. We only concentrated on the four

parameters m1,m2, r, tC as the phase�C is of no particular
physical interest. We displayed the posterior density of the
masses as a 2D joint probability density in the form of a
contour plot. We computed the two-dimensional 50% and
95% credibility regions.

For the three considered binary systems we generated a
total of 36 plots for the distributions of the chirp mass Mc
and the mass function �, as well as density plots for the
distance r and the time to coalescence tC. We have chosen
to plot the joint posterior probability of the mass parame-
ters in the �Mc;�� space because they are not as much
correlated as �m1; m2� in their posterior, which produce
hard-to-visualize posterior densities. Although we could
plot the posterior in the ��1; �2� space, the joint posterior
probability ofMc and� is physically more meaningful. We
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FIG. 8. MCMC generated posterior densities for B2. Part (a) shows the comparison with data of a PN2.0 wave form and (b) uses data
with the PN3.5 wave form. Each of the figures in (a) and (b) shows two different model comparisons based either on a lower PN order
signal or the same PN order that was used in the data. The left column shows the joint posterior density of the mass parameters Mc and
� in form of the 95% credibility area that contains 95% of the probability mass and the inner 50% credibility region colored in gray.
The middle column shows the MCMC generated kernel density estimate of the distance r and the right column the KDE for the time to
coalescence tC. The true parameter values are indicated as dashed lines.
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divided the 36 plots into three sets corresponding to B1
(Fig. 7), B2 (Fig. 8), and B3 (Fig. 9).

Figures 7–9 display the true parameter values chosen in
our simulations (dashed line in the case of r and tC, and
intersection of two dashed lines in the Mc, � plots). From
visual inspection we notice that when the model matches
the signal present in the data the posteriors cover well the
true parameter values. In Fig. 7, however, the joint poste-
rior distribution of the mass parameters is offset from the
true values in the PN1:5=2:0 comparison. The PN3:0=3:5
detection, on the other hand, reveals a much smaller offset
for this particular signal. However, this is not true in
general, as it can be seen for the PN3:0=3:5 comparison

shown in Fig. 8. The offsets of the posterior distributions
from the true values of the mass parameters are very
obvious in both, the PN1:5=2:0 and PN3:0=3:5 compari-
sons. The posterior is shifted over several of its standard
deviations. Very striking is also the error in the time to
coalescence for the PN3:0=3:5 comparison in the B2 sig-
nal. The mass parameters Mc and � and time to coales-
cence are obviously the parameters subject to biases when
using a simplified model. This is physically understandable
since these three parameters define the phase of the signal.
The posterior distributions of the mass-related parameters
shown in Fig. 9 reveal smaller offsets. This is because the
spread of the posterior distribution is less pronounced and
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FIG. 9. MCMC generated posterior densities for B3. Part (a) shows the comparison with data of a PN2.0 wave form and (b) uses data
with the PN3.5 wave form. Each of the figures in (a) and (b) show two different model comparisons based either on a lower PN order
signal or the same PN order that was used in the data. The left column shows the joint posterior density of the mass parameters Mc and
� in form of the 95% credibility area that contains 95% of the probability mass and the inner 50% credibility region colored in gray.
The middle column shows the MCMC generated kernel density estimate of the distance r and the right column the KDE for the time to
coalescence tC. The true parameter values are indicated as dashed lines.
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the bias is therefore smaller compared to the posterior
standard deviation. The posterior distribution of time to
coalescence, however, is strongly offset from the true
parameter value in the PN3:0=3:5 comparison.

The graphical output only serves as a visualization. For
an honest comparison, numbers are needed. To this end, in
Table III, we show the true values, the 95% posterior
credibility interval, the median and the mean of the chirp
massMc, based on the MCMC outputs. Table IV, V, and VI
show the same entries for the parameters �, tC, and r,
respectively. The right-most column of the tables compares
whether the true values of the binary systems fall into the
corresponding 95% posterior credibility intervals.

The results seen in these tables show that the mass
function � and the time to coalescence tC are the parame-
ters that are most biased when estimated with a simplified
model. Note, first of all, that in all cases, the true values fall
into the 95% credibility intervals when the estimation is
based on the true model. For the distance r and the chirp
massMc the 95% credibility intervals cover the true values
in all comparisons. However, when applying a simplified

model, the 95% credibility interval of the mass function �
does not cover the true value in three cases: fB1 :
PN1:5=2:0;B2 : PN1:5=2:0;B2 : PN3:0=3:5g. In the case
of the time to coalescence tC, we find instead four cases:
fB2 : PN1:5=2:0;B2 : PN3:0=3:5;B3 : PN1:5=2:0;
B3 : PN3:0=3:5g. Combining these cases, we have a total of
5 out of the 6 simple model comparisons (PN1:5=2:0 and
PN3:0=3:5) that fail to retrieve all their parameters within
the 95% credibility region. The only simple model com-
parison that yields 95% credibility intervals that overlap all
the true parameter values is B1: PN1:5=2:0, although this is
only marginal.

In summary, we see that the bias in the estimated pa-
rameters based on a simpler model is larger than the
statistical uncertainty. However, we should note that the
SNR we have been considering corresponds to the value at
which the posterior detection probability just reaches the
value of 1. Since the statistical error is a monotonically
decreasing function of the SNR while the bias is not, we
conclude that the difference between statistical and sys-
tematic error increases for larger SNRs.

TABLE IV. Simulation results of mass ratio �.

Simulation Identification True Value 95% Credibility Interval (CI) Posterior Mean Posterior Median True Value Falls into 95% CI

B1: PN1:5=2:0 0.187 50 [0.213 44, 0.244 12] 0.225 21 0.225 91
B1: PN2:0=2:0 0.187 50 [0.178 44, 0.200 27] 0.187 83 0.188 19 �
B1: PN3:0=3:5 0.187 50 [0.181 10, 0.190 46] 0.185 59 0.185 64 �
B1: PN3:5=3:5 0.187 50 [0.182 92, 0.191 84] 0.187 58 0.187 53 �
B2: PN1:5=2:0 0.011 29 [0.013 71, 0.015 25] 0.014 35 0.014 49
B2: PN2:0=2:0 0.011 29 [0.010 70, 0.012 10] 0.011 29 0.011 33 �
B2: PN3:0=3:5 0.011 29 [0.010 77, 0.011 01] 0.010 86 0.010 95
B2: PN3:5=3:5 0.011 29 [0.011 21, 0.011 37] 0.011 29 0.011 29 �
B3: PN1:5=2:0 0.240 00 [0.224 28, 0.249 98] 0.243 50 0.241 18 �
B3: PN2:0=2:0 0.240 00 [0.228 21, 0.249 98] 0.244 36 0.242 45 �
B3: PN3:0=3:5 0.240 00 [0.227 96, 0.249 99] 0.244 45 0.242 50 �
B3: PN3:5=3:5 0.240 00 [0.225 90, 0.249 99] 0.244 26 0.242 00 �

TABLE III. Simulation results of chirp mass Mc.

Simulation Identification True Value 95% Credibility Interval (CI) Posterior Mean Posterior Median True Value Falls into 95% CI

B1: PN1:5=2:0 0.879 05 [0.878 67, 0.879 78] 0.879 08 0.879 11 �
B1: PN2:0=2:0 0.879 05 [0.878 65, 0.879 55] 0.879 06 0.879 07 �
B1: PN3:0=3:5 0.879 05 [0.878 55, 0.879 42] 0.879 00 0.878 99 �
B1: PN3:5=3:5 0.879 05 [0.878 63, 0.879 42] 0.879 05 0.879 04 �
B2: PN1:5=2:0 3.089 51 [3.080 66, 3.110 47] 3.093 84 3.095 76 �
B2: PN2:0=2:0 3.089 51 [3.074 14, 3.109 98] 3.089 31 3.090 47 �
B2: PN3:0=3:5 3.089 51 [3.066 65, 3.099 53] 3.077 90 3.088 28 �
B2: PN3:5=3:5 3.089 51 [3.079 99, 3.098 52] 3.089 55 3.089 69 �
B3: PN1:5=2:0 31.855 76 [29.547 49, 32.095 30] 31.011 41 30.977 21 �
B3: PN2:0=2:0 31.855 76 [30.763 57, 33.500 58] 31.906 88 31.951 60 �
B3: PN3:0=3:5 31.855 76 [31.09861, 34.688 58] 32.533 42 32.606 97 �
B3: PN3:5=3:5 31.855 76 [30.522 75, 33.822 86] 32.081 28 32.077 32 �
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These results reveal that parameter estimates based on
simplified models are not very reliable, since the system-
atic error is higher than the uncertainty of the posterior
distribution. Furthermore, the use of higher order post-
Newtonian wave forms does not abate this problem, as it
has been shown in Fig. 8.

VI. CONCLUSION

We have shown that, within the Bayesian framework, the
probability of detection is not impeded by using a simpli-
fied model for detecting wave forms of higher PN order in
the low-SNR regime. The Bayesian approach provides the
means to gain insight into the variation of the detection
probability over different noise realizations. We have
shown that the difference between the posterior detection
probabilities corresponding to the true and the simplified
model is very small as compared to its variance over
different noise realizations. We have further shown that
the systematic error in the Bayesian estimates, on the other
hand, can be larger than the statistical uncertainties. This is
also in agreement with results obtained within the fre-
quentist approach, discussed in the literature by others

[12,39,41]. However, it is based on finding the best fit of
the involved wave forms, while in our Bayesian framework
an integration is performed over the entire posterior distri-
bution which implies detection and estimation simulta-
neously. We can therefore analyze the posterior
distributions, conditioned on the model that involves a
signal which provides us with credible estimates in the
low-SNR regime.

We find that the estimates of � and tC based on simpli-
fied models need to be taken with caution in both the
PN1:5=2:0 and in the PN3:0=3:5 case as the offset is
unpredictable. The only parameter that is accurately recov-
ered throughout our simulations is the distance r which is
clear as it only appears in the amplitude term and is not
affecting the phase evolution of the signal. The chirp mass
could also be retrieved within the 95% credibility intervals
but yet shows a visible offset. With increasing SNR, how-
ever, the statistical error becomes smaller while the sys-
tematical offset remains constant. Given these findings we
conclude that post-Newtonian approximations of lower
orders than those adopted for the simulated signal can be
precarious for estimating its parameters; they are, however,
quite adequate for its detection.

TABLE VI. Simulation results of distance r.

Simulation Identification True Value 95% Credibility Interval (CI) Posterior Mean Posterior Median True Value Falls into 95% CI

B1: PN1:5=2:0 16.00 [14.04, 21.63] 17.00 17.22 �
B1: PN2:0=2:0 16.00 [14.03, 21.55] 16.96 17.17 �
B1: PN3:0=3:5 16.00 [14.18, 22.04] 17.20 17.44 �
B1: PN3:5=3:5 16.00 [14.15, 21.92] 17.18 17.40 �
B2: PN1:5=2:0 22.00 [19.13, 31.17] 23.67 24.07 �
B2: PN2:0=2:0 22.00 [19.02, 30.98] 23.61 23.98 �
B2: PN3:0=3:5 22.00 [19.23, 31.83] 23.86 24.59 �
B2: PN3:5=3:5 22.00 [19.23, 31.35] 23.71 24.11 �
B3: PN1:5=2:0 100.00 [84.54, 168.42] 111.55 115.45 �
B3: PN2:0=2:0 100.00 [86.07, 174.08] 114.05 118.16 �
B3: PN3:0=3:5 100.00 [86.94, 172.77] 114.94 118.91 �
B3: PN3:5=3:5 100.00 [85.92, 169.58] 113.05 116.76 �

TABLE V. Simulation results of time to coalescence tC.

Simulation Identification True Value 95% Credibility Interval (CI) Posterior Mean Posterior Median True Value Falls into 95% CI

B1: PN1:5=2:0 42.769 33 [42.767 16, 42.770 22] 42.768 54 42.768 56 �
B1: PN2:0=2:0 42.769 33 [42.768 05, 42.770 89] 42.769 37 42.769 40 �
B1: PN3:0=3:5 42.769 33 [42.769 31, 42.773 13] 42.771 13 42.771 15 �
B1: PN3:5=3:5 42.769 33 [42.767 40, 42.771 11] 42.769 37 42.769 35 �
B2: PN1:5=2:0 5.264 26 [5.231 79, 5.263 08] 5.245 87 5.246 86
B2: PN2:0=2:0 5.264 26 [5.248 68, 5.282 31] 5.263 98 5.264 39 �
B2: PN3:0=3:5 5.264 26 [5.525 61, 5.583 54] 5.548 98 5.549 58
B2: PN3:5=3:5 5.264 26 [5.242 67, 5.286 06] 5.264 38 5.264 67 �
B3: PN1:5=2:0 0.107 78 [0.088 05, 0.107 61] 0.097 06 0.097 23
B3: PN2:0=2:0 0.107 78 [0.097 96, 0.117 14] 0.108 02 0.107 94 �
B3: PN3:0=3:5 0.107 78 [0.131 03, 0.155 65] 0.144 44 0.143 90
B3: PN3:5=3:5 0.107 78 [0.092 20, 0.122 11] 0.109 99 0.108 84 �
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APPENDIX: IMPACT OF THE MODEL PRIOR

As mentioned at the beginning of Sec. III, one can
approach model comparison by using Bayes factors
[21,25,26]. These are equal to the ratios of the global
likelihoods of the models involved, while the posterior
odds are the product of the prior odds and the Bayes factor.
In order to assess the impact of a change in the prior
probabilities p�Ms� � 1	 p�Mn�, in the regime of
high SNRs, we can approximate the Bayes factors by the
maximum likelihood ratios, and disregard the effects due
to the differences between the search and data models.
These considerations imply the following form for the
posterior odds

 posterior odds �
p�Ms�

p�Mn�

maxp�~djMs�

maxp�~djMn�
�

exp�log�p�Ms�� �max
�
�	2

RfU
fL
j~d�f�	~s�f;��j2

Sn�f�
df��

exp�log�p�Mn�� 	 2
RfU
fL
j~d�f�j2

Sn�f�
df�

�
exp�log�p�Ms�� 	 2

RfU
fL
j~n�f�j2

Sn�f�
df�

exp�log�p�Mn�� 	 2
RfU
fL
j~d�f�j2

Sn�f�
df�

� exp
�
�log�p�Ms�� 	 log�p�Mn��� 	 2

Z fU

fL

j~n�f�j2 	 j~d�f�j2

Sn�f�
df
�

:� exp
�
FMP 	 2

Z fU

fL

j~n�f�j2 	 j~d�f�j2

Sn�f�
df
�
; (A1)

where FMP :� log�p�Ms�� 	 log�p�Mn�� indicates the
factor for the model priors. Note that we assume the best
fit to yield only residual noise for the difference between
data and model: ~d�f� 	 ~s�f;�� � ~n�f;��. In order to ana-
lyze the effects implied by a change in prior probability
from p�Ms� to a new value p0�Ms�, indicated by a prime,
we define the following prior factor F�MP :� F0MP	
FMP � log�p0�Ms�� 	 log�1	 p0�Ms�� � log�p�Ms�� 	
log�1	 p�Ms��. The question we pursue to answer is:
what variation in SNR is required in order to compensate

for the change in prior belief? This change in the prior
belief needs to be compensated for by an increase in SNR,
which we characterize with a factor F required to increase
the signal strength in the data ~d�f� � ~s�f� � ~n�f�. By
multiplying the signal by F we obtain ~d0�f� � F 
 ~s�f� �
~n�f�. Finally, we relate the two posterior odds by their
ratio, in which we use the original model priors and SNR in
the denominator and the new priors and new SNR needed
in the numerator. In case of a compensation, this ratio
ought to be 1 and it is equal to

 

1�
!

exp
�
F�MP 	 2

Z fU

fL

	j~d0�f�j2 � j~d�f�j2
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�
� exp

�
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	jF 
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� exp
�
F�MP � 2

Z fU
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�F2 	 1�j~s�f�j2 � 2�F	 1�<�~s�f�~n?�f���
Sn�f�

df
�

� exp�F�MP � F�LH�F�� (A2)

with F�LH�F� :� 2
RfU
fL
�F2	1�j~s�f�j2�2�F	1�<�~s�f�~n?�f���

Sn�f�
df.

The term F�LH�F� is a random variable that is normally distributed with parameters that depend on F. Its mean is given
by ��F� � E�F�LH�F�� � 2�F2 	 1�

RfU
fL
j~s�f�j2=Sn�f�df � �F

2 	 1� 
 SNR2=2, since E�~n�f�� � 0. Since the noise is
assumed to be independent among different frequencies, it is easy to derive the following expression for the variance
�2�F� � Var�F�LH�F�� � 2�F	 1�2 
 SNR2. From these considerations, we derive the following expected value of the
expression given in Eq. (A2)
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By setting the expected value of the ratio of the posterior odds, Eq. (A3), equal to 1 we derive the expression for the factor
F

 F�MP � 	�3F
2=2	 2F� 1=2� 
 SNR2 , 3F2=2	 2F� 1=2� F�MP=SNR2 � 0, F �

2

3
�

1

3

��������������������������������������
1	 6F�MP=SNR2

q
:

(A4)

Real solutions exist if and only if F�MP=SNR2 � 1=6. In the particular situation which we are interested in, showing a
reduction in prior probability for the model Ms, we have F�MP < 0 and therefore we always have real solutions. Note that
the smaller of the two solutions of the quadratic equation in F corresponds to a reduction in SNR. We will therefore
consistently focus our attention to the larger solution of the above quadratic equation. The physical reason behind having
two solutions for F resides in the fact that at low SNR the standard deviation ��F� of the normally distributed term
F�LH�F� in the exponent of Eq. (A3) can get larger than the mean ��F�. If SNR �

���
2
p

, then ��F� � ��F�8F >���
8
p
=SNR	 1. If, however, SNR �

���
2
p

then ��F� � ��F� 8 F > 1 which is the case we are interested in. We are left
with F � 2

3�
1
3

��������������������������������������
1	 6F�MP=SNR2

p
that gives us an approximate factor F in the high-SNR regime, that is needed to

increase the SNR of a signal in order to compensate our pessimistic prior change expressed by F�MP.
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