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A supersymmetric extension of the standard model based on the discrete Q6 family symmetry is
considered, and we investigate flavor changing neutral current (FCNC) processes, especially those
mediated by heavy flavor changing neutral Higgs bosons. Because of the family symmetry the number
of the independent Yukawa couplings is smaller than that of the observed quantities such as the Cabibbo-
Kobayashi-Maskawa matrix and the quark masses, so that the FCNCs can be parametrized only by the
mixing angles and masses of the Higgs fields. We focus our attention on the mass differences of the neutral
K, D, and B mesons. All the constraints including that from the ratio �MBs=�MBd can be satisfied, if the
heavy Higgs bosons are heavier than�1:5 TeV. If the constraint from �MK is slightly relaxed, the heavy
Higgs bosons can be as light as �0:4 TeV, which is within the accessible range of LHC.
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I. INTRODUCTION

In recent studies on flavor symmetries1 it has become
clear that a flavor symmetry can be realized at low ener-
gies. As long as this possibility is not excluded, theoretical
as well as experimental searches for a low energy flavor
symmetry should be continued. An important prediction of
any viable low energy flavor symmetry, which is broken
only spontaneously or at most softly, is the existence of
multiple SU�2�L doublet Higgs fields, as one could read off
from a sort of no-go theorem of [4]. This implies that there
should exist several neutral Higgs fields that have flavor
changing couplings to the fermions at the tree level.
Therefore, an observation of a nonstandard flavor changing
neutral current (FCNC) process, at LHC for instance, is not
necessarily an indication of supersymmetry [5,6].

In Ref. [7] a supersymmetric flavor model based on a
dicyclic dihedral group Q6 has been suggested.2 The main
motivation there was to derive a modified Fritzsch mass
matrix for the quarks from a flavor symmetry. With an
assumption that CP is spontaneously broken, the model
can fix six quark masses and four Cabibbo-Kobayashi-
Maskawa (CKM) parameters in term of nine parameters
of the model. It has been later realized in Refs. [21,22] that
through an appropriate change of the lepton assignment,
the leptonic sector can be brought into the same form as
that of the model of [23,24]. Then there are only seven
parameters in the leptonic sector of the model to fix six
lepton masses and six Maki-Nakagawa-Sakata (MNS) pa-
rameters. The discrete flavor group Q6 is the smallest non-

Abelian group with which the above situation can be
achieved.

However, it turned out that one has to introduce a certain
set of SU�2�L �U�1�Y singlet fields and also additional
Abelian global symmetries to make the model viable.
Nothing is wrong with this situation, but in this paper we
would like to stress the minimal content of the Higgs fields
and at the same time a ‘‘one� two’’ structure for each
family; one Q6 singlet and one Q6 doublet for each family
including the SU�2�L doublet Higgs fields. In Sec. II we
will shed light upon the relation between the nonrenorm-
alization theorem and flavor symmetry, and will show that
different flavor symmetries can be consistently introduced
into a softly broken supersymmetric gauge theory. We will
systematically investigate this possibility in a general
framework. With this observation we will find in Sec. III
that the one� two structure of family in a minimal Q6

extension of the supersymmetric standard model (MSSM)
can be consistently realized.

In Sec. IV we will consider the Higgs sector. Because of
the one� two structure the Higgs sector is much simpler
than that of [7,21,22], and therefore the sector can be
investigated with much less assumptions. We will explic-
itly show that it is possible to fine-tune the soft-supersym-
metry-breaking (SSB) parameters so as to make the heavy
Higgs bosons much heavier (several TeV) than MZ and
at the same time to obtain a desired size of spontaneous
CP violation to reproduce the Kobayashi-Maskawa
CP-violating phase.

In Sec. V we will first calculate the unitary matrices that
diagonalize the fermion mass matrices, which are needed
to write down the Yukawa couplings in terms of mass
eigenstates. We only briefly mention FCNCs and CP vio-
lations in the SSB sector and in the lepton sector, because
detailed investigations on these subjects have been recently
carried out in Ref. [22] and in Ref. [25], respectively.
Instead we investigate FCNC processes mediated by neu-

1For recent reviews see, for instance, [1–3].
2Q6 is one of Q2N with N � 2; 3; . . . , which are the ‘‘covering

groups’’ of the dihedral groups DN [8,9]. In recent years there
are a number of interesting flavor models based on Q2N and DN .
For instance, D4 has been used as a flavor symmetry in
Refs. [10–14], while D5, D6, D7, and Q4 have been considered
in Refs. [15–18], respectively. See also Refs. [19,20].

PHYSICAL REVIEW D 77, 076010 (2008)

1550-7998=2008=77(7)=076010(19) 076010-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.076010


tral heavy Higgs fields. We concentrate on the constraints
coming from the mass differences in the neutral meson
systems, �MK, �MBs , �MBd , and �MD, in a similar spirit
as Refs. [26–32] and references therein. We express the
relevant flavor changing neutral Yukawa couplings in
terms of the mass eigenstates, where except the phases
the size of the Yukawa couplings are basically fixed.
Allowed ranges in which the constraints are satisfied are
shown in different figures. We find that the heavy Higgs
bosons should be heavier than �1:5 TeV, although it is
possible to fine-tune the parameters such that the con-
straints can be satisfied for lighter mass values.

Section VI is devoted for conclusion.

II. NONRENORMALIZATION THEOREM AND
FLAVOR SYMMETRY

A flavor symmetry can control the structure of the
independent parameters of a theory. In supersymmetric
theories, moreover, the nonrenormalization theorem allows
to suppress certain couplings and also to relate them with
each other, without facing contradictions with renormal-
ization. What is therefore the (technical) role of a flavor
symmetry in supersymmetric theories? We recall that the
D-terms are renormalized and the wave function renormal-
ization can mix matter superfields �i’s in general.
Therefore, starting with diagonal kinetic terms ��i�i is
not always consistent with renormalization. If a nondiag-
onal (infinite) kinetic term is induced, a corresponding
nondiagonal counterterm should be added. Then after the
diagonalization the originally assumed structure of the
couplings in the superpotential will receive large quantum
corrections. In other words, we have in spite of the non-
renormalization theorem more parameters in the super-
potential, when written in terms of the bare fields, than
originally assumed. The undesired mixing among �i’s and
large quantum corrections can be avoided if an appropriate
flavor symmetry is present.

We will see below that the nonrenormalization theorem
and the renormalization properties of the soft-supersym-
metry-breaking (SSB) terms allow us to introduce in a
consistent manner different flavor symmetries for different
sectors of a softly broken supersymmetric theory to control
the independent parameters of the theory.

To be more specific, we consider an N � 1 supersym-
metric gauge theory whose superpotential is given by

 W��� � WY��� �W����; (1)

with

 WY��� �
1
6Y

ijk�i�j�k and W���� �
1
2�

ij�i�j:

(2)

The SSB Lagrangian can be written as

 L��; W� � �
�Z

d2��
�
1

6
hijk�i�j�k �

1

2
bij�i�j

�
1

2
MgW�

AWA�

�
� H:c:

�

�
Z
d4�~�� ��j�m2�ij�e

2gV�ki�k; (3)

where � � �2, ~� � ~�2 are the external spurion superfields
andMg is the gaugino mass. The� functions of the Y,�, h,
and m2 are given by Refs. [33–41]

 �ijkY � �ilY
ljk � �jlY

ilk � �klY
ijl; (4)

 �ij� � �il�
lj � �jl�

il; (5)

 

�ijkh � �ilh
ljk � �jlh

ilk � �klh
ijl � 2�i1lY

ljk

� 2�j1lY
ilk � 2�k1lY

ijl; (6)

 �ijb � �ilb
lj � �jlb

il � 2�i1l�
lj � 2�j1l�

il; (7)

 ��m2�ij �

�
�� X

@
@g

�
�ij; (8)

 O �

�
Mgg2 @

@g2 � h
lmn @

@Ylmn

�
; (9)

 � � 2OO� � 2jMgj
2g2 @

@g2 �
~Ylmn

@
@Ylmn

� ~Ylmn
@

@Ylmn
;

(10)

where ��1�
i
j � O�ij, Ylmn � �Y

lmn��, and

 

~Y ijk � �m2�ilY
ljk � �m2�jlY

ilk � �m2�klY
ijl; (11)

 X �
�jMgj

2C�G� �
P
l
m2
l T�Rl�

C�G� � 8�2=g2 : (12)

Here X of (12) is the expression in the renormalization
scheme of Novikov et al. [42], T�Rl� is the Dynkin index of
Rl, and C2�G� is the quadratic Casimir of the adjoint
representation of the gauge group G. From Eqs. (4)–(12)
we now derive the hierarchical structure of the renormal-
ization properties of the theory, which is basically the
Symanzik theorem applied to softly broken supersymmet-
ric gauge theories:

(1) The (infinite) renormalization of the supersymmet-
ric parameters Yijk, �ij is not influenced by the SSB
terms, in accord with the definition of the SSB
terms.

(2) The (infinite) renormalization of the trilinear cou-
plings hijk does not depend on �ij. It is also inde-
pendent on �m2�ij and bij.

(3) The (infinite) renormalization of the soft scalar
masses �m2�ij does not depend on bij and �ij, as
one can see from Eqs. (8)–(12).
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(4) The (infinite) renormalization of bij does not depend
on �m2�ij and hijk, which is the consequence of (7).

Because of these renormalization properties we can con-
sistently introduce different symmetries for different
sectors.

To begin with we assume the existence of a flavor
symmetry in the Yukawa sector which protects the mixing
(of the wave function renormalization) among the matter
superfields �i’s.3 This implies that the anomalous dimen-
sions �ij are diagonal, i.e.,

 �ij � �ij�j: (13)

Then Eqs. (4)–(8) become

 �ijkY � Yijk��i � �j � �k�; �ij� � �ij��i � �j�;

(14)

 �ijkh � �h
ijk � 2YijkO���i � �j � �k�;

�ijb � �b
ij � 2�ijO���i � �j�;

(15)

 ��m2�l �

�
�� X

@
@g

�
�l; (16)

with ~Yijk � Yijk�m2
i �m

2
j �m

2
k�. From these equations we

observe:
(a) The � sector can have a flavor symmetry which is

different from the flavor symmetry of the Yukawa
sector if both symmetries are compatible with re-
spect to renormalization of �ij.

(b) It is consistent to introduce into the trilinear cou-
plings the same flavor symmetry as that of the
Yukawa couplings, even if it is violated in other
sectors.

(c) The flavor symmetry which protects the mixing
among �i’s ensures that �m2�ij is diagonal. If the
Yukawa couplings and trilinear couplings have the
flavor symmetry, the soft scalar mass terms, too, can
have the flavor symmetry, even if the � and b terms
do not respect the flavor symmetry.

(d) The b terms associated with the � terms should
always exist (see (16)). But the b sector has no
influence on the infinite renormalization of the pa-
rameters in other sectors. So the violation of a
symmetry in the b sector is absolutely soft.

In the next section we reconsider the supersymmetric
flavor model of [7,21,22] along the line of thought about a
flavor symmetry in this section.

III. THE MODEL

The supersymmetric flavor model of [7,21,22] is based
on a dicyclic dihedral group Q6. If CP is spontaneously
broken, the nine parameters of the model express six quark

masses and four CKM parameters. In the leptonic sector
there are only seven parameters to fix six lepton masses and
six MNS parameters. As we announced in the introduction
we would like to stress the one� two structure for each
family; a Q6 singlet and a Q6 doublet for each family
including the SU�2�L doublet Higgs fields.

A. The Yukawa sector

As in the original model of [7,21,22] we assume that the
flavor symmetry of the Yukawa sector is based on Q6. In
Table I we write the Q6 assignment of the quark, lepton,
and Higgs chiral supermultiplets,4 where Q, Q3, L, L3 and
Hu, Hu

3 , Hd, Hd
3 stand for SU�2�L doublet supermultiplets

for the quarks, leptons, and Higgs bosons, respectively.
Similarly, SU�2�L singlet supermultiplets for quarks,
charged leptons, and neutrinos are denoted by Uc, Uc

3,
Dc, Dc

3, Ec, Ec3 and Nc, Nc
3 . From Table I we see that the

one� two structure of family is realized, and because of
this structure the Q6 flavor symmetry can ensure that no
nondiagonal kinetic term can be induced. So (13) is
satisfied.

We then write down the most general, renormalizable,
Q6 � R invariant superpotential W (R is the R parity.):

 WY � WQ �WL; (17)

where

 WQ �
X

I;i;j;k�1;2;3

�YuIij QiUc
jH

u
I � Y

dI
ij QiDc

jH
d
I �; (18)

 WL �
X

I;i;j;k�1;2;3

�YeIij LiE
c
jH

d
I � Y

	I
ij LiN

c
jH

u
I �: (19)

The Yukawa matrices Y’s are given by

 Y u1�d1� �

0 0 0
0 0 Yu�d�b

0 Yu�d�b0 0

0
B@

1
CA;

Yu2�d2� �
0 0 Yu�d�b
0 0 0

�Yu�d�b0 0 0

0
B@

1
CA;

Yu3�d3� �
0 Yu�d�c 0

Yu�d�c 0 0
0 0 Yu�d�a

0
B@

1
CA;

(20)

TABLE I. The Q6 � R assignment of the chiral matter super-
multiplets, where R is the R parity. The group theory notation is
given in Ref. [7].

Q Q3 U
c, DcUc

3, Dc
3 L L3 E

c, Nc Ec3 Nc
3 H

u, HdHu
3 , Hd

3

Q6 21 1�;2 22 1�;1 22 1�;0 22 1�;0 1�;3 22 1�;1
R � � � � � � � � � � �

3We also assume that the flavor symmetry is not gauged. 4The same model exists forQ2N if N is odd and a multiple of 3.
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 Y e1 �
�Yec 0 Yeb

0 Yec 0
Yeb0 0 0

0
@

1
A;

Ye2 �

0 Yec 0
Yec 0 Yeb
0 Yeb0 0

0
B@

1
CA;

Ye3 � 0;

(21)

 Y 	1 �

�Y	c 0 0
0 Y	c 0
Y	b0 0 0

0
B@

1
CA;

Y	2 �

0 Y	c 0
Y	c 0
0 Y	b0 0

0
B@

1
CA;

Y	3 �

0 0 0
0 0 0
0 0 Y	a

0
@

1
A:

(22)

All the parameters appearing above are real, because we
assume that CP is spontaneously broken. We will shortly
come back to this issue.

B. The � sector

The most general Q6 � R invariant renormalizable �
part of the superpotential is

 W�Q6�
� � �Hu

I H
d
I �

m
2
Nc
IN

c
I : (23)

Note that no mass terms forHu;d
3 and Nc

3 are allowed byQ6

and that the superpotential W�Q6�
� has an accidental O�2�

symmetry. For phenomenological reasons we, however,
need mass terms for Hu;d

3 and Nc
3 . Therefore, we assume

that the flavor symmetry of the � sector is O�2� and that
Hu;d

3 and Nc
3 are singlets of O�2�, and add

 W�Q6 6�
� � �3Hu

3H
d
3 �

m3

2
Nc

3N
c
3 (24)

to (23). Then the total� part of the superpotential isW� �

W�Q6�
� �W� 6Q6�

� . The O�2� � R symmetry of W� is compat-
ible withQ6 � R of the Yukawa sector, becauseQ6 ensures

 �Hu
1
� �Hu

2
and �Hd

1
� �Hd

2
: (25)

C. Soft-supersymmetry-breaking sector

1. The trilinear couplings and soft scalar mass terms

We require that the trilinear couplings and soft scalar
mass terms have the same flavor symmetry as that of the
Yukawa sector, that is, Q6 � R. Therefore, the trilinear
couplings and soft scalar mass matrices have the following
form:

 h k
ij � AijYk

ij; k � u1; u2; . . . ; 	3; (26)

where Yk
ij are given in [20–22], and

 m 2 /

1 0 0
0 1 0
0 0 f

0
@

1
A (27)

for all the bosonic scalar partners. This is very crucial to
suppress FCNCs in the SSB sector as we will see later on.

2. The b terms

The b sector should contain at least terms which corre-
spond to the � terms W� � W�Q6�

� �W� 6Q6�
� , where W�Q6�

�

and W� 6Q6�
� are given in (23) and (24), respectively, i.e.

 

L�O2�
b � bĤu

I Ĥ
d
I � b33Ĥ

u
3Ĥ

d
3 � bNN̂

c
I N̂

c
I � bN3

N̂c
3N̂

c
3

� H:c: (28)

(The hatted fields are bosonic components.) Because of the
O�2� symmetry in the � and b sectors and the Q6 symme-
try in the soft scalar mass terms, the Higgs scalar potential
also respects the O�2� symmetry, so that there is a Nambu-
Goldstone boson corresponding to this symmetry because
in the O�2� symmetry the gauge symmetry is spontane-
ously broken, together with SU�2�L �U�1�Y . Moreover,
we face the domain wall problem when the discrete flavor
symmetries are spontaneously broken. To overcome these
problems we add terms which explicitly break O2 down to
Z2:

 L �O2=�
b � b��Ĥ

u
�Ĥ

d
� � b��Ĥ

u
�Ĥ

d
� � b�3Ĥ

u
�Ĥ

d
3

� b3�Ĥ
u
3Ĥ

d
� � bN�N̂

c
�N̂

c
� � bN�N̂

c
�N̂

c
�

� N̂c
3N̂

c
� � H:c:; (29)

where

 Hu;d
	 �

1��
2
p �Hu;d

1 	Hu;d
2 �; Nc

	 �
1��
2
p �Nc

1 	 N
c
2�: (30)

(Hu;d
� ,Hu;d

3 ,Nc
�, andNc

3 are Z2 even, whileHu;d
� andNc

� are
Z2 odd.) This Z2 is indeed broken by the Yukawa and
trilinear couplings, but is compatible with Q6, i.e., �Hu;d

1
�

�Hu;d
2

.

We allow the b parameters to be complex, because CP
cannot be broken if all the b parameters are real as we will
find in the next subsection. So CP is explicitly, but only
softly broken in this sector. In Table II we give the sym-
metry of each sector.

IV. THE HIGGS SECTOR

A. The Higgs potential

Given the O�2� � R invariant superpotential W� in the
� sector (23) and (24) along with theQ6 � R invariant soft
scalar masses (27) and the Z2 � R invariant b terms (28)
and (29), we can now write down the scalar potential. For
simplicity we assume that only the neutral scalar compo-
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nents (denoted by a superscript 0) of the Higgs super-
multiplets acquire vacuum expectation values (VEVs):
 

V � m2
Hu
�
�jĤ0u

� j
2 � jĤ0u

� j
2� �m2

Hd
�

�jĤ0d
� j

2 � jĤ0d
� j

2�

�m2
Hu

3
jĤ0u

3 j
2 �m2

Hd
3

jĤ0d
3 j

2 � 1
8�

3
5g

2
1 � g

2
2�

� �jĤ0u
� j

2 � jĤ0u
� j

2 � jĤ0u
3 j

2 � jĤ0d
� j

2 � jĤ0d
� j

2

� jĤ0d
3 j

2�2 � 
b0��Ĥ
0u
� Ĥ

0d
� � b

0
��Ĥ

0u
� Ĥ

0d
�

� b�3Ĥ
0u
� Ĥ

0d
3 � b3�Ĥ

0u
3 Ĥ

0d
� � b33Ĥ

0u
3 Ĥ

0d
3 � H:c:�;

(31)

where b0
������

� b� b������, g1;2 are the gauge cou-
pling constants for the U�1�Y and SU�2�L gauge groups,
and H	’s are defined in (30). Note that the scalar potential
(31) has the same Z2 symmetry as that of the b sector.
(H�’s and H3’s are Z2 even, and H�’s are Z2 odd.)
Therefore,

 hĤ0u;d
� i � 0; hĤ0u;d

� i �
vu;d����

2
p expi�u;d� ;

hĤ0u;d
3 i �

vu;d3���
2
p expi�u;d3

(32)

can become a local minimum, where we assume that vu;d�
and vu;d3 are real. We recall that the Z2 is an accidental
symmetry expect for the b sector.5 Therefore, the VEV
structure (32) is stable against (infinite) renormalization.

We investigate whether the potential energy at the VEV
(32) can become negative so that SU�2�L �U�1�Y is spon-
taneously broken. To this end we consider the quadratic
part of the scalar potential

 V�2� �H IMIJH
J; (33)

where

 M �

m2
Hu
�

0 <�b0��� �=�b0��� 0 0 <�b�3� �=�b�3�

0 m2
Hu
�

�=�b0��� �<�b
0
��� 0 0 �=�b�3� �<�b�3�

<�b0��� �=�b0��� m2
Hd
�

0 <�b3�� �=�b3�� 0 0

�=�b0��� �<�b
0
��� 0 m2

Hd
�

�=�b3�� �<�b3�� 0 0

0 0 <�b3�� �=�b3�� m2
Hu

3
0 <�b33� �=�b33�

0 0 �=�b03�� �<�b3�� 0 m2
Hu

3
�=�b33� �<�b33�

<�b�3� �=�b�3� 0 0 <�b33� �=�b33� m2
Hd

3

0

�=�b�3� �<�b�3� 0 0 �=�b33� �<�b33� 0 m2
Hd

3

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; (34)

and
 

H � �<�Ĥ0u
� �;=�Ĥ

0u
� �;<�Ĥ

0d
� �;=�Ĥ

0d
� �;<�Ĥ

0u
3 �;

=�Ĥ0u
3 �;<�Ĥ

0d
3 �;=�Ĥ

0d
3 ��: (35)

We find that all the eigenvalues of M are doubly generate,
and that two orthogonal eigenvectors of the same eigen-
value can be always written in the form

 ~u A � �u1; u2; u3; u4; u5; u6; u7; u8� and

~uB � �u2;�u1;�u4; u3; u6;�u5;�u8; u7�:
(36)

This is due to the U�1�Y gauge invariance: All the direc-
tions defined by a linear combination of ~uA and ~uB are
physically equivalent. If all the imaginary parts of b’s
vanish, then we find u2 � u4 � u6 � u8 � 0, which
means that CP cannot be spontaneously broken, because

TABLE II. The symmetry of the different sectors. Y, h, and m
stand for the Yukawa, trilinear, and soft scalar mass sector,
respectively. Q6 ensures that all the anomalous dimensions �’s
are diagonal, and that the two components of a Q6 doublet have
the same anomalous dimension. Therefore, Q6 in the Yukawa
and trilinear sectors and O2 in the � sector are compatible with
each other. O2 in the soft scalar mass sector is accidental. Z2 is a
subgroup of O2, which implies the compatibility of O2 and Z2.
CP is explicitly broken only by the b terms, which is (super) soft
because the propagation of its violation to the other sectors is
calculable and small. So, all the symmetries are compatible with
each other.

Y, h m � sector b terms

Q6 � � � �

O2 � � � �

Z2 � � � �

CP � � � �

R � � � �

5It is accidental in the part of (31) coming from the D-terms
(the second line). The Q6 invariant soft scalar mass terms respect
automatically this Z2, although it is not contained in Q6. This Z2
is a part of the O�2� symmetry of the � sector, which is only
softly broken down to the Z2 in the b sector.
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the imaginary parts =�H I� along the direction defined by
�u1; 0; u3; 0; u5; 0; u7; 0� stay at zero. So at least one of the
b’s should be complex so that CP is spontaneously bro-
ken.6 The product of the four independent eigenvalues is
detM. Therefore, if detM is negative, one or three inde-
pendent eigenvalues are negative. If detM is positive,
there may be zero, two, or four negative eigenvalues. In
this case one should compute the eigenvalues explicitly. A
local minimum lies along the direction of a negative ei-
genvalue. Further, the potential (31) along the D-term flat
direction should not be unbounded below. This condition
requires

 m2
Hu
�
�m2

Hd
�

� 2jb0��j> 0;

m2
Hu
�
�m2

Hd
�

� 2jb0��j> 0;

m2
Hu
�
�m2

Hd
3

� 2jb�3j> 0;

m2
Hu

3
�m2

Hd
�

� 2jb3�j> 0;

m2
Hu

3
�m2

Hd
3

� 2jb33j> 0:

(37)

We have to make the flavor changing neutral Higgs
bosons sufficiently heavy to suppress FCNCs. (This will
be discussed in Sec. V.) So we need a certain fine-tuning
among the SSB parameters, because the size of the VEVs
is bounded from above. To achieve this situation, we have
to so fine-tune the parameters that one negative eigenvalue
at the origin of the potential becomes very small.7 Then the
potential energy falls only slowly when moving from the
origin, and the quartic terms in the potential (31) coming
from the D-terms start to dominate, so that the energy scale
of the VEVs at the bottom of the potential can be much
smaller then the energy scale of the SSB parameters. Here
is such an example:

 

=�b���=<�b
0
��� � 0:747; <�b33�=<�b

0
��� � 0:852;

=�b33�=<�b
0
��� � 1:399; <�b�3�=<�b

0
��� � 0:667;

=�b�3�=<�b
0
��� � 0:31; <�b3��=<�b

0
��� � 1:3;

=�b3��=<�b
0
��� � 0:42; m2

Hu
�
=<�b0��� � 3:13;

m2
Hd
�

=<�b0��� � 2:69; m2
Hu

3
=<�b0��� � 1:39;

m2
Hd

3

=<�b0��� � 5:93: (38)

The four independent eigenvalues are �5:4�
10�5; 2:27; 4:16; 6:70 in the unit of b0��, and two eigen-
vectors for the smallest eigenvalue correspond to

 

u1 � �0:1070; u2 � 0:2232; u3 � 0:4091;

u4 � 0:3081; u5 � �0:4216; u6 � 0:6636;

u7 � 0:2408; u8 � 0:0154; (39)

where u’s are defined in (36). Along the direction defined
by (39) the potential energy falls very slowly when moving
from the origin. So the SU�2�L �U�1�Y invariant point is a
saddle point, and we find that the size of

���������
b0��

p
may be

estimated as

 

���������
b0��

q
’

�
0:13�g2

2 � 3g2
1=5�=8

5:4� 10�5

�
1=2
� �246 GeV�

’ 3:2 TeV: (40)

CP is also spontaneously broken, because it is not
possible to obtain a vector of the form
�; 0;; 0;; 0;; 0� through a linear combination of ~uA
and ~uB for (39). Therefore, the angle �q that enters in the
calculation of the CKM (given in (67)) is nonzero for (39).
We find
 

�q � �u� � �
d
� � �

u
3 � �

d
3

� arctan�u2=u1� � arctan�u4=u3�

� arctan�u6=u5� � arctan�u8=u7�

’ �0:701; (41)

which is the size of �q we need to produce the correct CKM
parameters as we will see in Sec. V.

B. The heavy neutral Higgs fields

Now redefine the Higgs fields as follows: First we define
the tilde fields

 

~H 0u;0d
� � Ĥ0u;0d

� exp�i�u;d� ;

~H0u;0d
3 � Ĥ0u;0d

3 exp�i�u;d3 ;
(42)

and then

 
u
L � cos�u ~H0u

3 � sin�u ~H0u
� ;


u
H � � sin�u ~H0u

3 � cos�u ~H0u
� ;

(43)

where

 cos�u �
vu3�����������������������������

�vu3�
2 � �vu��

2
q ; sin�u �

vu������������������������������
�vu3�

2 � �vu��
2

q ;

(44)

and similarly for the down sector. As we see from (44),
only 
u

L and 
d
L have a nonvanishing VEV, which we

denote by

 h
u;d
L i �

����������������������������������
�vu;d3 �

2 � �vu;d� �
2

q
���
2
p �

vu;d���
2
p : (45)

6Spontaneous CP violation in supersymmetric models and two
Higgs doublet models have been discussed in Refs. [43–49],
Ref. [50], and references therein.

7By one eigenvalue we mean one of four eigenvalues. All the
eigenvalues are doubly degenerate.
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The neutral light and heavy scalars of the MSSM are given
by

 

1��
2
p �v� h� � Re�
d�

L � cos�� Re�
u
L� sin�; (46)

 

1��
2
p �H � iA� � ��
d�

L � sin�� �
u
L� cos�; (47)

where as in the MSSM

 v �
�����������������
v2
u � v2

d

q
; tan� �

vu
vd
: (48)

As in the case of the MSSM, the couplings of 
u;d
L are

flavor-diagonal, and so we do not have to consider them
below when discussing FCNCs. Therefore, only the heavy
fields Ĥ0u;0d

� � 
u;d
� and 
u;d

H can have flavor changing
couplings. Their mass matrix can be written as

 

m2

u
I

0 0 b�I
0 m2


u
I

bI 0

0 b�I m2

d
I

0

bI 0 0 m2

d
I

0
BBBBB@

1
CCCCCA (49)

in the (
u
I , 
u�

I , 
d
I ; , 


d�
I ) basis, where I � �; H,

 

m2

u;d
�
� m2

Hu;d
�
; b� � b0��;

m2

u;d
H

� m2
Hu;d
�

cos2�u;d �m2
Hu;d

3

sin2�u;d;

bH � b0��e
�i��u���

d
�� cos�u cos�d

� b�3 cos�u sin�de�i��
u
���

d
3 �

� b3� sin�u cos�de�i��
u
3��

d
��

� b33 sin�u sin�de�i��
u
3��

d
3�; (50)

and the mass parameters on the right-hand side (rhs) are
given in (31) and �u;d are defined in (44). The inverse of the
matrix (49) is given by

 

1

�MI1�
2�MI2�

2

m2

d
I

0 0 �b�I
0 m2


d
I
�bI 0

0 �b�I m2

u
I

0

�bI 0 0 m2

u
I

0
BBBBB@

1
CCCCCA; �I ��;H�;

(51)

where M1;2 are approximate pole masses and given by

 �MI1�2��
2 �

1

2
�m2


u
I
�m2


d
I
�

�
1� ���

�

�4jbIj2 � �m2

u
I
�m2


d
I
�2

�m2

u
I
�m2


d
I
�2

�
1=2
�
; (52)

and we find

 �MI1�
2�MI2�

2 � �jbIj
2 �m2


u
I
m2

d
I
: (53)

(51) is the inverse propagator at the zero momentum. We
will be using it later on. For the parameter values in the
example (39) we find
 

tan�u�0:315; tan�d�2:122;

tan���1:456; MH1�2:31
���������
b0��

q
’7:3 TeV;

MH2�1:72
���������
b0��

q
’5:5 TeV; (54)

where we have used (40). So, what we have numerically
shown in A and B in this section is that it is possible to fine-
tune the SSB parameters so as to make the heavy Higgs
bosons much heavier than MZ (see (54)) and at the same
time to obtain a desired size of spontaneous CP violation
(see (41)).

V. FCNCS

A. The physical quarks and leptons

From the Yukawa interactions (18) and (19) along with
the form of the VEVs (32) we obtain the fermion mass
matrices.

1. Quark sector

The quark mass matrices are given by

 m u �
1

2

0
���
2
p
Yucvu3e

�i�u3 Yubv
u
�e
�i�u����

2
p
Yucv

u
3e
�i�u3 0 Yubv

u
�e
�i�u�

�Yub0v
u
�e
�i�u� Yub0v

u
�e
�i�u�

���
2
p
Yuavu3e

�i�u3

0
B@

1
CA;

(55)

 

md �
1

2

0
���
2
p
Ydcv

d
3e
�i�d3 Ydbv

d
�e
�i�d����

2
p
Ydcv

d
3e
�i�d3 0 Ydbv

d
�e
�i�d�

�Ydb0v
d
�e
�i�d� Ydb0v

d
�e
�i�d�

���
2
p
Ydav

d
3e
�i�d3

0
BBB@

1
CCCA:

(56)

Then using the phase matrices defined below

 RL �
1���
2
p

1 1 0
�1 1 0
0 0

���
2
p

0
@

1
A;

RR �
1���
2
p

�1 �1 0
�1 1 0
0 0

���
2
p

0
@

1
A;

(57)

 PuL �
1 0 0
0 exp�i2��u� 0
0 0 exp�i��u�

0
@

1
A; (58)

 PuR �
exp�i2��u� 0 0

0 1 0
0 0 exp�i��u�

0
@

1
A exp�i�u3�; (59)
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 ��u � �u3 � �
u
�; (60)

and similarly for the down sector, we can bring mu into a
real form

 m̂ u � PuyL R
T
LmuRRPuR � mt

0 qu=yu 0
�qu=yu 0 bu

0 b0u y2
u

0
@

1
A:
(61)

The mass matrix m̂u can then be diagonalized as

 OuT
L m̂uOu

R �

mu 0
0 mc 0
0 0 mt

0
@

1
A; (62)

and similarly for md, where Ou;d
L;R are orthogonal matrices.

So the mass eigenstates u0iL � �u
0
L; c

0
L; t
0
L�, etc. can be

obtained from

 uL �Uu
Lu
0
L; uR �Uu

Ru
0
R;dL �U

d
Ld
0
L; dR �U

d
Rd
0
R;

(63)

where

 UuL�R� � RL�R�PuL�R�O
u
L�R�: (64)

Therefore, the CKM matrix VCKM is given by

 VCKM � OuT
L P

uy
L R

T
LRLP

d
LO

d
L � OuT

L PqO
d
L; (65)

where

 Pq � PuyL P
d
L �

1 0 0
0 exp�i2��q� 0
0 0 exp�i��q�

0
B@

1
CA: (66)

For the set of the parameters

 �q � �d3 � �
d
� � �

u
3 � �

u
� � �0:7;

qu � 0:000 179 9; bu � 0:059 79;

b0u � 0:070 54; yu � 0:997 86;

qd � 0:003 784; bd � 0:032 68;

b0d � 0:4620; yd � �0:9415;

(67)

we obtain
 

mu=mt � 0:766� 10�5; mc=mt � 4:23� 10�3;

md=mb � 0:895� 10�3; ms=mb � 1:60� 10�2;

jVCKMj �

0:9740 0:2266 0:003 62

0:2265 0:9731 0:0417

0:008 49 0:0410 0:9991

0
BB@

1
CCA;

jVtd=Vtsj � 0:207;

(68)

 sin2��
1� � 0:690; ��
3� � 63:4�: (69)

The experimental values to be compared are [51] (see also
[52]):

 jVexp
CKMj �

0:973 83
�0:000 24
�0:000 23

0:2272
�0:0010
�0:0010

0:003 96
�0:000 09
�0:000 09

0:2271
�0:0010
�0:0010

0:972 96
�0:000 24
�0:000 24

0:04221
�0:000 10
�0:000 80

0:008 14
�0:000 32
�0:000 64

0:041 61
�0:000 12
�0:000 78

0:999 100
�0:000 034
�0:000 004

0
BBBBBBB@

1
CCCCCCCA
;

sin2��
1� � 0:687	 0:032; ; jVtd=Vtsj � 0:208
�0:008
�0:006

:

(70)

The quark masses at MZ are given by [53]

 mu=md � 0:541	 0:086�0:51�;

ms=md � 18:9	 1:6�17:9�;

mc � 0:73	 0:17�0:74� GeV;

ms � 0:058	 0:015�0:046� GeV;

mt � 175	 6 GeV;

mb � 2:91	 0:07 GeV;

(71)

where the values in the parentheses are the theoretical
values obtained from (68) for mt � 174 GeV and mb �
2:9 GeV. So, we see that the model can well reproduce the
experimentally measured parameters.

The orthogonal matrices (62) are found to be

 OuL ’
0:9991 �0:042 52 1:269� 10�5

0:04244 0:9973 0:059 64
�2:548� 10�3 �0:059 58 0:9982

0
B@

1
CA;

(72)

 OuR ’
�0:9991 �0:04255 �1:075� 10�5

0:04244 �0:9966 0:07042
�3:007� 10�3 0:07035 0:9975

0
B@

1
CA;

(73)
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 OdL ’
0:9764 0:2160 �1:856� 10�3

�0:2159 0:9760 0:028 99
8:074� 10�3 �0:027 90 0:9996

0
B@

1
CA;

(74)

 OdR ’
�0:9695 0:2452 1:165� 10�4

�0:2174 �0:8599 0:4618
0:1133 0:4477 0:8870

0
B@

1
CA: (75)

2. Lepton sector

The charged lepton mass matrix becomes

 m e �

�m2 m2 m5

m2 m2 m5

m4 m4 0

0
@

1
A exp��i�d��; (76)

where

 m2 �
1
2Y

e
cv

d
�; m4 �

1
2Y

e
b0v

d
�; m5 �

1
2Y

e
bv

d
�: (77)

The phase exp��i�d�� can be rotated away, and all the mass
parameters appearing in (76) are real. Diagonalization of
the mass matrices is straightforward.

We would like to mention that the model has many
predictions in this sector, because there are only four
parameters to describe three light neutrino masses, three
angles, and three CP-violating phases of VMNS. Since the
details of the predictions are presented in Refs. [23,24,54],
we do not repeat them here again.8 Furthermore, the FCNC
processes in the lepton sector have been very recently
analyzed in detail in Ref. [25], concluding that the model
predictions of tree-level FCNC processes are at least 5
orders of magnitude smaller than the experimental upper
bounds (The mass of the heavy neutral Higgs fields are
assumed to be 120 GeV.) For instance, the branching
fraction for �! e� is 7 orders of magnitude smaller
than the expected experimental sensitivity [25].
Therefore, we shall not consider FCNCs in the leptonic
sector in the following discussions.

B. CP violations and FCNCs in the SSB sector

If three generations of a family have the one� two
structure, then the soft scalar mass matrices for the sfer-
mions have a diagonal form (27):

 

~m2
aLL�RR� � m2

~a

aaL�R� 0 0
0 aaL�R� 0
0 0 baL�R�

0
B@

1
CA�a � u; d; e�;

(78)

where m~a denotes the average of the squark and slepton
masses, respectively, and (aL�R�, bL�R�) are dimensionless
free real parameters of O�1�. Because of the Q6 flavor
symmetry in the trilinear interactions, all the soft left-right
mass matrices assume the form

 � ~m2
aLR�ij � Aaij�m

a�ij �a � u; d; e�; (79)

where Aaij are free parameters of dimension one (see (26)).
They are also real, because we impose CP invariance in the
trilinear couplings.

The quantities [56,57]

 �a
LL�RR� � UyaL ~m2

aLL�RR�UaL�R� and

�a
LR � UyaL ~m2

aLRUaR

(80)

in the super CKM basis are used widely to parametrize
FCNCs and CP violations coming from the SSB sector,
where the unitary matrices U’s are given in [58–61].

1. CP violations

The imaginary parts of �’s (80) contribute to
CP-violating processes in the SSB sector. Recall that the
soft scalar mass matrices m2

aLL;RR are real, because they are
diagonal, and that the phases of m2

aLR come from the
complex VEVs (32), because CP is only spontaneously
broken in this sector. The unitary matrices U’s are com-
plex, and so �’s can be complex, too. Note that the unitary
matrices have the form U � RPO, where only P’s (given
in (58)) are complex. Since P’s are diagonal, they commute
with m2

aLL;RR, so that �a
LL;RR have no imaginary part.

Further m2
aLR has the same phase structure as the corre-

sponding fermion mass matrix ma, which can be made real
according to [57,62–65]. Therefore, �a

LR, too, are real.
Consequently, there is no CP violation originating from
the SSB sector. The stringent constraints on �’s (80)
coming from the electric dipole moments (EDMs)
[62,63,65] are automatically satisfied in this way of phase
alignment.9

2. FCNC

In Refs. [26–31,56,57,62–65], experimental bounds on
the dimensionless quantities

 �aLL;RR;LR � �a
LL;RR;LR=m

2
~a �a � u; d�; (81)

are given. The theoretical values of �’s for the present
model have been calculated in Ref. [22] as a function of the
average sfermion masses and fine-tuning parameters. The

8See also [55] for the predictions of the model on R-parity
violating processes. The leptonic sector of the present model is
basically the same as the model of [23,24], except for the
spontaneous breaking of CP, which reduces one more indepen-
dent phase in the leptonic sector.

9This does not mean that there is no CP violation in the SSB
sector. Because of the existence of the multiple Higgs fields,
there are one-loop diagrams contributing to the EDMs, even if all
the SSB parameters are real. The diagrams typically contain the
b terms, and we find that in the case of the present model b� �
m2
Hu;d
�
; , bH < m2


u;d
H

(given in (50)) should be satisfied to satisfy
the experimental constraints.
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results may be summarized as follows. For the slepton
sector where the average slepton mass m~e is assumed to
be 500 GeV, the theoretical values of ��‘ij�LL;RR;LR, except
for ��‘12�LL, are several orders of magnitude smaller than
the current experimental bounds, while ��‘12�LL is of the
same order as that of the experimental bound which comes
from �! e�. In the squark sector, we find:

Up quark sector:

 ��u12�LL � ��
u
21�LL ’ �1:5� 10�4�aqL;

��u12�RR � ��
u
21�RR ’ �2:1� 10�4�auR;

��u12�LR ’ ���
u
21�LR

’ 6:2� 10�5�� ~Aua � ~Aub � ~Aub0 � ~Auc�

�

�
500 GeV

m~q

�
;

(82)

Down quark sector:

 ��d12�LL � ��
d
21�LL ’ 2:2� 10�4�aqL;

��d13�LL � ��
d
31�LL ’ �8:1� 10�3�aqL;

��d23�LL � ��
d
32�LL ’ 2:8� 10�2�aqL;

��d12�RR � ��
d
21�RR ’ �5:1� 10�2�adR;

��d13�RR � ��
d
31�RR ’ �0:1�adR;

��d23�RR � ��
d
32�RR ’ �0:4�adR;

(83)

where

 �aqL � aqL � b
q
L; �aaR � aaR � b

a
R;

~Aai �
Aai
m~q
�a � u; d�:

(84)

These parameters, aL;R and ~Ai, are free dimensionless
parameters, so that they are O�1� if we do not fine-tune
them. The most stringent constraint in the up-sector comes
from �MD [30,31]:

 �MD � >j��u12�LLj; j��
u
12�RRj & 6� 10�2;

j��u12�LRj; j��
u
21�LRj & 10�2

(85)

for m~q � 0:5 TeV. As we can see from (82) this constraint
can be satisfied without a fine-tuning. As for the down-
sector we have to satisfy the constraints coming from
�MK, �MBs , and �MBd [26,29]:

 �MK � >j��d12�LLj; j��d12�RRj;

j��d12�LRj; j��d21�LRj & 10�3;
(86)

 �MBd � >j��d13�LLj; j��d13�RRj;

j��d13�LRj; j��d31�LRj & 10�2;
(87)

 �MBs � >j��d23�LLj; j��d23�RRj;

j��d23�LRj; j��d32�LRj & 10�1:
(88)

Comparing these constraints with (83) we see that �adR
should be fine-tuned at the level of few percent.10 In the
next subsections we assume that �adR is so small that only
the heavy flavor changing neutral Higgs fields contribute to
the mass differences of the neutral mesons.

C. Flavor changing neutral Higgs couplings

In Sec. IV we found that only the Higgs fields
u;d
H;� have

flavor changing neutral couplings to the fermions, and that
they have a definite form of mixing (see (49)). These are
consequences of the Z2 symmetry which is a part of the
O�2� flavor symmetry in the � sector (as discussed in
Sec. III B). In the basis of the fermion mass eigenstates
these Higgs couplings have the following form:
 

LFCNC � �
Y
uH
ij 


u
H � Y

u�
ij 


u
��
� �u0iLu

0
jR

� 
YdHij 

d
H � Y

d�
ij 


d
��
� �d0iLd

0
jR

� 
YeHij 

d
H � Y

e�
ij 


d
��
� �e0iLe

0
jR � H:c:; (89)

where the Higgs fields are defined in (43), and

 Y uH � Uuy
L

�
1���
2
p cos�ue�i�

u
��Yu1 � Yu2�

� sin�ue�i�
u
3 Yu3

�
Uu
R

� Ouy
L

�
1���
2
p cos�u�Yu1 � Yu2� � sin�uYu3

�
Ou
R;

(90)

 Y dH � Udy
L

�
1���
2
p cos�de�i�

d
��Yd1 � Yd2�

� sin�de�i�
d
3 Yd3

�
Ud
R

� Ody
L

�
1���
2
p cos�d�Yd1 � Yd2� � sin�dYd3

�
Od
R;

(91)

 Y I� � UIy
L

�
1���
2
p �YI1 � YI2�

�
UI
R�I � u; d�: (92)

The Yukawa matrices Yu1, etc. are given in (20), and the
unitary matrices are given in [57–65].

The present model is consistent with the experimental
observations in a certain region in the parameter space of
the Yukawa couplings. An example of the choice of the
nine parameters is given in (67), where we emphasize that

10We find that, as in the case of ��u12�LR of (82), the left-right
insertions j��d12;21;13;31;23;32�LRj are much smaller than these
constraints.
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this set of the nine parameters describe 10 physical inde-
pendent quantities of the SM; six quark masses and four
CKM parameters. Therefore, the consistent region in the
space of the Yukawa couplings is very restricted, and we
will be using only this set of the parameter values in the
following discussion. Accordingly, for the values given in
(67) we find the actual size of the Yukawa couplings:

 Yua �

���
2
p
mty2

u

vu cos�u
’

0:9957

sin� cos�u
;

Yub �

���
2
p
mtbu

vu sin�u
’

0:059 79

sin� sin�u
;

(93)

 Yub0 �

���
2
p
mtb

0
u

vu sin�u
’

0:070 54

sin� sin�u
;

Yuc �

���
2
p
mtqu

yuvu cos�u
’

1:802� 10�4

sin� cos�u
;

(94)

 Yda �

���
2
p
mby2

d

vd cos�d
’

0:014 78

cos� cos�d
;

Ydb �

���
2
p
mbbd

vd sin�d
’

5:449� 10�4

cos� sin�d
;

(95)

 Ydb0 �

���
2
p
mbb

0
d

vd sin�d
’

7:702� 10�3

cos� sin�d
;

Ydc �

���
2
p
mbqd

ydvd cos�d
’
�6:701� 10�5

cos� cos�d
;

(96)

where �’s and � are given in (44) and (48), respectively,
and we have used: mt � 174 GeV, mb � 2:9 GeV, and

v �
�����������������
v2
u � v2

d

q
� 246 GeV. These parameters are defined

in the MS scheme and evaluated at the scale MZ. With
these numerical values we then obtain:

 Y uH ’
1

tan�u sin�

�
�2:65�10�4 3:22�10�3 0:0439
�3:22�10�3 5:68�10�3 0:0400

0:0519 �0:0473 6:02�10�3

0
B@

1
CA

�
tan�u

sin�

�
7:63�10�6 �3:58�10�4 �2:52�10�3

�1:54�10�6 �4:17�10�3 �0:0592
�2:99�10�3 0:0699 0:991

0
B@

1
CA;

(97)

 Y u� ’
expi�2�u3��

u
��

sin�u sin�

�
0 �4:21� 10�3 �0:0596

�4:21� 10�3 0 2:54� 10�3

0:0704 3:00� 10�3 0

0
B@

1
CA;

(98)

 Y dH ’
1

tan�dcos�

�
6:63�10�5 8:26�10�5 2:80�10�4

�6:224�10�5 3:74�10�4 3:37�10�4

4:10�10�3 �6:01�10�3 2:52�10�3

0
B@

1
CA

�
tan�d

cos�

�
1:37�10�5 1:13�10�4 7:56�10�5

1:98�10�5 �1:88�10�4 �3:72�10�4

1:67�10�3 6:61�10�3 0:0131

0
B@

1
CA;
(99)

 Y d� ’
expi�2�d3��

d
��

sin�dcos�

�
0 �2:53�10�4 �4:72�10�4

�2:22�10�4 0 �1:04�10�4

7:46�10�3 �1:89�10�3 0

0
B@

1
CA:

(100)

The phases appearing in the matrices are given in (55) and
(56). As we can see from these Yukawa matrices the size of
the entries is fixed once the ratios of the VEVs ( sin�,
sin�u, etc.) are fixed. For the down-type Yukawa matrices
(99) and (100), for instance, all the entries (except the (3, 3)
entry) are at most O�10�3�. All these facts originate from
the flavor symmetries of the model. Needless to say that in
multi-Higgs models without a flavor symmetry this situ-
ation is completely different.

D. FCNC

The most severe FCNC constraints on the theory come
from the mass differences in the neutral meson systems;
�MD, �MK, �MBs , and �MBd .

11 The Yukawa interaction
terms that contribute to them can be found from (89):

11The contribution to �0=� is negligibly small, at most
O�
10�7=�2

S�
 ~m
2
q=M

2��, where �10�7 originates from the
Yukawa couplings relevant to this quantity, and ~mq and M stand
for the generic average squark and charged Higgs masses. See
[66] and references therein for the constraint from the oblique
corrections due to multiple SU�2�L doublet Higgs fields.
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L�MB
� �
YuHuc 


u
H � Y

u�
uc 


u
��
�� �uLcR � 
Y

uH
cu 


u
H

� Yu�cu 
u
�� �uRcL � 
YdHsd 


d
H � Y

d�
sd 


d
��
� �sLdR

� 
YdHds 

d
H � Y

d�
ds 


d
���sRbL � 
YdHbd 


d
H

� Yd�bd 

d
��
� �BLdR � 
Y

dH
db 


d
H � Y

d�
db 


d
�� �BRdL

� 
YdHbs 

d
H � Y

d�
bs 


d
��
� �BLsR

� 
YdHsb 

d
H � Y

d�
sb 


d
�� �bRsL; (101)

where the values of the Yukawa couplings can be read off
from (97)–(100). In (101) we have dropped the prime on
the fields, which was indicating the mass eigenstate. As we
can see from (51), no 
�
 and 
� �
� type propaga-
tors contribute to the mass differences. So, only the 
�

� type propagators can contribute, implying the phases in
the Yukawa couplings (101) cancel in the tree-level dia-
grams contributing to the mass differences.

The independent parameters entering into �MD are
 

sin�; sin�u; �Mu
H�

2 �
�MH1MH2�

2

m2

d
H

;

�Mu
��

2 �
�M�1M�2�

2

m2

d
�

;

(102)

where they are given, respectively, in (48), (44), (50), and
(52). Similarly,
 

cos�; sin�d; �Md
H�

2 �
�MH1MH2�

2

m2

u
H

;

�Md
��

2 �
�M�1M�2�

2

m2

u
�

(103)

enter into �MK, �MBs , and �MBd . With these remarks in
mind, we proceed.

D1: Constraint from �MD
As we can see from Fig. 1, only the �uRcL �uLcR type

operator contributes to �MD at the tree level. The mass
difference �MD can then be obtained from

 �MD � 2j�MSM
D �12 � �MEXTRA

D �12j; (104)

where �MSM
D �12 is the SM contribution, and

 �MEXTRA
D �12 � 2CD���h �D0j �u�Rc

�
L �u�Lc

�
RjD

0i���; (105)

 CD��� � ����
�
YuHcu �Y

uH
uc �

�

�Mu
H�

2 �
Yu�cu �Y

u�
uc �

�

�Mu
��

2

�
(106)

with the QCD correction ����. The operator �uRcL �uLcR
can mix with �uL�

�cL �uR��cR even at the leading order in
QCD in principle [67]. However, if �uL��cL �uR��cR is
absent at � � some energy, it will not be induced, at least
in the leading order in QCD. Note that the values of the
Yukawa matrices (97)–(100) are defined at � � MZ, so
that there are corrections if � � MZ. We here take into
account only QCD corrections because they are most
dominant. The leading-order QCD correction � takes the
form [67]
 

���c � 2:8 GeV� �
�
�s�mb�

�s��c�

�
�24=25

�
�s�mt�

�s�mb�

�
�24=23

�

�
�s�M�
�s�mt�

�
�8=7

�
�s�MZ�

�s�M�

�
�8=7

(107)

 ’ 2:3; (108)

where we have used the two-loop running of �s��� with
�s�MZ� � 0:119, and the last factor is the QCD correction
to the Yukawa matrices. So, theM (which is supposed to be
of the order of the heavy Higgs masses) dependence can-
cels nicely. The matrix element in the vacuum saturation
approximation is given by [26]
 

h �D0j �u�Rc
�
L �u�Lc

�
RjD

0i��c � 2:8 GeV� �
1

4
f2
DB
0
DMD

�
MD

mc

�
2

’ 3:1� 10�2 GeV3;

(109)

where we have used the central values of the parameters12

given in Table III. (mc�2:8 GeV� � 1:0 GeV which corre-
sponds to mc�mc� � 1:3 GeV:)

Clearly, the larger �Mu
H�

2 and �Mu
��

2 are, the smaller are
the extra contributions. Here we are interested in the mini-
mal values of �Md

H�
2 and �Md

��
2, which are consistent with

the observations. We find that the Wilson coefficient CD
becomes
 

CD��c� �
���c�

sin2�

�
1 TeV

Mu
H

�
2
� 10�11�

�
1:772

r2
usin2�u

�
1:037

tan2�u

� 0:115� 5:5� 10�5tan2�u
�

GeV�2; (110)

where
FIG. 1. The tree diagram contributing to �MEXTRA

D �12. Tree
diagrams contributing to MK and MBd;s are similar to this
diagram. Leading QCD corrections [76] will be included, except
for �MK.

12Since we take here a conservative standpoint that the extra
contribution can be as large as the experimental value, we ignore
the details of uncertainties.
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 ru �
Mu
�

Mu
H
�

�
M�1M�2

MH1MH2

��m
d
H

m
d
�

�
; (111)

and the mass parameters are defined in (102). If each term
in (110) should satisfy the constraint,

 j�MEXTRA
D j � 2j�MEXTRA

D �12j< �Mexp
D � xD=�D

’ 1:4� 10�14 GeV; (112)

one finds that sin�Mu
H * 17 TeV and sin�Mu

� * 22 TeV
should be satisfied. We, however, observe that the terms in
(110) can cancel each other, so that no lower bounds onMu

H

and Mu
� can be obtained. In Fig. 2 we show the region in

the sin�u � ru plane for sin�Mu
H � 2 TeV, in which

j�MEXTRA
D j is smaller than the smallest �Mexp

D , i.e.,

 j�MEXTRA
D j< 8� 10�15 GeV: (113)

We see from Fig. 2 that to satisfy the constraint (113), we
have to fine-tune ru and sin�u even for sin�Mu

H � 2 TeV.
The neutral Higgs bosons in question can induce pro-

cesses such as D0 ! e�e� and D0 ! ���� which are
strongly suppressed. The experimental upper bounds of the
branching ratios are smaller than O�10�6�. From a rough
estimate we find that Mu

�; , Mu
H >MZ is more than suffi-

cient to suppress these processes. So, in principle, Mu
�,Mu

H
could be light, although one needs an extreme fine-tuning
between ru and sin�u.

D2: Constraint from �MK
As in the case of �MD, the interaction Lagrangian

generates only one type of the �S � 2 operator at the
tree level. So, the relevant matrix element is

 h �K0j �s�Rd
�
L �s�Ld

�
RjK

0i �
1

4
f2
BK
B0KMK

�
MK

ms �md

�
2

’ 0:28 GeV3; (114)

where we have used the central values of the parameters
given in Table III. (As in the case of �MD we ignore the
details of uncertainties involved in �MD.) As far as we
understand, there is no reliable calculation of B0K for the
present case (114),13 and so we assume that B0K � 1.

0.4 0.5 0.6 0.7 0.8 0.9 1

sin  γ u

1

1.5

2

2.5

3

3.5

4

r  u

FIG. 2 (color online). The region in the sin�u � ru plane, in
which the constraint (113) coming from �MD is satisfied for
sin�Mu

H � 2 TeV, where ru, sin�u and Mu
H are defined in (111),

(44), and (102), respectively.

TABLE III. Parameter values used in the text (see also Ref. [52]). fD is taken from [68], and we use B0D and xD of [30,69],
respectively. MD, �D, fK, MK, �Mexp

K , MBs , MBd , �Mexp
Bd

are from [51]. fBs (I) and fBs
������
Bs
p

(I) are the conservative sets of [58], and
fBs

������
Bs
p

(II) is found in [70], while fBs (II) and  are taken from [71], and fBd is obtained from fBs=. (See [72] for a more conservative
estimate of , and references therein.) B0s and B0d are found in [73]. �Mexp

Bs
is from [74]. mu�2 GeV� and md�2 GeV� are from [51],

while the mass values of the other quarks are taken from [58], in which the relevant references are given.

Input Input

fD �222:6	 16:7
�2:8
�3:4

� � 10�3 GeV B0D�2:8 GeV� 1:08	 0:03

MD 1:8645	 0:0004 GeV �D �410:1	 1:5� � 10�3 ps

xD �5:3� 11:7� � 10�3 fK �159:8	 1:4	 0:44� � 10�3 GeV

fBs
I: 0:240	0:040
II: 0:245	0:013 GeV B0s�mb� 1:16	 0:02

�0:05
�0:07

fBs
������
Bs
p I: 0:221	0:046

II: 0:227	0:017 GeV  1:24	 0:04

fBd 0:198	 0:017 GeV B0d�mb� 1:15	 0:03
�0:05
�0:07

MK 0:497 648	 0:000 022 GeV �Mexp
K �0:5292	 0:0009� � 10�2ps�1

MBs 5:3661	 0:0006 GeV �Mexp
Bs

17:77	 0:10	 0:07 ps�1

MBd 5:279 50	 0:000 33 GeV �Mexp
Bd

0:507	 0:005 ps�1

mu�2 GeV� �3	 1� � 10�3 GeV mc�mc� 1:30	 0:05 GeV
md�2 GeV� �6:0	 1:5� � 10�3 GeV ms�2 GeV� 0:10	 0:02 GeV
md�mb� �5:1	 1:3� � 10�3 GeV ms�mb� 0:085	 0:017 GeV
mt�mt� 163:8	 2:0 GeV mb�mb� 4:22	 0:08 GeV

13See [59] for a lattice calculation of B0K of the present case,
and also comments of [60].
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Correspondingly, we do not take into account QCD cor-
rections for the present case.

The tree-level coefficient is given by
 

CK �
�
YdHds �Y

dH
sd �

�

�Md
H�

2
�
Yd�ds �Y

d�
sd �

�

�Md
��

2

�

�
1

cos2�

�
1 TeV

Md
H

�
2
� 10�14 �

�
5:617

r2
dsin2�d

�
0:514

tan2�d

� 0:539� 0:224tan2�d
�

GeV�2; (115)

where

 rd �
Md
�

Md
H

�

�
M�1M�2

MH1MH2

��m
d
H

m
d
�

�
: (116)

In Fig. 3 we show the region in the rd � sin�d plane in
which

 �MK � 2� 0:28� CKGeV< �Mexp
K

’ 3:49� 10�15 GeV (117)

is satisfied.
D3: Constraint from �MBs , �MBd
As in the previous cases, the mass differences can be

obtained from

 �MBs;d � 2jh �B0j�MSM
s;d �12 � �M

EXTRA
s;d �12jB

0ij: (118)

The SM contributions to �MBs , �MBd are well controlled
up to the numerical uncertainty in the decay constants.
Here following [58], which is based on the NLO-QCD
calculations in Refs. [61,75], we consider two sets of the
uncertainties for the B system, I and II, as one can see in
Table III. Since the uncertainties in the decay constants are
much larger than those of other quantities, we assume that

 fBd
������
Bs

p
�

�
0:221	 0:046 for the parameter set I
0:227	 0:017 for the parameter set II

;

(119)

 fBd
������
Bd

p
�

�
0:180	 0:043 for the parameter set I
0:184	 0:020 for the parameter set II

(120)

are the only uncertainties for the SM model contributions
MSM
s;d , where fBd

������
Bd
p

is obtained from  �
fBs

������
Bs
p

=fBd
������
Bd
p

. To simplify the situation further, we
assume that this is also true for the extra contributions
MEXTRA
s;d .
To calculate �MSM

s;d �12 we use the parameter values (68)
which are predicted in the present model:

 jVCKMjus � 0:2266; jVCKMjub � 0:003 62;

jVCKMjcb � 0:0417; 
3��� � 1:107:
(121)

Then we follow the calculation of [58] and obtain:

 2�MSM
Bs
�12� 2j� �MSM

s �12j�1	�s�expi
s

�

�
20:1�1	0:40�exp��i0:0035�
20:6�1	0:16�exp��i0:0035�

ps�1

for
�

I
II

;

(122)

 2�MSM
Bs
�12 � 2j� �MSM

d �12j�1	 �d� expi
d

�

�
0:56�1	 0:45� exp�i0:77�
0:56�1	 0:21� exp�i0:77�

ps�1

for
�

I
II

;

(123)

where � �MSM
s;d �12 are the SM contributions which are ob-

tained with the central values of fBs
������
Bs
p

, , MBs;d and the
quark masses given14 in III and �s�MZ� � 0:119, and �s
and �d correspond to the uncertainties in fBs

������
Bs
p

and
fBd

������
Bd
p

given in (120), respectively. As we can see from
Table III, the SM values are slightly larger than the experi-
mental values.

As for the extra contributions, only the matrix elements

 hBs
0jb�Rs

�
Lb

�
Ls

�
RjB

0
si �

1

4
f2
Bs
B0sMBs

� MBs

mb �ms

�
2

’

�
0:29�I�
0:30�II�

GeV3 (124)

and
4 5 6 7 8

r
 d

0

0.1

0.2
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0.4

0.5
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0.7

0.8

si
n 

γd

FIG. 3 (color online). The region in the rd � sin�d plane for
cos�Md

H � 0:5 TeV (red (dark gray)) and 0.3 TeV (black), in
which j�MEXTRA

K j<�Mexp
K is satisfied. rd and sin�d are defined

in (116) and (44), respectively.

14The model does not predict the absolute scale for the quark
masses. If we use the mass ratio given in (68), we obtain a
slightly smaller value for mb�mb� (while we obtain the same
value for mc�mc�). This difference has only a negligible effect on
the SM contributions.
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 hBd
0jb�Rd

�
Lb

�
Ld

�
RjB

0
di �

1

4
f2
Bd
B0dMBd

� MBd

mb �md

�
2

’ 0:18�I; II� GeV3 (125)

are relevant for �MBs , �MBd , where the tree-level dia-
grams similar to Fig. 1 contribute to these mass differ-
ences, and we have used the central values of the
parameters in Table III. The leading-order Wilson coeffi-
cients are

 CBs � �B�mb�
1

cos2�

�
1 TeV

Md
H

�
2
� 10�12 �

�
0:197

r2
dsin2�d

�
2:025

tan2�d
� 4:463� 2:459tan2�d

�
GeV�2;

(126)

 

CBd � �B�mb�
1

cos2�

�
1 TeV

Md
H

�
2
� 10�12 �

�
�

3:521

r2
dsin2�d

�
1:148

tan2�d
� 0:780� 0:127tan2�d

�
GeV�2; (127)

where
 

�B�mb � 4:22 GeV� �
�
�s�mt�

�s�mb�

�
�24=23

�
�s�M�
�s�mt�

�
�8=7

�

�
�s�MZ�

�s�M�

�
�8=7

’ 2:0: (128)

Then we require that

 �MBs � �Mexp
Bs

� 2j� �MSM
Bs
�12 � 0:58�0:60� � CBs j�1	 �s�

� 17:77 ps�1 � 1:17� 10�11 GeV; (129)

 

�MBd � �Mexp
Bd
� 2j� �MSM

Bd
�12 � 0:36� CBd j�1	 �d�

� 0:507 ps�1 � 3:34� 10�13 GeV: (130)

Note that according to our assumption the uncertainties
factorize as �1	 �s;d�
� �MSM

s;d �12 � �MEXTRA
s;d �12�, where

�Ms;d are the central values and �s�d� are given in (122)
and (123). In Figs. 4 and 5 we show the allowed region in
the rd � sin�d plane for the parameter sets I and II, re-
spectively, in which (129) and (130) are satisfied. We find
that (129) and (130) can be simultaneously satisfied even
for small cos�Md

H * 0:50 TeV. The allowed region
shrinks asMd

H increases. At cos�Md
H � 1 TeV the allowed

region is very small. But a wide allowed region exists for
cos�Md

H � 2 TeV. The reason that the allowed region first
decreases and then increases asMd

H increases starting from
’ 0:50 TeV is the following. The constraint (129) and
(130) can be written as

 
�Mexp
Bs;d
�2�1� �s;d�

�2 � �s;d � 4
� �MSM
s;d �12�

2

� 
�Mexp
Bs;d
�2�1� �s;d��2; (131)

where

 �s;d � 4
�MEXTRA
s;d �12�

2 � 8 cos
s;d� �MSM
s;d �12�M

EXTRA
s;d �12;

(132)

and � �MSM
s;d �12 and 
s;d are given in (122) and (123). For a

large Md
H the second term of �s;d is dominant. However,

for a small Md
H, two terms can become of the same order,

and since �MEXTRA
Bs

�12 and �MEXTRA
Bd

�12 can simultaneously
become negative, these two terms can cancel each other, so
that both constraints (131) for �MBs and �MBd can be
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FIG. 5 (color online). The same as Fig. 4 for the parameter set
II with cos�Md

H � 0:50 (black), 1.5 (red (dark gray)), and 2
(green (gray)) TeV.
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FIG. 4 (color online). The allowed region for the parameter set
I with cos�Md

H � 0:50 (black) and 1.5 (red (dark gray)) TeV in
which the constraints (129) and (130) are simultaneously sat-
isfied. rd and sin�d are defined in (116) and (44), respectively.
Two sets of values I and II are given in Table III.
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simultaneously satisfied. In Fig. 6 we show �s (green) and
�d (black) for the parameter set I as a function of Md

H for
rd � 3 and sin�d � 0:8, where we vary Md

H from 0.4 TeV
to 2 TeV ( cos� � 1). We see from the figure that �s and
�d decrease asMd

H increases forMd
H & 0:6 TeV. Note that

the constraint from �MBd (130) is stronger than that from
�MBs (129). In this region the constraint from �K is not
satisfied. But if we relax the constraint (because nonper-
turbative contributions to �K suffer from large uncertain-
ties) to �MEXTRA

K < 2�Mexp
K , then it is satisfied.

Next we consider the region in which all the three
constraints (117), (129) and (130) are satisfied. We find
that the small Md

H region in Figs. 4 and 5 disappears, and

that Md
H * 1:0 (I) and 1.3 (II) TeV have to be satisfied. In

Figs. 7 and 8 we show the allowed region in which all the
constraints (117), (129), and (130) are satisfied for
cos�Md

H � 1:5 TeV (red) cos�Md
H � 2 TeV (green).

D4: Constraint from �MBs=�MBd
This ratio is important to determine experimentally

jVtd=Vtsj. This is true only if there is no other contribution
than the SM ones. In the presence of the extra neutral Higgs
bosons, the situation changes. Here we ask ourselves how
heavy the extra neutral Higgs bosons should be, or where
the allowed region in the rd � sin�d plane for a given
cos�Md

H is, such that the determination of jVtd=Vtsj from
the ratio �MBs=�MBd is not influenced.
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FIG. 7 (color online). The region in which the constraints
(117), (129), and (130), coming from �MK, �MBs;d are satisfied
for the parameter set I with cos�Md

H � 1:1 (black), cos�Md
H �

1:5 (red (dark gray)), and 2 (green (gray)) TeV. rd and sin�d are
defined in (116) and (44), respectively.

1 2 3 4 5
r
 d

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

si
n 

γd

FIG. 8 (color online). The same as Fig. 7 for the parameter set
II with cos�Md

H � 1:5 (red (dark gray)) and 2 (green (gray))
TeV.

0.5 1 1.5 2

M
 H

d
 [ TeV ]

-1

-0.5

0

0.5

1

1.5

2

 ∆
 d

 [
 p

s-2
  ] 

,  
∆  s

 [
 1

03  p
s-2

 ]

FIG. 6 (color online). �s (green ( gray)) and �d (black) for the
parameter set I with rd � 3 and sin�d � 0:8, where they are
defined in (132). This graph explains why the allowed region in
the rd � sin�d plane first shrinks and then extends as Md

H
increases. For the parameter set II we obtain a similar result.
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FIG. 9 (color online). The allowed region for the parameter set
I with cos�Md

H � 0:50 (black), 1.5 (red (dark gray)), and 2
(green (gray)) TeV, in which the constraints (129), (130), and
(133) coming from �MBs;d and �MBs=�MBd are simultaneously
satisfied.
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The largest theoretical uncertainty in the mass ratio is
contained in  � fBs

������
Bs
p

=fBd
������
Bd
p

� 1:24	 0:04 (see
Table III), that is, 3.2% uncertainty, which is lager than
the experimental ones. Accordingly, we require that the
theoretical value of �MBs=�MBd should be equal to the
experimental central value 35.05 within an error of 5% (the
mass ratio is proportional to 2), i.e.

 �MBs=�MBd � 35:05�1	 0:05�: (133)

We require that (129), (130), and (133) are simultaneously
satisfied. The allowed region is shown in Figs. 9 and 10 for
cos�Md

H � 0:50 �black�, 1.5 (red), and 2 (green) TeV. We
see that the small Md

H region of Figs. 4 and 5 is still there.
We also find that cos�Md

H * 1:1�1:3� for the parameter set
I (II) TeV or 0:39 TeV & cos�Md

H & 0:65 �0:45 TeV &

cos�Md
H & 0:6� TeV for the parameter set I (II) if

�MBs=�MBd is equal to the experimental central value
35.05 within an error of 1%.

VI. CONCLUSION

We have considered a supersymmetric extension of the
SM based on the discrete Q6 family symmetry, which has
been recently proposed in Refs. [7,21,22]. We have
stressed the one� two structure for each family; one Q6

singlet and one Q6 doublet for each family including the
SU�2�L doublet Higgs fields. We have found that it is
possible to realize the one� two structure in a renormaliz-
able way, so that the Higgs sector becomes minimal and
much simpler than that of the original model of [7,21,22].

In this way the Higgs sector can be investigated with much
less assumptions. It is explicitly shown that the SSB pa-
rameters can be fine-tuned so as to make the heavy Higgs
bosons much heavier than MZ and at the same time to
obtain a desired size of spontaneous CP violation to re-
produce the Kobayashi-Maskawa CP-violating phase.

We have investigated the FCNC processes, especially
those mediated by heavy neutral Higgs bosons. Because of
the Q6 family symmetry, the number of the independent
Yukawa couplings is smaller than that of the observed
quantities such as the CKM matrix and the quark masses.
Therefore, the FCNCs can be parametrized only by the
mixing angles and masses of the Higgs fields: There are
two angles and four mass parameters that enter into the
FCNCs for a given tan�; a set of three parameters for �MD
and another set of three parameters for �MK and �MBd;s .
We have expressed the mass differences of the neutral
mesons �MK, �MD, and �MBd;s in terms of these
parameters.

Since the SM contributions to �MBs and �MBd are well
controlled, we haven taken them into account to obtain the
constraints from �MBs and �MBd . That is, we have as-
sumed that the extra contributions are allowed only in a
small window in which the SM values differ from the
experimental values. Allowed ranges in which the con-
straints are satisfied are shown in various figures, where
�MK, �MBs , and �MBd take values in the common pa-
rameter space. We have also investigated the ratio
�MBs=�MBd in the region, in which all the constraints
from �MBs and �MBd are simultaneously satisfied, and
found that in a wide subregion the ratio differs from the
experimental central value only by less than 5%. If we
require that all the constraints from �MK, �MBs , and
�MBd including the ratio �MBs=�MBd are satisfied, we
have found that the heavy Higgs bosons should be heavier
than �1:5 TeV. If we relax the constraint from �MK to
�MEXTRA

K < 2�Mexp
K (because of the reason that nonper-

turbative contributions suffer from large uncertainties), the
heavy Higgs bosons can be as light as �0:4 TeV, which is
within the accessible range of LHC [5].
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