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The group E6 for grand unification is combined with the generation symmetry group SO�3�g. The
coupling matrices in the Yukawa interaction are identified with the vacuum expectation values of scalar
fields which are representations of the generation symmetry. These values determine the hierarchy of the
fermions as well as their mixings and CP violation. This generation mixing appears in conjunction with
the mixing of the standard model fermions with the heavy fermions present in the lowest representation of
E6. A close connection between charged and neutral fermions is observed relating for instance the
Cabibbo-Kobayashi-Maskawa (CKM) mixings with the mass splittings of the light neutrinos. Numerical
fits with only a few parameters reproduce quantitatively all known fermion properties. The model predicts
an inverted neutrino hierarchy and gives rather strict values for the light and heavy neutrino masses as well
as for the 0�2� decay parameter. It also predicts that the masses of the two lightest of six ‘‘right handed’’
neutrinos lie in the low TeV region.
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I. INTRODUCTION

The origin of the properties of quarks and leptons, the
masses and the mixings of the three generations, forms still
an open problem in particle physics. Grand unified theories
(GUTs) [1] provide a general understanding of the struc-
ture and the quantum numbers of the standard model states
and suggest new ideas. The hope is to find a consistent
scheme which provides for intimate relations between the
many observables. Lagrangians considered for a single
generation have the fundamental property of chiral sym-
metry, i.e. they are invariant under chiral transformations
of the fermion fields taken together with appropriate trans-
formations of the Higgs fields. For more generations chiral
symmetry requires an extended symmetry which relates
the different generations: the fermions should be members
of a non-Abelian generation symmetry. There are two
possibilities to enforce generation symmetry: one can ei-
ther enlarge the number of Higgs fields by giving them
generation indices or one can identify the coupling matri-
ces in front of the Higgs fields as vacuum expectation
values of new scalar fields carrying generation quantum
numbers.

We choose here the second alternative in connection
with the grand unified symmetry group E6 [2–6]. For three
generations the coupling matrices are 3� 3 matrices. The
corresponding 9 scalar fields are taken to be Hermitian and
are expressed in terms of the Hermitian 3� 3 matrix ��x�

 ��x� � ��x� � i��x�: (1.1)

Here � denotes a symmetric and � an antisymmetric 3� 3
matrix. Clearly, this choice implies that conventional

Yukawa interactions containing these fields are effective
ones with dimension 5 and thus have to be understood on a
deeper level. This can be done by the introduction of
additional heavy spinor fields. We will see that, by inte-
grating out these heavy fields, one finds interesting con-
sequences for the relation between quark and neutrino
mass matrices.

The introduction of the Hermitian matrix field ��x�
coupled to the fermion fields suggests to use the group
SO�3�g to describe the generation symmetry. In addition
we will make use of a discrete parity like symmetry,
generation parity Pg. From the point of view of chiral
symmetry the use of SU�3�g instead of SU�2�g ’ SO�3�g
would be more consequent. We will not treat this extension
because the subgroup SO�3�g of SU�3�g, in combination
with Pg, is sufficient to reach our aims. Together with the
unification group E6 it can be dealt with in a very eco-
nomical way. In the literature non-Abelian continuous [7]
and discrete [8] flavor symmetries have been discussed and
applied in various models. In our approach all fermion
fields are taken to transform as 3-vectors under the gen-
eration group SO�3�g. Consequently, the symmetric part of
� has to transform as 1� 5 and the antisymmetric part as
3. Spontaneous symmetry breaking of this generation sym-
metry leads to vacuum expectation values of �. By an
orthogonal transformation the symmetric matrix h�i can be
taken diagonal. As we will see its elements describe the up
quark hierarchy:

 

h�i
M
� G �

1

mt

mu 0 0
0 mc 0
0 0 mt

0
@

1
A � �4 0 0

0 �2 0
0 0 1

0
B@

1
CA:
(1.2)
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HereM denotes the scale at which the appropriate effective
Yukawa interaction of dimension 5 is formed. We take the
mass ratios mc=mt � mu=mc � �2 to be valid at a high
scale. At the weak scale MZ these ratios are somewhat
modified. Taking � � 0:050 gives good agreement with
the experimental mass determinations. In the following we
will use this parameter for expressing small quantities.

There remains only the vacuum expectation value of the
antisymmetric matrix i� to produce all mixing and
CP-violating properties of quarks and leptons. (The use
of a purely antisymmetric and Hermitian mixing matrix
was suggested in [9]). We take for � the particular form
which was abstracted from the analysis of the fermion
spectrum and the Cabibbo-Kobayashi-Maskawa (CKM)
matrix in [5] using E6 symmetry for grand unification. It
has a particular symmetry: it changes sign by exchanging
the second with the third generation:

 

1

M0
hi�i � A � i�A

0 � ��
�� 0 1=2
� �1=2 0

0
@

1
A: (1.3)

The relative factor between the (1, 2) and (2, 3) elements
determines the particle mixings. Its value 2� gives a good
description of the mixings of quarks and neutrinos as will
be shown in this article. The coupling constant �A can be
incorporated into the mass scale M0 (except for renormal-
ization group (RG) considerations).

As already mentioned above, besides the SO�3�g sym-
metry we also introduce a parity symmetry Pg, ‘‘genera-
tion parity.’’ The (extended) standard model fermions are
taken to be even under this symmetry while the Higgs
fields directly coupled to these fermion fields as well as
the fields � and � have negative generation parity. To
obtain the spontaneous symmetry breaking of SO�3�g �
Pg we use in the Lagrangian for the field � SO�3�g � Pg
invariant potentials up to 4th order in the fields � and
�. Adding also the SO�3�g � Pg invariant Coleman-
Weinberg potential a complete breaking of the generation
symmetry can be achieved. Moreover, by selecting prop-
erly the coefficients of these potentials the numerical val-
ues of (1.2) and (1.3) give the absolute minimum of the
total potential.

It is clearly a challenge to obtain the masses, mixings,
and CP properties of all fermions with only the two
generation matrices G and A together with a few vacuum
expectation values of the corresponding Higgs fields.
Suited for this task is the grand unification symmetry E6

[5]. Here we can postulate that particle mixings are caused
by the mixing of the standard model particles with the
heavy particles occurring in the lowest representation 27
of E6. The up quarks cannot mix since they have no heavy
partners in this representation. Thus, it follows immedi-
ately that—apart from a constant factor—their mass spec-
trum is simply given by h�i=M � G [as presented in (1.2)].

As we will see the breaking of generation symmetry and
E6 symmetry gives a hold on the complete fermion spec-
trum which includes new heavy fermions. In particular, we
find a very strong hierarchy for the heavy right-handed
neutrinos: their mass matrix is proportional to the square of
the up quark mass matrix. By integrating out these heavy
neutrinos, their masses appear in the denominator compen-
sating the square of the Dirac mass matrix in the nominator.
This mechanism gives the light neutrino spectrum a less
pronounced hierarchy than the one of the up quarks. A
possible consequence is an inverted neutrino spectrum.
Such an interesting situation is not obtained in more con-
ventional treatments of grand unified theories. It will be
seen that very few parameters are sufficient to describe all
the known properties of charged and neutral fermions in a
quantitative way.

The use of E6 as a grand unified theory has many virtues
[2–6]. The fermions are in the lowest representation of this
group and an elegant cyclic symmetry connects quark
fields, lepton fields, and antiquark fields. In particular, as
shown in [5], E6 combines the mixings among fermion
generations with the mixing of the standard model particles
with heavy charged and neutral states.

Thus, our starting symmetry at the GUT scale is

 E6 � SO�3�g � Pg: (1.4)

In order to introduce notations and conventions we add at
this place a short description of the 27 representation of E6.
In the E6 grand unification model the fermions are con-
tained in the 27 representation of the group, i.e. they are
described by 27 two component (left-handed) Weyl fields
for each generation:

  �r ; � � 1; 2; 3; r � 1; � � � ; 27: (1.5)

r denotes the E6 flavor index and � labels the generations.
These fields—even under Pg—describe the fermions of
the standard model plus additional quark and antiquark
fields with the same charge as the down quarks and new
heavy charged and neutral leptons. All fermions are in
singlet and triplet SU�3� representations of the maximal
subgroup of E6

 SU�3�L � SU�3�R � SU�3�C � G333; (1.6)

which plays an important role in our approach. In terms of
G333 we have

 27 � QL�x� � L�x� �QR�x�; (1.7)

where the quantum number assignments are
 

Quarks: QL�x� � �3; 1; �3�;

Leptons: L�x� � ��3; 3; 1�;

Antiquarks: QR�x� � �1; �3; 3�:

(1.8)

For each generation one has
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�QR�
k
a � �ûa; d̂a; D̂a�;

(1.9)

where i; k; a � 1, 2, 3. In this description SU�3�L acts
vertically (index i) and SU�3�R horizontally (index k) and
a is a color index. It is seen, that in each generation there
exist 12 new fields extending the standard model: colored
quarks D, D̂, charged leptons E�, E�, and 4 new neutral
leptons �̂, L3

3, L1
1, L2

2, which all must correspond to heavy,
but not necessarily very heavy, particles.

The group G333 can serve as an intermediate gauge
symmetry below the E6 breaking scale (the unification
scale). It can be unbroken only at and above the scale
where the two electroweak gauge couplings combine. In
the nonsupersymmetric E6 model, which we adopt here,
this point occurs at MI ’ 1:3� 1013 GeV according to the
extrapolation of the standard model couplings. Inter-
estingly, this is just the scale relevant for the neutrino
masses using the seesaw mechanism. Above this scale
the united electroweak couplings and the QCD coupling
run at first separately until the electroweak coupling bends
to meet the QCD coupling at the E6 unification point. This
happens at the scale	 3� 1017 GeV (see Fig. 1 and more
details in Appendix A 1).

Before E6 symmetry breaking equivalent forms of (1.9)
can be obtained by applying left and right SU�3� U-spin
rotations. We fix the basis by using vacuum expectation
values (VEV) of the lowest Higgs representation, the 27 of
E6. In this representation possible vacuum expectation
values are restricted to the 5 neutral members sitting in
positions corresponding to the ones of the neutral leptons

in (1.9). Below the scale MI only two light SU�2�L dou-
blets are assumed to be active. We incorporate them in two
different scalar 27-plet fields. Thus we introduce two scalar
fieldsH27 and ~H27 with the following transformation prop-
erties under E6 � SO�3�g � Pg:

 H27 
 �27; 1;��; ~H27 
 �27; 1;��: (1.10)

Only H27 can couple to the  fields in the form � TH .
Thus, it is convenient to choose a basis in which the VEV
hH27i

i
k forms a diagonal matrix. In the scalar potential of

the E6 Lagrangian the bilinear terms with respect to both
scalar 27-plets can contain the singlet part ��1� of the fields
�:

 �2Hy27H27 � ~�2 ~Hy27
~H27 ��0��1��H

y
27

~H27 �H27
~Hy27�:

(1.11)

After ��1� develops a VEV, and for �0 sufficiently small
(i.e. j�0h��1�ij � j�2 � ~�2j), the mass eigenstates Hu and
Hd following from (1.11) are linearly related to H27 and
~H27

 

H27 � Hu � zHd and ~H27 � �zHu �Hd

with z � �
�0h��1�i

��2 � ~�2�
; jzj � 1:

(1.12)

We take the light up type doublet to be in Hu:
��Hu�11; �H

u�12� and the light down type doublet
��Hd�21; �H

d�22� to occur in Hd. These Higgs doublets are
important for generating the correct fermion mass pattern.
h�H27�

1
1i ’ h�H

u�11i � e1
1 determines the scale of the up

quarks and h�H27�
2
2i ’ zh�H

d�22i � z	2
2 the scale of the

down quarks and charged leptons of the standard model.
	2

2 is expected to be of the same order of magnitude as e1
1.

The factor z, which vanishes before Pg-symmetry break-
ing, is responsible for the small values of bottom and tau
masses compared to the top mass. Components of Hu, Hd

which are standard model singlets have large VEVs. For
instance h�H27�

3
3i ’ h�H

u�33i � e3
3 provide high (Dirac type)

masses for all new quarks and leptons with the exception of
the ‘‘right-handed’’ neutrinos �̂ � L3

2 and L3
3. Their masses

arise from a different mechanism involving both H27 and
~H27. e3

3 is not a new scale parameter but is determined by
the onset of G333, the meeting point of the electroweak
gauge couplings: g1�MI� � g2�MI� with the result (see
Appendix A 1):
 

MI � 1:27� 1013 GeV;

e3
3 �

MI

g2�MI�
� 2:27� 1013 GeV:

(1.13)

We will see that this value of e3
3 provides for the correct

mass scale of the light neutrinos.
Because of the linear Yukawa coupling all fermions—

except the right-handed neutrinos L3
2 and L3

3 —are Dirac
particles and have the same G hierarchy as the up quarks.
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FIG. 1 (color online). ‘‘Concorde’’—Unification of gauge
couplings.
MI ’ 1:27� 1013 GeV, M6 ’ 3:47� 1016 GeV, MGUT ’ 2:8�
1017 GeV, and ��1

GUT ’ 24:1.
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The hierarchy of the right-handed neutrinos, on the other
hand, becomes super strong due to the combined action of
H27 and ~H27. Particle mixings will occur by taking into
account the antisymmetric generation matrix A combined
with an antisymmetric (in E6 indices) Higgs field. These
mixings modify the hierarchy of down quarks and charged
and neutral leptons in agreement with the experimentally
observed particle spectra.

II. GENERATION SYMMETRY

For the construction of the Yukawa interaction symmet-
ric under E6 � SO�3�g � Pg the existence of a set of new
fields is necessary. First of all, as mentioned in the intro-
duction, we introduce scalar fields represented by the 3� 3
matrix ��x�. The members of the symmetric part � trans-
forms as �1; 1� 5;�� [under E6 � SO�3�g � Pg] and the
ones of the antisymmetric part � according to �1; 3;��. To
have a renormalizable interaction we need new heavy
vectorlike fermionic fields F, �F and F0, �F0 which transform
as
 

F
 �27; 3;��; �F
 �27; 3;��;

F0 
 �27; 3;��; �F0 
 �27; 3;��:
(2.1)

The Yukawa interaction involving the Higgs fields arises
from the vertices

 � T�g�1���1� � g�5���5�� �F�; M�FT �F�; �FTH27 �:

(2.2)

In (2.2) we used matrix notation with regard to generation
indices, but suppressed E6 indices and Clebsch Gordan
coefficients. ��1� and ��5� denote the singlet and 5-plet
parts of �, respectively. By integrating out the massive
fields F, �F one gets the wanted effective interaction

 

1

M
� T�g�1���1� � g�5���5��H27 �: (2.3)

The corresponding diagram is shown in Fig. 2(a). Clearly,
the antisymmetric matrix � does not contribute to the
symmetric (in E6 indices) field H27. It couples, however,
to the antisymmetric Higgs representation HA�351� of E6

with negative generation parity. The vertices are

 �� Tg�3�i� �F0�;M0�F0T �F0�; �F0THA351� �

)
g�3�
M0
� Ti�HA �: (2.4)

The corresponding diagram containing the heavy fields F0,
�F0 is shown in Fig. 2(b).

The Pg symmetry forbids couplings such as H ,F ~H ,
FFH, etc. In the following we will not separate the singlet
and 5-plet parts of � but simply use the combination � as
occurring in � (i.e. g�1� � 1=3 g�5�) and absorb g�5� and the
coupling g�3� in the values of M and M0, respectively. Now
we can introduce number valued generation matrices by
taking the vacuum expectation values of � and � as de-
scribed in the introduction:

 

1

M
h�i � G;

1

M0
hi�i � A: (2.5)

As mentioned before, the generation matrix G in Eq. (1.2)
combined with vacuum expectation values of the Higgs
field H27 gives Dirac masses to all fermions except the two
heavy leptons L3

2 and L3
3. The latter require Higgs fields

transforming as �6; �6� with respect to SU�3�L � SU�3�R,
components, which are not contained in H and HA. Instead
of introducing another high dimensional Higgs field it is
plausible to use the Higgs fieldH27 together with ~H27. This
avoids the appearance of a new unknown generation ma-
trix. With the help of the generation symmetry it is possible
to derive the relevant generation matrix of the ‘‘compos-

FIG. 2. Diagrams responsible for operators ��� � �H27 and ��� � �HA.
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ite’’ �6; �6�-plet in terms of the G matrix. This increases the
predictive power of the model. To obtain the corresponding
effective interaction from a renormalizable interaction,
another massive Dirac field is required. It is a vector in
generation space and an E6 singlet: N�1; 3;��, ~N�1; 3;��
with N even under Pg and ~N odd under Pg. In addition we
need a total singlet field �1; 1;�� which is odd under Pg. It
can be identified with the singlet part ��1� of � with
vacuum expectation value h��1�i � MN ’ M. The vertices
are

 �FTHy27N�; h��1�i� ~NN� � MN� ~NN�; � ~N ~Hy27F�:

(2.6)

Integrating out the fields N, ~N the vertex �FTHy��
� ~HyF�=MN emerges. Below the masses of the F states
the effective Yukawa interaction

 

1

M2

1

MN
� T�Hy27��

~Hy27� � (2.7)

is generated. The corresponding diagram is shown in
Fig. 3. Because in (2.7) the E6 indices are not shown, one
has to keep in mind that the combinations  Hy and  ~Hy

are E6 singlets. It is easily seen that by this interaction only
neutral leptons can get masses, notably the right-handed
neutrinos L3

2 and L3
3. They are coupled to the large ele-

ments of H27 and ~H27, which are standard model singlet
fields and thus will get large vacuum expectation values.
The most interesting feature is, however, the appearance of
the square of �=M. It implies that after generation sym-
metry breaking the mass hierarchy of these heavy neutrinos
is dramatic, namely, equal to G2, the square of the mass
hierarchy of the up quarks which is already a very strong
one.
H27 and ~H27, which both appear now in the Yukawa

interaction, can be expressed in terms of the mass eigen-
states Hu and Hd. From (1.12) we have H27 � Hu � zHd

and ~H27 � �zHu �Hd, with the mixing parameter jzj �
1. We choose the VEVs of Hu and Hd as follows:

 hHui �
e1

1 0 0
0 0 0
0 �z	3

2 e3
3

0
B@

1
CA; hHdi �

0 0 0
0 	2

2 0
0 	3

2 0

0
@

1
A:

(2.8)

Thus, the VEVof the Higgs fieldH27 has the diagonal form
taken by convention

 hH27i � hH
u � zHdi ’

e1
1 0 0

0 z	2
2 0

0 0 e3
3

0
B@

1
CA; (2.9)

while ~H27’s VEV has the structure

 h ~H27i � hH
d � zHui ’

�ze1
1 0 0

0 	2
2 0

0 	3
2 �ze3

3

0
B@

1
CA: (2.10)

Since hH27i has no off diagonal element one expects a large
(3, 2) element for ~H27. We take 	3

2 ’ MN ’ M, where M is
identified with e3

3 ’ MI. In principle, however, 	3
2 together

withM andMN could be of a lower scale (but still� MZ).
The dominant VEVs of H27 and ~H27 fix now the mass
terms of the right-handed neutrinos L3

2 and L3
3

 

Ff2;3gG2��L3
2�
TL3

3��F
f3;3gG2��L3

3�
TL3

3�;

with Ff2;3g ’
e3

3	
3
2

MN
’e3

3; Ff3;3g 	
�z�e3

3�
2

MN
	�ze3

3: (2.11)

Ff3;3g is the only Majorana mass term occurring so far.
The effective Yukawa interaction below �M;MN;M

0�
now reads
 

Leff
Y � G��� �TH27 �� � A��� �THA351

 ��

�
1

MN
�G2���� 

�THy27
~Hy27 

��: (2.12)

This effective Yukawa interaction together with the VEV
configurations (2.9) and (2.10) contains all the necessary
information about the generation structure: Generation
hierarchy and generation mixing are now completely fixed.
At this stage we do not need to specify the scales of
M;MN ’ M;M0 � MZ. However, these scales become
important when we take renormalization effects into
account.

Let us now discuss the breaking of the generation sym-
metry SO�3�g. The Lagrangian for the field � is

 L� �
1
2 Trf�@��� e
B�;����@��� e
B�;���g

� V��; ��;

FIG. 3. Diagram responsible for the �2�Hy27 �� ~Hy27 � operator.
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with B� � Bi�t
i, where Bi� denote the vector potential and

ti the 3 antisymmetric generators of the generation sym-
metry SO�3�g. V��; �� stands for an SO�3�g invariant
potential. Gauge invariance allows to choose �, the sym-
metric part of �, to be a diagonal matrix with 3 real
elements. This defines a direction in symmetry space for
a possible spontaneous symmetry breaking. Normalizing
� for this basis one can write

 � �
�1 0 0
0 �2 0
0 0 �3

0
@

1
A� i���

2
p

0 �3 ��2

��3 0 �1

�2 ��1 0

0
@

1
A:

(2.13)

In this form the vertices we have shown above simplify
drastically since the orthogonal transformation diagonaliz-
ing � can be absorbed by the fields  , F, and F0.

The scalar potential V��; �� in (2.12) can easily be made
to have a minimum for specific values of the three invar-
iants: the trace of �2, the trace of the square of the traceless
part of �, and the trace of �2. At this minimum we have
then two relations for the 3 fields forming � and one
relation for the other 3 fields forming �. There still remains
the freedom of such SO�3�g transformations which do
respect this minimum and keep � diagonal. This remaining
symmetry is necessarily a discrete subgroup of SO�3�g. It
is the discrete symmetry group A4. As a generation sym-
metry A4 has been suggested in many publications [8]. In
our approach this symmetry occurs naturally in connection
with the starting symmetry SO�3�g � Pg. It is the remain-
ing symmetry after using appropriate potentials invariant
under SO�3�g � Pg and the choice of a symmetry breaking
direction.

Radiative corrections add to the potential V��; �� new
SO�3�g invariant parts which are of logarithmic type. The
Coleman-Weinberg potential [10] is of this form. By in-
cluding it the total potential can lead to a complete sponta-
neous symmetry breaking of SO�3�g which results in
vacuum expectation values for � and � of the form (1.2)
and (1.3). We demonstrate this here by using the potential

 V��; �� � �
M2

2
Tr
�2� �

M02

4
Tr
�i��2� � c1�Tr
���4

� cT�Tr
�2
T��

2 � c3Tr
�3�Tr
��

� c��Tr
�i��2��2 � c��0Tr
�:�i��2�Tr
��

� c��1Tr
�:i�:�:i�� �
3e2

64
2

�
M4
B1 ln

�
d1
M2
B1

M2

�

�M4
B2 ln

�
d2
M2
B2

M02

�
�M4

B3 ln
�
d3
M2
B3

M02

��
:

(2.14)

Here �T denotes the traceless part of � and MBi stands for
the vector boson masses as field dependent functions (we
take in (2.14) e � 1 for simplicity). The coefficients in

(2.14) can be tuned such that the SO�3�g � Pg symmetry
breaks spontaneously and produces G and A with � �
0:050. To achieve this one has to use the six relations
following from the first derivatives of the potential at the
proposed minimum: h�i � MG and h�i � M0A. Because
of the large hierarchy a high accuracy of this calculation is
necessary. We use here M0=M � 103 i.e., the mass scale
for forming the antisymmetric matrix A is large compared
to the one for forming the symmetric matrix G (this is
required for the gauge coupling unification, see the renor-
malization group treatment in the appendix). Setting then
e.g. d1 � 1, d2 � 237 854=105, and d3 � 237 850=105 all
other coefficients are determined by putting the first de-
rivatives of the potential to zero. These coefficients are
sufficiently small (c1; cT; c3; c� < 1 for instance) to allow
perturbative treatments. The log terms are small near the
minimum. With this choice of the potential the six eigen-
values of the 6� 6 matrix for the second derivatives of the
potential are all positive at the wanted values of h�i. The
minimum obtained is an absolute one (but degenerate with
respect to different signs of the three elements in h�i).

The above formulae for the vacuum expectation values
and the corresponding potential would have a different
form if we would have used other values for the couplings
g�1� and g�5�. However, also for this more general situation
potentials can be constructed to produce the required
spontaneous symmetry breaking.

For the three vector boson masses at the minimum of the
potential one gets

 MB 


8<
:

1:40eM
0:505eM0

0:505eM0

9=
;: (2.15)

III. CHARGED FERMION MASSES AND MIXINGS

As we have already mentioned, the diagonal generation
matrix h�i (i.e. G) is taken such that the up quark masses
have their observed hierarchy. The top quark mass at MZ is
determined by the vacuum expectation value e1

1 and the
coupling �t at this scale

 mt � e1
1�t � e1

1G
uû
3;3 � 170:9 GeV: (3.1)

The notation (the superscript uû of G) indicates that at low
energy one has to distinguish between different channels.
The renormalization group effects are treated in the appen-
dix. We take for �t�MZ� a value such that the top coupling
constant near MI is close to 1,

 �t�MZ� � 1:30; e1
1 � 131:5 GeV: (3.2)

Having for all diagonal G couplings the same spacing at
the scale MI, we are able to calculate the spacing for each
channel at the scale MZ. As obtained in the appendix we
find
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Guû�MZ� � Diag�r�1
t �4; r�1

t �2; 1� � �t�MZ� with

rt � 0:717: (3.3)

Comparing with the measured values of up and charmed
quark masses suggests

 � � 0:050: (3.4)

Equation (3.3) gives for this value of � mu � 1:5 MeV
and mc � 0:60 GeV in good agreement with the experi-
ment. We will use (3.4) in all further calculations.

The case for the down quark and charged lepton masses
is not as straightforward. Here the light fermions will mix
with the heavy statesD and L. We take this as the source of
the particle mixings. It involves the indices 2 and 3
(U-spin mixing) of SU�3�L and SU�3�R of the Higgs field
HA. According to Eq. (2.12) this mixing of light and heavy
fermions occurs together with the generation mixings by
the coupling matrix ih�i (i.e. the matrix A).

A. The down quark masses and mixings

The matrix elements for down quarks are part of a 6� 6
mass matrix. It has the form

 d̂ D̂

Md;D �
d
D

z	2
2G� f

2
2A; f2

3A
f3

2A; e3
3G

� �
:

(3.5)

In this equation the constants fij stand for the vacuum
expectation values of HA��3; 3; 1�:

 fij � h�HA�
i
ji; i; j � 2; 3: (3.6)

	2
2 and f2

3 have values of the order of the weak scale, while
e3

3 and f3
2 will be very large because they arise from

standard model singlets. Further below we will find that
the vacuum expectation values of the standard model sin-
glet components of HA, like f3

2, have values which are
small compared to e3

3 (smaller than �3e3
3). This allows to

make use of the seesaw formula and also justifies the
neglection of f3

3 in (3.5). Integration of the heavy
D-states leads to the 3� 3 down quark mass matrix at
the scale MZ

 m̂ d�MZ� � z	2
2G

dd̂ � Add̂f2
2 �

f3
2f

2
3

e3
3

AdD̂�GDD̂��1ADd̂:

(3.7)

We distinguished different G and Amatrices when coupled
to different channels �dd̂; dD̂�, etc. Different renormaliza-
tion factors arise when starting from the original G and A
matrices at high scales. The calculations are deferred to the
appendices. The matrices appearing in (3.7) are defined in
(A12) and (A14).

For the dd̂ matrix element in (3.7) with the generation
index (3, 3) we write

 z	2
2G

dd̂
33 � 	2

2�b � m0
b: (3.8)

The down quark mass matrix leads to 7 observables: 3
mass eigenvalues, 3 mixing angles, and the CP-violating
phase. According to (3.7) we have 3 parameters for a fit of
the experimental results. We use the notation of the various
coupling constants provided in (A12) and (A14). Taking
then

 m0
b � 2:95 GeV; �dd̂A f

2
2 ’ �0:23 GeV;

f3
2f

2
3

e3
3

�dD̂A �Dd̂A
�DD̂

� 1:62� 10�4 GeV;
(3.9)

one gets

 md�MZ� ’ 2:6 MeV; ms�MZ� ’ 50 MeV;

mb�MZ� ’ 2:89 GeV; jVusj ’ 0:228;

jVcbj ’ 0:042; jVubj ’ 0:0039:

(3.10)

The angles in the quark unitarity triangle have the values

 �q ’ 97�; �q ’ 23�; �q ’ 60�: (3.11)

Our results are very satisfying. Quark masses, the CKM
mixing angles, and the three angles of the unitarity triangle
have values within experimental errors [11,12].

B. The charged lepton masses and mixings

The charged lepton sector is constructed in a similar
way. The light leptons mix with the heavy L’s through the
vacuum expectation values of the HA��3; �6; 1�multiplet (the
vacuum expectation values of HA�6; 3; 1� are considered to
be negligible because of its 6 representation for the SU�3�L
symmetry):

 hHifj;kg
A i � fifj;kg: (3.12)

With the abbreviations

 f2f1;3g � g2
2; f2f1;2g � g2

3; f3f1;3g � g3
2 (3.13)

and applying again the effective Lagrangian (2.12) the 6�
6 mass matrix for charged leptons has the form

 e� E�

Me;E �
e�

E�
�z	2

2G� g
2
2A; g3

2A
�g2

3A; �e3
3G

� �
:

(3.14)

Integrating out the heavy L states leads at the scale � ’
MZ to the 3� 3 matrix

 m̂ e ’ �z	
2
2G

e�e� � g2
2A

e�e�

�
g2

3g
3
2

e3
3

Ae
�E��GL �L��1AE

�e� : (3.15)

Here appear again renormalization group coefficients de-
fined in (A12) and (A14). We choose
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zGe�e�
33 	2

2 ’ 	
2
2�� � m0

� � 1:593 GeV;

�e
�e�
A g2

2 ’ �0:1898 GeV;

g2
3g

3
2

e3
3

�e
�E�
A �E

�e�
A

�L �L
’ 3:16 � 10�4 GeV:

(3.16)

These three numbers determine the charged lepton masses
and, as in the quark case, determine also the 3 mixing
angles and the CP-violating phase. The charged lepton
mixings are not directly observable, but will play an im-
portant role in the discussion of the neutrino properties.
The masses come out precisely

 

me�MZ� � 0:487 MeV; m��MZ� � 102:8 MeV;

m��MZ� � 1:747 GeV: (3.17)

For the mixing angles and the CP-violating phase �e we
obtain

 


e12 ’ 4:8�; 
e23 ’ 5:1�;


e13 ’ 0:35�; �e ’ �23�:
(3.18)

We have defined these four parameters in complete anal-
ogy to the quark CKM mixing angles and the unitarity
angle gamma.

C. Estimates of �2
2, f2

3 , f3
2 , g2

3, and g3
2

So far only the combinations ��	2
2, f2

3f
3
2, and g2

3g
3
2 are

known numerically. However, there is one relation due to
the known mass of the vector boson W of the standard
model. It connects all vacuum expectation values which
belong to SU�2�L doublets:

 �e1
1�

2 � �	2
2�

2 � �f2
2�

2 � �g2
2�

2 � �f2
3�

2 � �g2
3�

2

� �174:1 GeV�2: (3.19)

Because of the nearly identical interaction of down
quarks and charged leptons we can estimate the ratio
f2

3=g
2
3 from the fit values given in (3.9) and (3.16) by taking

the large standard model singlet VEV’s f3
2 and g3

2 to be

equal. One gets
f2

3

g2
3
’ 0:5 which is close to m0

�=m
0
b as one

could have expected. Using Eq. (3.19) the only parameter
needed then is the ratio g2

3=	
2
2. This is a ratio of two weak

scale quantities with the same weak isospin quantum num-
bers. We therefore take it to be equal to one. This choice
gives a value for g3

2=e
3
3 small enough to justify the appli-

cation of the seesaw mechanism we used above. It also
provides for small values for the couplings �� and �b
necessary for renormalization group stability of the neu-
trino sector to be discussed in the appendices. All cou-
plings and VEV’s introduced are now fixed:

 

f2
3 ’ 39 GeV;

g2
3 � 	2

2 ’ 76 GeV;

zGe�e�
3;3 ’ �� ’

1:6 GeV

	2
2

’ 2� 10�2;

�b ’ 4� 10�2;

f3
2

e3
3

�
g3

2

e3
3

’ 4:16� 10�6:

(3.20)

It is useful to set

 

f3
2

e3
3

�
g3

2

e3
3

� �3xg

giving

 xg ’ 0:033: (3.21)

The factor �3 removes the singularities in the mass matri-
ces with respect to the formal limit �! 0.

IV. NEUTRINO MASSES AND MIXINGS

In each generation one has to deal with 5 neutral leptons
(see (1.9)). Thus, the matrix for neutral leptons is a 15� 15
matrix.

 L2
3 L3

2 L3
3 L1

1 L2
2

ML �

L2
3

L3
2

L3
3

L1
1

L2
2

0 �e1
1G 0 �g3

2A 0
�e1

1G 0 M1 0 0
0 MT

1 M2 0 e1
1G

�g3
2A

T 0 0 0 M0

0 0 e1
1G MT

0 0

0
BBBBB@

1
CCCCCA:

(4.1)

Each entry stands for a 3� 3 matrix. In the 12� 12
submatrix for the heavy leptons we neglected small terms
like g2

2 and g2
3. They play no role in the evaluation of the

light neutrino properties. The following abbreviations are
used:

 M0 � e3
3G; M1 � Ff2;3gG2 � FAA;

M2 � Ff3;3gG2:
(4.2)

M1 andM2 have the superstrong hierarchy G2 according to
Leff
Y and Eq. (2.11). The only new element we had to

introduce arises from the vacuum expectation value of
HA�6; 3; 1� which we argued to be negligible in the pre-
vious section. But here it appears together with very small
elements occurring in G2. Thus, the constant FA defined
according to

 FA � h�HA�f3;3g;1i � ff3;3g1

is expected to be tiny compared to Ff2;3g even though it is a
singlet with respect to standard model transformations.
Nevertheless it has to be kept as a parameter.
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It is useful to rewrite the matrix (4.1) in the form

 ML �
0 �

�T M̂

� �
; (4.3)

where 0 stands for the 3� 3 zero block matrix, while �
and M̂ are 3� 12 and 12� 12 matrices, respectively. They
read

 � � ��e1
1G; 0;�g

3
2A; 0�; (4.4)

 M̂ �

0 M1 0 0
MT

1 M2 0 e1
1G

0 0 0 M0

0 e1
1G MT

0 0

0
BBB@

1
CCCA: (4.5)

The matrix M̂ contains the masses of the heavy neutral
states which should be integrated out. This can be done
analytically since g3

2=e
3
3 is sufficiently small according to

(3.20). In doing so the light neutrino 3� 3 mass matrix is
given by

 m� � �U
T�M̂�1�TU: (4.6)

In this expression the matrix U provides for a first order
correction to the generalized seesaw result �M̂�1�T . One
finds with sufficient accuracy

 U ’ 1� 1
2�
�M̂�2�T: (4.7)

The inverse of the matrix M̂ is

 M̂ �1 �

� 1
MT

1
M2

1
M1

1
MT

1
�

e1
1

MT
1
G 1
M0

0
1
M1

0 0 0

�
e1

1

MT
0
G 1
M1

0 0 1
MT

0

0 0 1
M0

0

0
BBBBBBB@

1
CCCCCCCA
: (4.8)

From (4.4) and (4.8) one obtains

 

�M̂�1�T � ��e1
1�

2

�
G

1

MT
1

M2
1

M1
G� g3

2G
1

MT
1

G
1

M0
AT

� g3
2A

1

MT
0

G
1

M1
G
�
: (4.9)

Figure 4 shows how the terms in (4.9) are generated. The
generation of the first term in (4.9) is exhibited by the
diagram of Fig. 4(a), while the diagram of Fig. 4(b) and
its transpose shows the formation of the second and third
terms of (4.9), respectively. In linear approximation with
respect to FA the matrix M�1

1 becomes

 M�1
1 ’

1

Ff2;3g

�
1

G2 �
FA
Ff2;3g

1

G2 A
1

G2

�
: (4.10)

The expression of U appearing in Eq. (4.6) can be ap-
proximated by

 U ’ 1�
1

2
g3

2A
1

MT
0

1

M0
g3

2A ’

1 0 0
0 1�

x2
g

2
x2
g

2

0
x2
g

2 1�
x2
g

2

0
B@

1
CA:

(4.11)

For consistency the quantity xg, at this place responsible
for the correction to the seesaw formula, must be small
compared to 1 which is indeed the case as we have seen
before. Finally, taking all together, one obtains for the light
neutrino mass matrix

 

m� �
�e1

1�
2

Ff2;3g
UT

�
Ff3;3g

Ff2;3g
1�

g3
2

e3
3

�
A

1

G
�

1

G
AT
�

�
FA
Ff2;3g

g3
2

e3
3

�
A

1

G2 A
1

G
�

1

G
AT

1

G2 A
T
��

U: (4.12)

In order to compensate the powers of � in the denomina-
tors of (4.12) we extract powers of � from FA as we did for
g3

2,

FIG. 4. Diagrams responsible for neutrino d � 5 operators.
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g3
2

e3
3

� �3xg;
FA
Ff2;3g

� �5xA: (4.13)

Like xg also xA needs to be small compared to one.
For a convenient description and discussion we use now

the abbreviations

 m � xg
�e1

1�
2

Ff2;3g
; � �

Ff3;3g

xgF
f2;3g

: (4.14)

Let us at first discuss the case with only linear terms in
xg and �, putting also xA � 0. The neutrino mass matrix
takes then the very simple form

 m� ’ �m1�m
0 �i i
�i 0 �i �2
i �i �2 0

0
B@

1
CA: (4.15)

The eigenvalues of m�:m
y
� are to first order in �

 �m2�
2 ’

�
�2 � 2�

����
2
p

�
m2;

�m1�
2 ’

�
�2 � 2�

����
2
p

�
m2; �m3�

2 ’ �2m2:
(4.16)

It is now easy to see the following properties of the light
neutrinos:

(i) The neutrino mass spectrum has the inverted form.
(ii) In the no mixing limit xg ! 0 the 3 neutrino masses

are degenerate.
(iii) The ratio between the solar and atmospheric mass

squared differences is ���
2
p ’ 0:035 independent of the

parameters in good agreement with experiments.
(iv) The experimentally observed atmospheric mass

squared difference can be used to fix the mass pa-
rameter m for the light neutrinos and to estimate the
mass parameter Ff2;3g for the heavy neutrinos:

 

m ’
1���
2
p

��������������
�m2

atm

q
’ 0:035 eV;

Ff2;3g ’
���
2
p
xg
�e1

1�
2��������������

�m2
atm

p 	 1:8� 1013 GeV:

(4.17)

Here we used for xg the estimate (3.21). Thus, as
expected from (2.11), the largest heavy neutrino
mass Ff2;3g has indeed a value close to the intermedi-
ate mass scale MI.

(v) In the approximation used so far, and without taking
renormalization effects into account, the neutrino
mixing matrix is of the bimaximal form.

In the next subsection we take renormalization into
account by running the mass matrix down from MI to
MZ. Moreover, the effect of xA and the correction terms
x2
g (emerging from U) will be included.

Neutrino masses and mixings with RG effects

Now we make full use of Eq. (4.12) and take the renor-
malization effects discussed in Appendix B into account.
Neglecting higher powers of the small quantity �, the light
neutrino 3� 3 mass matrix at the scale MZ has the form

 m� ’ mUT
��1� r1� �i i
�i ��1� r2� � 2xA �i �2 r23 � xA
i �i �2 r23 � xA �

0
B@

1
CAU; (4.18)

where r1, r2, r23 denote renormalization factors derived in
Appendix B [see Eqs. (B3) and (B4)]. Their numerical
values are

 r1 � 0:1325; r2 � 0:0582; r23 � 0:9426:

(4.19)

Without renormalization the value of � has no influence
on the neutrino mixing pattern. Now, however, � plays a
role. It should not be large in order not to change the
mixing pattern drastically. In fact, Ff3;3g=Ff2;3g must be as
small as xg in accord with � 	 �z=xg (2.11) and our value
for xg, i.e. j�j must be around 1. As a consequence, the
inverted spectrum found above still prevails.

With the following choice of parameters we obtain a
very good description of the known neutrino properties. In
this fit we adjust xA and � and decrease m slightly. For xg
we take the value used already,

 

m � 0:0324 eV; � � 1:132;

xg � 0:033; xA � �0:0601:
(4.20)

For the neutrino masses one gets

 m1 � 0:0616 eV; m2 � 0:0623 eV;

m3 � 0:037 4eV:
(4.21)

Accordingly, the mass square differences are
 

�m2
sol � m2

2 �m
2
1 � 8� 10�5 eV2;

j�m2
atmj � m2

2 �m
2
3 � 2:5� 10�3 eV2:

(4.22)

For the mixing angles emerging from the neutrino mass
matrix one finds 
�12 ’ 35:3�, 
�23 ’ 39:4�, and 
�13 ’ 3:2�.
By including the effect of the diagonalization of the
charged lepton mass matrix as obtained in Sec. III, the
neutrino mixing angles and the CP violating phase �l
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(appearing in the neutrino oscillation amplitude) become

 
12 ’ 34�; 
23 ’ 43�; 
13 ’ 6:3�; �l ’ 67�:

(4.23)

The angles and the phase are given according to the stan-
dard parametrization. These mixing angles together with
the mass squared differences (4.22) are in perfect agree-
ment with global fits to neutrino oscillation data [13].
These results are very satisfactory. For the neutrino less
double �-decay parameter one finds

 jhm��ij ’ 0:046 eV: (4.24)

We note that there is not much freedom within this E6

model to get larger or smaller values for the neutrino
masses or the 0�2�-decay parameter, or to change the
neutrino hierarchy. We already observed that Ff2;3g, the
mass of the heavy third generation right-handed neutrino
turned out to be amazingly close toMI, the point where the
electroweak gauge couplings of the standard model meet.

As a consequence, we know now, at least approximately,
the masses and mixings of all heavy fermions. A direct
diagonalization of the 15� 15 neutral lepton mass matrix
reveals, in particular, that the two lightest of the right-
handed neutrinos (i.e. the first generation) turn out to
have masses of only 	 700 GeV. This is caused by the
super strong hierarchy valid for these particles. On the
other hand, the masses of the first generation of
heavy quarks and heavy SU�2�L leptons are much larger
( 	 108 GeV). We also find that the neutrino mixing ma-
trix for the light neutrinos is not strictly unitary. The light
neutrinos mix to about 2% with the neutral leptons L1

1 and
L2

2. The two lightest of the heavy neutrinos (a combination
of the first generations of �̂ � L3

2 and L3
3) mix with an

amplitude of about 8� 10�7 with the first generation of
the light neutrinos. These heavy neutrinos could be de-
tected by their decay to the Higgs field �Hu�11 [from the
SU�2�L doublet ��Hu�11; �H

u�12�] and a light neutrino pro-
vided the mass of the Higgs field �Hu�11 lies below the
heavy neutrino masses. If not, they can decay intoW and Z
gauge bosons and a light lepton via the mixings given
above.

Our phenomenological treatment gives a clear picture of
the spectrum and mixings of the standard model fermions
and of their heavy E6 partners. A quantitative fit reproduc-
ing all known properties of the standard model charged and
neutral fermions could be performed. Several not yet mea-
sured quantities are predicted. However, the model is still
incomplete, because an understanding of the scalar sector,
in particular, of the vacuum expectation values of the E6

Higgs fields, is not yet achieved.

V. SUMMARY

In this work we have addressed the problem of fermion
masses and mixings. We took the gauge group E6 for grand
unification augmented with the generation symmetry
SO�3�g � Pg. The fermion fields of the standard model
are taken to be in the �27; 3;�� representation of E6 �

SO�3�g � Pg. The scalar fields transforming under the
generation symmetry obtain vacuum expectation values
by a complete spontaneous symmetry breaking. The cor-
responding values provide for the hierarchy of the fermi-
ons, for their mixings and CP violation. The generation
mixings occur in conjunction with the SU�3�U-spin mix-
ing of the standard model fermions with their heavy part-
ners. To have a renormalizable model we had to introduce
heavy Dirac fields. Integrating them out led to a very strong
hierarchy of the right handed heavy neutrinos with impor-
tant consequences for the light neutrino properties. The
onset of the intermediate symmetry SU�3�L � SU�3�R �
SU�3�c occurs at the well-known meeting point of the
electroweak gauge couplings of the standard model. This
scale determines the masses of the heavy neutrinos and
turns out to be in full accord with the measured mass
splittings of the light neutrinos. Also the formation of the
Yukawa coupling matrices determining the fermion hier-
archies can happen at this scale. Our model needs only few
fit parameters to reproduce all known masses and mixing
properties of the fermions. Because of the unique use of the
up quark hierarchy G and the antisymmetric mixing ma-
trix A for quarks, charged leptons, and neutrinos, the mix-
ing in the quark sector determines the masses, the
splittings, and the main part of the mixings in the neutrino
sector. We obtain for the light neutrinos the inverted hier-
archy and—for the unrenormalized case—bimaximal
mixing. Taking renormalization group effects and the mix-
ings coming from the charged lepton sector into account
and by adjusting the small parameter xA, the slight change
to the experimentally observed mixing angles can be
achieved. The entire spectrum of light and heavy fermions
can be estimated. The two light neutrinos with ‘‘solar mass
splitting’’ have masses ’ 0:06 eV, while the lightest one
weighs ’ 0:04 eV. The angle 
13 is predicted to be 	 6�.
The CP-violating phase �l appearing in neutrino oscilla-
tions is large, around 70�. For the parameter relevant for
neutrino less double �-decays we find ’ 0:046 eV. The
two lightest members of the heavy neutrinos have a sur-
prisingly low mass of about 700 GeV. The neutrino mixing
matrix is not fully unitary, mixings to some high mass
states have a magnitude of about 2%.
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APPENDIX A: GAUGE COUPLING UNIFICATION
AND RENORMALIZATION OF FLAVOR

MATRICES

1. Gauge coupling unification

In the previous section we have fixed the field contents
of the fermion sector which are nonsinglets under E6 and
contribute to the gauge coupling running. Also, scalar
representations play an important role. In this section we
will give the full list of fields appearing at appropriate
energy scales. This allows to study gauge coupling uni-
fication and to examine whether or not perturbativity is
kept up to the MPl ’ 2:4� 1018 GeV (the reduced Planck
mass).

We assumed that the scales e3
3 and 	3

2 are both equal to
MI=g2�MI� (at MI the couplings g1 and g2 meet). Below
this scale the field content consists of the three fermion
generations of the standard model together with two Higgs
doublets. One light (up type) Higgs doublet hu �
��Hu�11; �H

u�21� comes from Hu��3; 3; 1� and has the VEV
h�Hu�11i � e1

1. The second one, the down type Higgs dou-
blet hd � ��Hd�12; �H

d�22�, emerges from Hd��3; 3; 1� with
the VEV h�Hd�22i � 	2

2. Therefore, below the scale MI,
the b-factors relevant for the gauge coupling constants
g1, g2, g3 affected by these states are:

 �b1; b2; b3� �

�
21
5 ;�3;�7

�
: (A1)

In addition, there are extraD and L fermion states from the
27� fermion representation. Their masses have the scales
MI��

4; �2; 1�. The corresponding b-factors valid for each
generation of D’s and L’s are

 �b1; b2; b3�
D � � 4

15; 0;
2
3�; �b1; b2; b3�

L � �25;
2
3; 0�;

(A2)

contributing at different scales. Above MI, all components
of 27� can be considered light. Together with these, there
are ‘‘light’’ Hu��3; 3; 1� and Hd��3; 3; 1� scalars. The
b-factors corresponding to all these states are

 �bL; bR; bC�MI � ��4;�4;�5�: (A3)

Moreover, at the scale M [the masses of the states F��27�,
�F���27�] which we identify with MI, the RG b-factors

receive the additions bFi � �12; 12; 12�. Between the scales
MI and MGUT we have L$ R (D-symmetry) which in-
sures the equality gL��� � gR���. It starts at MI, the
meeting point of g1 and g2. At some scaleM6 (MI <M6 <
MGUT) the scalar states (6, 3, 1), ��3; �6; 1� [arising from
HA�351�] have to come in. We take them with the common
mass M6. The leptonic states from F0�, �F�

0
�LF0 � �L �F0 ��

are also assumed to have masses below the GUT scale. For
convenience (see the discussion below) we will take their
masses equal to M6. All states with mass M6 are important
for the successful gauge coupling unification. The corre-
sponding b-factors are

 �bL; bR; bC�
6 � �19

2 ;
19
2 ; 0�: (A4)

By taking M6 � 3:47� 1016 GeV unification is com-
pleted at MGUT � 2:8� 1017 GeV. The mass scale M6

has been chosen in such a way as to insure the perturba-
tivity of the unified gauge coupling �GUT up to the Planck
scale MPl. The plot which shows the unification of the
gauge couplings is given in Fig. 1. It has a ‘‘Concorde’’
shape pretty similar to the one first obtained in Ref. [5]. For
the case considered here we have

 MI ’ 1:27� 1013 GeV; M6 ’ 3:47� 1016 GeV;

MGUT ’ 2:8� 1017 GeV; ��1
GUT�MGUT� ’ 24:1:

(A5)

At and above MGUT we include, together with the states
mentioned above, the remaining states of F0��27�, �F�0��27�
in order to complete the E6 states. Together with all E6

gauge bosons, the complete E6 scalar multiplets H�27�,
~H�27�, and HA�351�, also the scalar field H�650� is taken
into account. The role of the 650-multiplet is to break E6

down to G333 at the scale MGUT. The b-factor aboveMGUT,
corresponding to all these states, is bE6

� 63. With this
input we can evolve the E6 unified gauge coupling above
MGUT and compute its value at the Planck mass:

 ��1
GUT�MPl� � ��1

GUT�MGUT� �
63

2

ln
MPl

MGUT
: (A6)

With the values of MGUT and �GUT�MGUT� given in (A5)
we find from (A6) �GUT�MPl�=4
 ’ 0:03 (which may be
viewed as an effective loop expansion parameter). It is seen
that within our approach the gauge couplings remain per-
turbative up to the Planck scale.

2. Flavor coupling renormalization

Let us start with the renormalization of the top, bottom,
and tau Yukawa couplings. They are generated at the scale
h�33i ’ MI after integrating out the states F, �F. In order to
have RG stability in the neutrino sector we need to have a
rather small value for the � coupling constant ��. This is
satisfied because of the small value of z. In a notation
appropriate for the G333 symmetry, the Yukawa interaction
involving the G matrices reads

 GQQQLQRHu��3; 3; 1� � zGQQQLQRHd��3; 3; 1�

� 1
2zG

LLLLHd��3; 3; 1�: (A7)

Since the up type quark masses are generated by e1
1 � Hu

and the down type and charged lepton masses through
	2

2 � Hd, we have

 �t � �G
QQ�33; �b � z�GQQ�33; �� � z�GLL�33:

(A8)

We estimated zGeê ’ 0:02 in (3.20) using 	2
2 ’ 76 GeV.

Thus, RG effects for �� and �b are small and the only
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strong scale dependence below MI occurs for �t. For a
detailed description we will now use the appropriate nota-
tion for all Yukawa couplings. Namely, e1

1G! e1
1G

uû,
z	2

2G! z	2
2�G

dd̂; Ge�e��, f2
2A! f2

2A
dd̂ etc, and

�Guû�33 � �t, z�Gdd̂�33 � �b, z�Ge�e��33 � ��, �Add̂�23 �

i�dd̂A =2, etc.
In the charged lepton sector we had already fixed some

Yukawa couplings and products of Yukawa couplings with
the corresponding VEVs. The values for �t, �b, and �� are

 �t�MZ� � 1:30; �b�MZ� ’ 4� 10�2;

���MZ� ’ 2� 10�2:
(A9)

The Yukawa coupling in front of the matrices A is
defined according to

 A � i
0 � ��
�� 0 1=2
� �1=2 0

0
@

1
A�A: (A10)

In our estimates we take for all �A’s the same value,
however.

In our model in which the mixing of E6 flavors is a
U-spin mixing effect, one can expect that the VEV’s of 	2

2,
f2

3, and g2
3 which appear at the weak scale have roughly the

same magnitude. This implies using (3.19) and the discus-
sion at the end of Sec. III 	2

2 ’ g
2
3 ’ 76 GeV. Together with

the fit values quoted in (3.9) and (3.16) all VEV’s encoun-
tered are known at least approximately. Using �DD̂ 	
�L �L 	 1 and �A � 1 we exhibit them here all together:

 e1
1 � 131:5 GeV; f2

2 ’ �0:23 GeV;

g2
2 ’ �0:19 GeV; f2

3 ’ 39 GeV;

g2
3 � 	2

2 ’ 76 GeV;
f3

2

e3
3

�
g3

2

e3
3

’ 4:16� 10�6:

(A11)

It is important that the couplings �b and �� are small in this
scenario. It implies that their RG dependence can be
ignored. We could select �A ’ 1 because in the RG treat-
ment at scales below MI this coupling does not explicitly
enter. The reason is that the scalar states (6, 3, 1) and
��6; �3; 1� decouple already at the higher scale M6 and thus
cannot appear in appropriate loops. The only renormaliza-
tion effects relevant below the scale MI are due to �t and
the gauge couplings g1;2;3. The renormalization of the
flavor matrices is performed in the following paragraph
taking this fact into account.

The flavor matrices G and A as introduced in Sec. I did
not include RG effects. We start with the study of the
renormalization of the G matrices which are generated at
the scaleMI. At this point the spacing of different channels
(i.e. uû, dd̂, e�e�, etc.) is universal. We suggested for the
splitting equal spacing between first and second and be-
tween second and third generations (1.2). At the scale MZ,
however, for different channels different RG factors

emerge affecting the spacings. The G-couplings can be
divided into two groups. One group corresponds to cou-
plings involving Hu

27. The second group corresponds to
couplings involving Hd

27. At MZ they are split as follows:
GHu ! �Guû; GDD̂; GL �L�, zGHd ! z�Gdd̂; Ge�e� ; � � �� (we
will keep only those quantities which are relevant for us).
Our aim is to calculate the relative factors between appro-
priate entries in these matrices. The relative RG factors
between the 3rd generation components of Guû, Gdd̂, and
Ge�e� are described by the coupling constants �t, �b, ��.
However, different generations have different Yukawa in-
teractions. Because we can take z 	 0:02 all Yukawa cou-
plings involving this prefactor do not participate in the
change of the spacings. With the boundary condition that
all G-couplings at MI have the form (1.2), one gets at the
scale MZ
 

Guû

�t
�MZ� � Diag�r�1

t �4; r�1
t �2; 1�;

Gdd̂

�b
�MZ� � Diag�r�1=3

t �4; r�1=3
t �2; 1�;

Ge�e�

��
�MZ� � Diag��4; �2; 1�;

GDD̂

�D
�MZ� � Diag��D1 �

4; �D2 �
2; 1�;

GL �L

�L
�MZ� � Diag��L1�

4; �L2�
2; 1�:

(A12)

The appropriate RG factors are
 

rt � exp
�
�

1

16
2

Z t3

tZ

3

2
�2
t dt

�
;

�D1 � exp
�

1

16
2

Z t3

t1

�
2

5
g2

1 � 8g2
3

�
dt
�
;

�D2 � exp
�

1

16
2

Z t3

t2

�
2

5
g2

1 � 8g2
3

�
dt
�
;

�L1 � exp
�

1

16
2

Z t3

t1

�
9

10
g2

1 �
9

2
g2

2

�
dt
�
;

�L2 � exp
�

1

16
2

Z t3

t2

�
9

10
g2

1 �
9

2
g2

2

�
dt
�
;

with t � ln�; tz � lnMZ; ti � ln�i;

�1 � MI�
4; �2 � MI�

2; �3 � MI:

(A13)

In GDD̂ and in GL �L the renormalization factors are due to
gauge interactions. The reason is that the heavy states MDi

andMLi decouple at different scales. Below the decoupling
scale the mass of the corresponding state ‘‘freezes’’ out and
does not run, and the leg in the diagram involving the
decoupled state will not be ‘‘dressed’’ by the loop.

Now we turn to the RG of the A couplings: At low
energies instead of one A matrix we are dealing in general

GENERATION SYMMETRY AND E6 UNIFICATION PHYSICAL REVIEW D 77, 076009 (2008)

076009-13



with six A matrices: A! �Add̂; AdD̂; ADd̂; Ae
�e� ; Ae

�E� ;
AE

�e��. The superscripts indicate the channels they couple
to. Compared to the G couplings, the A matrices are
formed at relatively high scales. These matrices are the
only source for generation mixing, but through loop dia-
grams involving the scalar states H6

A�6; 3; 1� and
H �6
A�

�6; �3; 1�, these matrices could nevertheless induce off
diagonal entries into the G matrices. However, if the latter
states are already decoupled when the A matrices are
formed, the corresponding loops will not contribute to
renormalization. This is one of the reasons why we take
the masses of the LF0 � �L �F0 states equal to M6. It insures
that in the lepton sector nondiagonal A couplings do not
influence the G matrices through loop effects. The A
matrices corresponding to the quark channels are formed
at the GUT scale keeping the model intact since quarks do
not couple with H6

A, H �6
A.

For the renormalization of the A matrices the relevant
energy range isMZ �MI where theGmatrices are already
formed (above the scale MI the matrices A do not change
their structural form). Only the coupling �t is relevant.
Since only the quarks q3 � �u; d�3 are connected with �t,
solely the (3, 2) elements of the matrices Add̂ and AdD̂ will
pick up relative RG factors. The spacing of the other
entries and of the remaining A matrices will remain un-
changed. Therefore, we have at the scale MZ
 

Add̂

�dd̂A
�
AdD̂

�dD̂A
� i

0 � ��

�� 0 1=2

� ��A=2 0

0
BB@

1
CCA;

with �A � r�1=3
t

and

 

ADd̂

�Dd̂A
�
Ae

�e�

�e
�e�
A

�
Ae

�E�

�e
�E�
A

�
AE

�e�

�E
�e�
A

� i
0 � ��
�� 0 1=2
� �1=2 0

0
@

1
A: (A14)

The numerical values of the RG factors appearing above
are

 rt � 0:717; �A � 1:117; �D1 � 1:299;

�D2 � 1:127; �L1 � 1:137; �L2 � 1:066:
(A15)

These coefficients are used in the analysis of the charged
fermion mass matrices in Sec. III.

Finally, using the above results, we are able to fix the
values of the SM singlet VEVs

 e3
3 �

MI

g2�MI�
’ 2:27� 1013 GeV;

f3
2 � g3

2 � 9:5� 107 GeV:

(A16)

On the other hand, from the neutrino sector (see Sec. IV)
we have

 

Ff2;3g � xg
�e1

1�
2

m
’ 1:8� 1013 GeV;

Ff3;3g � xg�F
f2;3g ’ 6:6� 1011 GeV;

FA � xA
�5

�A
Ff2;3g 	 �3:3� 105 GeV:

(A17)

We recall that by integrating out the N, ~N states, we found
for the mass scales in (A17)

 Ff2;3g �
�N ~�N
MN

e3
3	

3
2; Ff3;3g � �z

�N ~�N
MN

�e3
3�

2 (A18)

(the couplings �N , ~�N come from the vertices �NFHyN,
~�NF ~Hy ~N). The comparison of (A16) with (A17) allows
the estimate

 

MN

�N ~�N
’ 2:9� 1013 GeV;

� ze3
3 �

Ff3;3g

Ff2;3g
	3

2 ’ 8:5� 1011 GeV:

(A19)

One recognizes again the importance of the scale MI �
g2�MI�e

3
3 for the heavy fermions and, in particular, for the

right-handed neutrinos.
The VEV configuration discussed here is consistent with

the charged fermion sector as well as the neutral lepton
sector. The following picture of the symmetry breaking of
our grand unified model emerges: In a first step E6 is
broken by anH�650� scalar field. It reduces E6 to the group
G333 � SU�3�L � SU�3�R � SU�3�C. At MI � g2�MI�e

3
3

the G333 symmetry breaks down to the SM. The role of
H�650� fields is important for the phenomenology. These
fields include the G333 singlet S��1; 1; 1� state. The VEV
hS�i � MGUT=gGUT gives the breaking E6 ! G333 in such
a way that the L� R symmetry D is unbroken at high
energies. This way a self-consistent gauge coupling uni-
fication is guaranteed. The additional SM singlet VEVs are
much smaller than e3

3. They are important for the fermion
sector. The leading role for the electroweak symmetry
breaking is played by the VEVs e1

1, 	2
2, g2

3, and f2
3. The

remaining electroweak VEVs (f2
2, g2

2) are small but still
relevant for the light fermion masses and their mixings.

APPENDIX B: NEUTRINO MASS MATRIX
RENORMALIZATION

We need to define m� at the scale MZ. To calculate the
corresponding renormalization effects it is convenient to
consider the combination �UT��1m�U

�1 taking (4.12),
(4.13), and (4.14) into account. Without RG effects this
matrix has the form
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 �UT��1m�U
�1 �

� �i i
�i �� 2xA �i �2 � xA
i �i �2 � xA �

0
B@

1
CA �m:

(B1)

In order to compute the RG factors we recall the origin of
each entry in (B1). Let us start with the �m entries in the
diagonal part. The elements (1, 1), (2, 2), and (3, 3) emerge
from dimension five (d � 5) operators at different scales
(at Ff2;3g�8, Ff2;3g�4, and Ff2;3g, respectively) by integrat-
ing out the appropriate states of L3

2, L3
3 (this can be seen

from Fig. 4(a)]. Above the corresponding scale only the
Dirac Yukawa couplings run. After the formation of the
effective dimension five operators, i.e. below the corre-
sponding scale, new RG factors are relevant. They describe
the running of couplings of d � 5 operators which are
different from the running of the square of the Dirac
Yukawa couplings. Therefore, relative (mismatching) RG
factors between different entries have to be applied. In
order to calculate these RG factors, we need to go through
the entire energy interval considering the appropriate
thresholds. After performing these procedures stepwise
from MI down to MZ the diagonal �m entries at MZ can
be parametrized as follows:

 �m�1� r1�; �m�1� r2�; and �m; (B2)

where the RG factors r1;2 are given by

 

r1 � exp
�

1

16
2

Z t33

t11

�
3

2
g2

2 �
9

10
g2

1

�
dt
�
� 1;

r2 � exp
�

1

16
2

Z t33

t22

�
3

2
g2

2 �
9

10
g2

1

�
dt
�
� 1

with tii � ln�ii; �11 � Ff2;3g�8;

�22 � Ff2;3g�4; �33 � Ff2;3g

(B3)

(when RG effects are ignored these factors are zero and the
diagonal �m part of the matrix (B1) is a unit matrix in
flavor space). In the parametrization of (B2) we did not
write any RG factor for the third term �m because an
overall factor can be absorbed by the parameter � (or the
scale m). Only the relative RG factors given in (B3) are
needed.

Considering now the remaining entries of m�, it is easy
to verify that the (1, 2), (1, 3) elements together with the
2mxA and mxA entries of (2, 2) and (2, 3) are formed at the
same scales after the subsequent integration of the heavy
neutral states (this can be seen from the second and third
terms of (4.9) and the corresponding diagram in Fig. 4(b)].
Therefore, no relative RG factors between these entries
will appear. The only additional factor occurs for the
�im�

2 term in the (2, 3) and (3, 2) elements. We can
parametrize this term at the scale MZ by �im�

2 r23. The
RG factor r23 can be calculated from the equation

 r23 � exp
�
�

1

16
2

Z t22

t11

�
3

2
g2

2 �
9

10
g2

1

�
dt
�
: (B4)

Taking all RG factors into account, the matrix (B1) at
MZ takes the form

 �UT��1m�U
�1j��MZ

�

��1� r1� �i i
�i ��1� r2� � 2xA �i �2 r23 � xA
i �i �2 r23 � xA �

0
B@

1
CA �m: (B5)

Finally, one obtains the neutrino mass matrix at the scale � � MZ as shown by Eq. (4.18).
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