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In this work, we compile the necessary and sufficient conditions a theory has to fulfill in order to ensure
general lepton flavor conservation, in the spirit of the Glashow-Weinberg criteria for the absence of flavor-
changing neutral currents. At tree-level, interactions involving electrically neutral and doubly charged
bosons are investigated. We also investigate flavor changes at 1-loop level. In all cases we find that the
essential theoretical requirements can be reduced to a few basic conditions on the particle content and the
coupling matrices. For 1-loop diagrams, we also investigate how exactly a GIM-suppression can occur
that will strongly reduce the rates of lepton flavor violating effects even if they are in principle present in a
certain theory. In all chapters, we apply our criteria to several models which can in general induce lepton
flavor violation, e.g. LR-symmetric models or the minimal supersymmetric standard model (MSSM) In
the end we give a summarizing table of the obtained results, thereby demonstrating the applicability of our
criteria to a large class of models beyond the standard model.
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I. INTRODUCTION

In the last decades, it has been shown that the standard
model (SM) of elementary particle physics is an excellent
description of physics up to the energy scales, we have
been able to probe so far. Furthermore, it has predicted
several particles which then indeed have been discovered,
among them the neutral Z-boson [1] and the t-quark [2].
The only missing building block is the predicted neutral
Higgs boson, but even that is expected to be discovered in
the near future at high-energy particle colliders such as the
upcoming LHC experiment [3]. However, the SM also has
several problems and cannot explain all phenomena: e.g. it
provides no candidate particle for the observed dark matter
in the Universe [4], it has no explanation for the obvious
baryon asymmetry [5], and provides no mechanism for
stabilizing the Higgs mass against radiative corrections
[6]. Apart from the gauge symmetries, the SM also con-
serves several quantum numbers more or less by accident,
among them lepton number and furthermore lepton flavor.
As the conservation of lepton flavor is not in fact an
integral part of the SM, it is often lost in popular exten-
sions, designed to address, among others, the problems
mentioned above. They then predict lepton flavor violating
processes such as �! e� or �� ! e�e�e� (which are
perfectly allowed by energy and charge conservation).
Because of this, impressive experimental activities have
been undertaken to detect such processes: Some current
experimental limits are BR��! e��< 1:2� 10�11

(MEGA experiment, Ref. [7]), BR��! 3e�< 1:0�
10�12 (SINDRUM experiment, Ref. [8]), or BR��Ti !
eTi�< 4:3� 10�12 (SINDRUM II experiment, Ref. [9]).1

The bound for the first branching ratio will be improved in
the near future: The upcoming MEG experiment is ex-
pected to reach a sensitivity of 1:2� 10�13 at 90% C.L.
and a single event sensitivity of even 3:7� 10�14 [11].

So far, however, only upper limits for the branching
ratios of these processes can be given. If one tries to
parametrize the bounds for their rates, the corresponding
numerical coefficients are already quite small [12].
Especially if MEG does not observe any lepton flavor
violating decays, this leads to the question, whether lepton
flavor conservation (at least at the tree- or 1-loop level)
needs to be imposed as a general condition on extensions of
the SM. It is our aim in this paper to give such criteria, i.e.
to determine sufficient and necessary conditions for the
conservation of lepton flavor in a general theory, which
incorporates the SM. By giving necessary conditions for
lepton flavor conservation, our results can also be applied if
MEG does in fact observe lepton flavor violating decays:
As lepton flavor violation occurs in many extensions of the
SM, no single theory can be considered to be proven by
such results. By applying the criteria developed in this
work, one can determine what exactly is necessary to
obtain lepton flavor violating processes, and what a mini-
mal lepton flavor violating extension of the SM must
contain.

Actually, lepton flavor violating processes have already
been observed, in neutrino oscillation experiments (see e.g.
Ref. [13]). However, even if one incorporates these results
into the SM, by allowing for massive neutrinos and off-
diagonal elements in the leptonic mixing matrix UPMNS

(the Pontecorvo-Maki-Nakagawa-Sakata matrix), the most
optimistic prediction (using a neutrino mass of�1 eV) for
BR��! e�� will roughly be 10�47 [14], making a detec-
tion impossible. This is because there is another mecha-
nism at work here, the GIM-mechanism, well known from
flavor-changing processes among quarks. So, when con-
sidering whether lepton flavor (among charged leptons) is
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conserved in a given theory, we also consider the possibil-
ity of lepton flavor being violated but all relevant processes
being GIM-suppressed, as this is the most efficient known
mechanism for suppressing such decays.

The groundbreaking work on flavour-changing neutral
currents (FCNCs) was done by Glashow and Weinberg
[15], already in the late 70’s. This paper only dealt with
flavor violation in the quark sector, and of course at that
time, it was e.g. not known how many quark flavors indeed
exist in our world, and the exact structure of the weak
interaction was unknown as well. Another interesting work
on this topic was done by Paschos [16]. An application of
their criteria to leptons was performed shortly afterwards
by Lee and Shrock [17]. In the light of the development of
particle physics within the last three decades, we believe it
is worth reconsidering such criteria for flavor violation,
which we do herewith for the leptonic sector. Our basic
idea is that we give general conditions necessary for lepton
flavor violation (LFV) not to occur. If these conditions are
not fulfilled it will—in general—be possible to have LFV-
processes, assuming that there are no accidental cancella-
tions or further suppressions in the theory. Many of our
results are known, or at least often used implicitly, how-
ever, no concise overview of these criteria and their con-
sistent application to different extensions of the standard
model is currently available.

We will only investigate renormalizable interactions and
do not consider higher-dimensional operators, since in a
nonrenormalizable theory explicit lepton flavor violating
operators, such as

 

1

�2
� ��e�� �ee�; (1)

where � is the energy scale at which lepton flavor is
violated, can be simply added to the Lagrangian. In addi-
tion to the general criteria, we investigate in each section
several examples and use our general criteria to give con-
crete conditions for the parameters in the respective
models.

We start in Sec. II with lepton FCNCs and present the
criteria for the absence of lepton FCNCs for scalar and
vector bosons as mediators of a flavor change (FC). These
criteria can also be applied to quarks. In Sec. III, we then
turn to doubly charged exchange bosons. Such particles do
not appear in the SM but naturally arise in several theories
beyond the standard model (BSM theories). After that, in
Sec. IV, we show that it is also easy to find general criteria
for the absence or occurrence of lepton flavor violation at
1-loop level and for a possible GIM-suppression. In each
section we give some examples by investigating concrete
models in which our general conditions turn out to be
applicable. We finally give a summary of our results and
conclude in Sec. V. Notations and conventions we have
used are listed in the appendix.

II. LEPTON FLAVOR-CHANGING NEUTRAL
CURRENTS AT TREE-LEVEL

In general, a neutral current interaction that changes the
flavor of a fermion fi (we here speak of general fermions,
as the results of this general section can also be applied to
quarks) can be mediated by a neutral scalar or a neutral
vector boson that couples to a fermion fi as well as to a
fermion fj with a different flavor index j � i. Writing
down the most general Lagrangians for both cases, the
scalar interaction looks like

 L scalar � Sf�CLP L � CRP R�f� H:c:; (2)

and the vector interaction has the form

 L vector � V�f�
��CLP L � CRP R�f; (3)

where f � �f1; f2; . . . ; fN�T is a vector and CL and CR are
numerical coefficients (matrices), all in flavor space.

Following the procedure given in the appendix, the
vector f can be rotated from the interaction eigenstate
into the mass eigenstate f0 via a transformation matrix U
according to f � Uf0 which is, in general, not the same for
left- and right-handed fermions. Now the question is, how
the interaction terms Eqs. (2) and (3) look if one transforms
the interaction eigenstates f into the corresponding mass
eigenstates f0:

S) S is a neutral scalar by assumption, hence we can
define it as real by absorbing any phase in the coupling
matrices. In the flavor space vector notation, the scalar
interaction as written in Eq. (2) can be simplified giving
 

Lscalar � Sf�CLP L�CRP R�f�H:c:

� S�fRCLfL� fLCRfR� �H:c:

� SfR �CL�C
y
R	|������{z������}


C

fL�H:c:� SfRCfL�H:c:; (4)

where C is a matrix in flavor space.
The transformation to mass eigenstates leads to fR;L �
f0R;LU

y
R;L (cf. the appendix) and the scalar interaction looks

like:

 L scalar � SfRCfL � H:c: � Sf0RU
y
RCULf0L � H:c: (5)

Thereby the condition for complete flavor conservation is

 UyR�CL � C
y
R	UL�

!
diagonal: (6)

This condition can be understood as demanding, that the
interaction basis is the same as the mass basis. We will
refer to such basis identities as alignment. For the neutral
scalars considered here, CL and CR can simultaneously be
nonzero. To incorporate this interaction into a SM-
invariant Lagrangian, the corresponding neutral scalar
needs to be a component of an SU�2�L doublet with hy-
percharge 1 or�1, that is a copy of the SM Higgs boson or
its charge conjugate (with the possible difference of a CP
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phase—e.g. for the A of a two-Higgs doublet model this
phase is just �1).

V) Here, we discuss a neutral intermediate vector boson
which can again be defined as real. If it can only couple to
left-handed fermions it must be the T3 � 0 component of
an SU�2�L triplet, i.e. a (massive) copy of the SM W0. If it
couples to both left- and right-handed charged leptons it
must be an SU�2� singlet, in fact a total singlet under the
SM gauge group, that is a (massive) copy of the SM B0. A
vector that only couples to right-handed charged leptons is
also a total singlet under the SM gauge group, i.e. the fact
that it does not couple to left-handed charged leptons needs
to be explained in the full BSM theory. The interaction
Lagrangian is

 L vector � V�f�
��CLP L � CRP R�f

� V��fL��CLfL � fR��CRfR	

� V��f0L�
��UyLCLUL�f0L � f

0
R�

��UyRCRUR�f0R	;

(7)

whereCL andCR are necessarily Hermitian. To forbid tree-
level flavor change, one can demand:

 UyLCLUL�
!

diagonal; UyRCRUR�
!

diagonal: (8)

A special case arises if both coefficients, CL and CR, are
proportional to a unit matrix 1F in flavor space:

 CL � cL � 1F and CR � cR � 1F: (9)

This is the flavor universality condition, as fulfilled e.g. for
the neutral weak and electromagnetic interactions in the
SM. In that case, one gets natural flavor conservation due
to the unitarity of the transformation matrices. In case of
flavor universality, alignment is automatic, as the identity
matrix is the same in all bases. Flavor universality was not
an option in the scalar case, as the scalar interaction con-
nects different fermion fields. Note that flavor universality
has to hold for all charged leptons including possible
further generations. This is why new vectorlike generations
always lead to tree-level LFV.
As the only renormalizable theories of vector bosons are
gauge theories [18], in general we need to consider these
hypothetical, additional vector bosons as gauge particles
corresponding to broken generators of some gauge group.
Additional vector bosons transforming as an SU�2�L triplet
therefore must be the gauge bosons of gauge group which
is broken down to SU�2�L at some high-energy scale. The
minimal model in which this is possible uses an SU�2� �
SU�2� gauge group, which is then broken down to its
diagonal subgroup SU�2�L. None of the models we discuss
introduce such vector bosons; they are however a possible
extension of the SM.

We have found that there are only three kinds of neutral
particles which can transmit tree-level LFV:

S) A copy of the SM Higgs boson (or its conjugate), with

an interaction basis different from the mass basis.
Va) A massive copy of the SM photon with flavor

nonuniversal couplings that may or may not discriminate
between left- and right-handed particles (which is often
called Z0).

Vb) A copy of the SM Z boson, which is the gauge boson
of a gauge group, that is broken down to SU�2�L.

In the following we discuss the SM and several of its
extensions, applying the criteria we have obtained. We do
not explicitly mention the cases which are equivalent to the
SM case when discussing BSM models. In the following
we switch to denoting the involved flavored fermions by e
as most of the results are only applicable to charged
leptons. e � �e;�; ��T still denotes a vector in flavor space,
as mentioned in the appendix.

Obviously, such particles do not just mediate LFV-
decays of charged leptons, but their decays themselves
also violate lepton flavor (see e.g. Ref. [19] for scalar
decays).

A. The standard model

Standard model: lepton flavor conservation

As none of the necessary particles are present in the
standard model of elementary particle physics, we expect
no lepton FCNCs at all at tree-level, as we know is the case.
To illustrate why this is true and what is exactly ‘‘missing’’
in the SM, we give a short discussion. The only neutral
scalar in the SM is the usual Higgs boson H0, while for
neutral vectors, one has the photon �, the Z0 of weak
interactions, as well as the gluons Ga from QCD. Hence,
the following possibilities remain:

S) The only neutral scalar in the SM is the HiggsH0. The
SM fermions receive their mass from their coupling to the
Higgs field, when this field acquires a nonvanishing vac-
uum expectation value. Therefore the interaction basis and
the mass basis e0 � �e0; �0; �0�T coincide. Hence the align-
ment condition is automatically fulfilled, without further
restriction of the parameters and the standard model has no
neutral scalar interaction that could cause flavor noncon-
servation at tree-level.

Vab) Under the SM gauge groups all charged leptons in
the SM have the same transformation properties. Their
interactions with the SM gauge bosons are therefore flavor
universal, which leads directly to the absence of tree-level
LFV, as discussed above. We have assumed this flavor
universality of the SM interactions in our general discus-
sion and thereby reached the conclusions, that neutral
vector bosons with lepton flavor violating couplings must
be gauge bosons of a broken symmetry, unrelated to the
SM gauge symmetries.

We have here implicitly retrieved the original Glashow-
Weinberg criteria [15]: Criteria 1 and 2 can be understood
as demanding flavor universality in the electroweak inter-
actions, while criterion 3 can be reformulated as demand-
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ing automatic alignment in the Yukawa sector, which is
guaranteed if all fermions receive their mass from one
scalar vacuum expectation value (VEV) only.

B. Multi-Higgs doublet models

Multi-Higgs models: 8 k: ~Ck�
!

diagonal

As we have seen, there are no lepton FCNCs in the SM.
The simplest extensions of the SM are those, where we
simply add particles to the SM spectrum. Of the three types
of particles which can transmit tree-level lepton FCNCs, a
copy of the SM Higgs is the easiest one to add, as it does
not require an extension of the SM gauge group. If we add
an arbitrary amount of copies of the Higgs boson to the
SM, our model is called for obvious reasons a multi-Higgs
doublet model. It is simplest to add only one Higgs bo-
son—this is then referred to as a two-Higgs doublet model
(THDM) [20]. A nice treatment of the cases of three and
more then three Higgs doublets can be found in
Refs. [21,22], respectively. Pseudoscalar Higgses are dis-
cussed in Ref. [23].

S) We can in principle add an arbitrary amount n of
additional Higgs doublets to the SM particle spectrum.
These will in general have arbitrary Yukawa couplings to
the fermions. The Yukawa Lagrangian for the neutral
scalars and charged leptons will therefore be

 L �
X2n�1

k�1

Hke0RCke
0
L � H:c:; (10)

as we have a total of (2n� 2) neutral scalar degrees of
freedom (including pseudoscalars), of which one is eaten
by the Z-boson. One linear combination of all theseHk will
have the couplings of the SM Higgs, but this linear combi-
nation does not necessarily need to be a mass eigenstate,
i.e. it will include several different k. There is in general no
basis where all the Ck’s are diagonal, so we consider the
above Lagrangian to be written in the mass basis. The
condition for absence of tree-level FCNCs is then

 Ck�
!

diagonal; (11)

for all but one k in the mass basis. The last matrix is then
automatically diagonal, since we know that one linear
combination must be diagonal in the mass basis. This
condition leads to well-known constraints such as the
two-Higgs doublet models I and II, where an additional
Z2 symmetry is imposed, as first discussed in Ref. [15].
Our more general condition for the absence of tree-level
FCNCs given above can be rephrased in the following way:
We write the Lagrangian in its explicitly SU�2�L invariant
form,

 L �
Xn�1

k�1

e0R Ykl
0
L�k � H:c:; (12)

where l0L is the left-handed lepton SU�2�L doublet, �k is a
copy of the SM Higgs doublet, and we are in the mass basis
of the charged leptons. Then Ck is diagonal for all k if and
only if Yk is diagonal for all k, that is all Yukawa matrices
are diagonal in the mass basis. In an arbitrary basis, this
means that given the structure of one Yukawa matrix Yk, all
other Yukawa matrices are defined, except for their eigen-
values. So, if we want to forbid tree-level FCNCs, the only
new parameter in the Yukawa sector compared to the SM
is, for each pair of Higgs boson and fermion, the fraction of
the fermion’s mass which is generated by the Higgs bo-
son’s VEV.

In summary, one can say that the alignment which
occurs automatically in the SM is lost in Multi-Higgs
models and must be separately postulated to exclude
tree-level LFV.

C. Z0-models

Z0-models: UyL�
0�L�UL�

!
diagonal and UyR�

0�R�UR�
!

diagonal

Z0-type models are also just a very moderate modifica-
tion of the standard model. The general idea is the intro-
duction of an additional flavor nonuniversal gauge
interaction, as opposed to the interactions of the SM, which
are flavorblind. The easiest example to consider is the case
of one additional gauge boson, corresponding to a new
Abelian gauge symmetry U�1�0 [24]. Of course, this may
lead to further complications, such as gauge anomalies and
the necessity for additional scalars which break U�1�0.
However, since we here only concentrate on the lepton
flavor violation sector for SM charged leptons, we assume
these things to be taken care of.

Information on the decays of such vectors using an
effective Lagrangian approach is given in Ref. [25].

From our three cases, only Va) is of relevance:
Va) One introduces a gauged non-SM symmetry U�1�0,

under which at least two generations of charged leptons
with identical chirality have different charges. This leads to
a change in the gauge-covariant derivative, creating an
interaction term in the Lagrangian of the form:

 L � �g0e����0�L�P L � �0�R�P R	eZ0�: (13)

Here, g0 is the corresponding coupling constant for the
Z0-interaction and the charges are absorbed in the coupling
matrices. Compared to Eq. (7), we have V� � Z0� and real
matrices CL;R � �0�L;R�, adopting the notation of [24]. The
actual vector boson mass eigenstate can in general be a
superposition of electroweak and non-SM gauge bosons.
Flavor violating couplings can now arise when going to the
leptonic mass eigenbasis, if the interactions are flavor
nonuniversal. We start in the eigenbasis of the
Z0-interaction and hence, the couplings are diagonal.
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Then, the coupling matrices are given by �0�L;R�ij �

�0�L;R�i �ij, which is flavor nonuniversal, as long as the

�0�L;R�i ’s are not equal. Let UL and UR denote the unitary
matrices that transform the 3-vectors eL;R in flavor space
into their mass eigenstates, e0L;R � UyL;ReL;R. For the
Z0-interaction, the Lagrangian then looks like:

 L � �g0e0���UyL�
0�L�ULP L �U

y
R�
0�R�URP R	e

0Z0�:

(14)

The conditions for flavor conservation are

 UyL�
0�L�UL�

!
diagonal and UyR�

0�R�UR�
!

diagonal.

(15)

We can understand these conditions in the following
way: If a gauge interaction is no longer flavor universal,
the automatic alignment associated with flavor universality
is lost, and we need to demand alignment to conserve
lepton flavor.

D. The 331-model

331-model: UyLhsUR�
!

diagonal

In the next two sections, we briefly discuss two further
extensions of the SM gauge group. Such theories in general
lead to additional vector bosons from the extended gauge
groups and additional scalars needed to break them down
to the SM. The 331-model is one possible extension of the
SM, extending the gauge group to SU�3�C � SU�3�L �
U�1�X, which is then broken to the SM gauge group [26].

S) To break the extended gauge group and give realistic
masses to all fermions, three Higgs SU�3�L-triplets (�, �,
and �0) are needed, together with one sextet H.
Decomposed into SM representations, we are left with
three copies of the SM Higgs, of which only two couple
to leptons: �0

1, which is part of the�-triplet and �0
3, which

is part of the sextet H. In the lepton sector, one is thereby
dealing with an effective THDM. In the notation of [26],
the Yukawa interaction for charged leptons is

 L � �eL��
0
3hs ��0

1ha�eR � H:c:

� �e0LU
y
L��

0
3hs ��0

1ha�URe
0
R � H:c:; (16)

where hs is a symmetric and ha is an antisymmetric 3�
3-matrix in flavor space. As in a THDM, one linear combi-
nation of these coupling matrices will always be diagonal
in the mass basis, so we only need to demand

 UyLhsUR�
!

diagonal (17)

to prevent tree-level LFV. It should also be noted that, in
the 331-model, flavor-changing processes via additional
neutral scalars are suppressed due to the smallness of the
Yukawa couplings [27].

Va) To cancel the appearing anomalies, one has to
choose one generation of quarks (the third one) to have a
transformation behavior different from the other two. The
corresponding flavor-changing gauge boson is called Z0

and transforms as a SM singlet. No such flavor nonuniver-
sality is present in the lepton sector, however, and therefore
no tree-level LFV can occur. However, the nonunversality
in the quark sector can be translated into the lepton sector
by higher order diagrams having an effect on the decays of
the corresponding vector boson [28].

E. LR-symmetric models

LR-symmetric models: UyLfUR�
!

diagonal

Another possible extension of the SM gauge group are
Left-Right (LR)-symmetric models [29,30] with an elec-
troweak gauge group SU�2�L � SU�2�R �U�1�B�L. Here,
R stands for right, B is the baryon, and L the lepton
number. Then, SU�2�R �U�1�B�L is broken down to
U�1�Y , which gives the SM. Again, we end up with addi-
tional gauge bosons and additional scalars needed to break
the enlarged gauge group.

S) In order to give masses to the SM fermions, one needs
to introduce a Higgs field � transforming as a bi-doublet
under SU�2�L � SU�2�R. Decomposed into SU�2�L this
results in an adjoint Higgs boson in addition to the SM
Higgs. The Yukawa interaction, in the charged lepton mass
eigenbasis, is then, employing the notation of [29]:

 L � �e0LU
y
L�f�0

2 � g�0�
1 �URe

0
R � H:c:; (18)

which is effectively a two-Higgs doublet model.
Comparing with Sec. II B, a sufficient condition for the
absence of lepton FCNCs in LR-symmetric models is

 UyLfUR�
!

diagonal; (19)

as one linear combination of Yukawa coupling matrices
must be diagonal in the mass basis.

Va) All gauge interactions are in general assumed to be
flavor universal, so we will not encounter tree-level LFVs
transmitted by vector bosons.

III. TREE-LEVEL LEPTON FLAVOR CHANGE BY
DOUBLY CHARGED BOSONS

For a singly charged scalar or vector, there will be
external neutrinos, so we will not consider this case, since
we are interested in processes such as �! 3e, where the
flavor violation is present for charged leptons. There is
only one further way different from FCNCs to mediate
such processes already at tree-level, namely, by exchang-
ing doubly charged bosons, where again either scalar or
vector particles can do the job:

S) For a doubly charged scalar, we will have either CL �
0 or CR � 0 (cf. Eq. (4)), because otherwise hypercharge
would not be conserved. For CL � 0, the scalar will be the
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T3 � 1 component of an SU�2�L triplet with hypercharge
Y � 2, i.e. of a triplet Higgs. For CR � 0 the scalar will be
an SU�2�L singlet with hypercharge Y � 4. Obviously, a
given field cannot have both transformation properties. The
Lagrangian reads:

 L scalar � S���fL�
CCLfL � H:c: �

� S���f0L�
CUT

LCLULf
0
L � H:c:; (20)

where L can be replaced with R. Note that if the ‘‘left-
handed Lagrangian’’ given above arises from a triplet
Higgs model designed to give mass to the neutrinos, the
corresponding doubly charged scalar is in general assumed
to be very heavy, giving a further suppression. The condi-
tion for the absence of tree-level flavor-changing diagrams
is

 UT
LCLUL�

!
diagonal; or UT

RCRUR�
!

diagonal; (21)

respectively. We note that in the case of doubly charged
scalars, we connect the same fermion field, and therefore
we could achieve automatic alignment by demanding fla-
vor universality. For this to work, we would, however, need
UL=R to be real.
If these conditions are not fulfilled, one can still fulfill the
above condition by demanding the type of alignment de-
fined by Eq. (21), that is alignment for a real U.

V) We can also have doubly charged intermediate vector
bosons. These will be SU�2�L doublet vector bosons with a
hypercharge of Y � �3. The Lagrangian is
 

Lvector � V��� ��fR�C��CLfL � �fL�C��CRfR	 � H:c:

� V��� ��f0R�
C��UT

RCLULf0L

� �f0L�
C��UT

LCRURf
0
R	 � H:c: (22)

The conditions for the absence of tree-level lepton flavor
violation look like:

 UT
RCLUL�

!
diagonal; UT

LCRUR�
!

diagonal: (23)

Flavor universality is of no advantage in this case, so we
can only demand the type of alignment defined in the
above equation. It is important to note that, apart from
leading to tree-level LFV, all the above cases actually
produce lepton number violating vertices, or, in other
words, the exchange boson has to carry a lepton number.
In this case we can give three distinct types of particles,
which can mediate doubly charged tree-level LFV:

Sa) An SU�2�L triplet with hypercharge 2. This particle
does not couple to right-handed particles and is equivalent
to the triplet Higgs, which is often used for neutrino mass
generation.

Sb) An SU�2�L singlet with hypercharge 4. Of the SM
fields, this particle can only couple to right-handed charged
leptons.

V) An SU�2�L doublet with hypercharge 3. To ensure

renormalizability, we must again demand that this vector is
a gauge boson. Its gauge group must then contain both,
SU�2�L and U�1�Y , as it is charged under both gauge
groups. The smallest gauge group which can contain
SU�2� �U�1� is SU�3�. A simple realization is the 331-
model, where the electroweak gauge group is embedded in
an SU�3� �U�1�.

After electroweak symmetry breaking, scalar particles
of type Sa and Sb can mix.

A. Triplet Higgs models

Triplet Higgs: UPMNS�
!
1 (not fulfilled)

Sa) The simplest models exhibiting tree-level LFV
transmitted by doubly charged bosons are again those,
where the necessary particles are simply added to the
SM. In triplet Higgs models, an SU�2�L scalar triplet
with hypercharge 2 is added to give Majorana masses to
the left-handed neutrinos. To keep the Lagrangian
SU�2�L-invariant this scalar also couples to the left-handed
charged fermions:

 L � S���eL�
CCLeL � H:c:; (24)

which is exactly the Lagrangian of Eq. (20). The interac-
tion basis in which CL is diagonal is that in which the
neutrino Majorana mass matrix is diagonal, i.e. the neu-
trino mass basis. To avoid tree-level LFV, CL should be
diagonal in the charged lepton mass basis, i.e. the neutrino
and charged lepton mass bases must coincide. This would
imply that UPMNS is just the unit matrix, which is excluded
by experiments. We can therefore say that alignment is
experimentally excluded and Triplet Higgs models always
induce tree-level LFV, which is, however, in general
strongly suppressed by the large mass of the scalar
SU�2�L triplet.

B. The 331-model

331-model: UT
LhsUL�

!
diagonal and UT

RhsUR�
!

diagonal (scalars) UT
RUL�

!
diagonal (vectors)

In this model, the nearly minimal extension of the SM
gauge group, that can generate doubly charged gauge
bosons which in turn can mediate LFV, is incorporated.
We also encounter doubly charged scalars. The effects of
such particles have been investigated in the minimal 331-
model [31] as well in its extension with right-handed
neutrinos [32].

Sab) In the 331-model, in general four different doubly
charged scalars arise that can couple to leptons and carry a
lepton number of 2, namely, the T�� and the ��� (note
that in the Higgs triplet �0, another bi-lepton2 exists, ���,

2A bi-lepton is a particle that carries a lepton number of �2.
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which, however, does not couple to leptons and gets its
lepton number assignments via terms in the Higgs potential
that couple e.g. a ��� and a ��� with a T�� and an ���,
cf. Ref. [26]). Their couplings to charged leptons look like:

 L � � 1��
2
p eLhs�eL�CT�� �

1��
2
p �eR�ChseR��� � H:c:;

(25)

where hs was already introduced in Sec. II D. Here, the
T�� is equivalent to the corresponding Sa-particle in a
triplet Higgs model, while the ��� has a hypercharge of 4
and corresponds to the case Sb. In the mass basis, this gives

 L � � 1��
2
p e0L �U

y
LhsU

�
L�|������{z������}

��UT
LhsUL�

y

�e0L�
CT��

� 1��
2
p �e0R�

C�UT
RhsUR�e0R�

�� � H:c:; (26)

from which one can read off the following conditions for
flavor conservation:

 UT
LhsUL�

!
diagonal �Sa�; UT

RhsUR�
!

diagonal �Sa�:

(27)

V) Doubly charged massive vector bosons, Y��� , that get
their masses from the �Y Higgs doublet, also exist in this
model. Their interaction Lagrangian with charged leptons
is given by [33]

 L � �
g���
2
p ��eR�C��eLY��� � H:c:	; (28)

which reads for mass eigenstates

 L � �
g���
2
p �Y��� �e0R�

C���UT
RUL�e0L � H:c:	: (29)

The condition for the absence of flavor change is

 UT
RUL�

!
diagonal: (30)

Because of the fact that this gauge interaction couples left-
and right-handed charged fermion fields, flavor universal-
ity is no longer sufficient for lepton flavor conservation.

C. LR-symmetric models

LR-models: UT
L;RhL;RUL;R�

!
diagonal

Sab) In LR-symmetric models, doubly charged Higgses
H��L;R arise. Their Yukawa couplings are given by [30]

 L � H��L eChLP Le�H
��
R eChRP Re� H:c:

� H��L �eL�
ChLeL �H

��
R �eR�

ChReR � H:c:; (31)

Performing the transformations into mass eigenstates and
using the formulae from the appendix, one obtains:

 L � H��L �e
0
L�

C�UT
LhLUL�e0L � H:c:� �L$ R�: (32)

Hence, the conditions for the absence of flavor change are

 UT
L;RhL;RUL;R�

!
diagonal: (33)

One needs to note here an important difference compared
to neutrino mass generation using only a Higgs triplet: As
neutrinos also have Dirac mass terms, due to the presence
of right-handed neutrinos, the Yukawa couplings to the
Higgs triplet containing H��L need not necessarily be
diagonal in the neutrino mass basis.

IV. FLAVOR CHANGE AT 1-LOOP LEVEL AND
GIM-SUPPRESSION

The general form of the amplitude for �! e� is given
in Ref. [14]. One of the results obtained there is that a
chirality flip has to take place during the process, i.e. the
final electron must have the opposite chirality of the in-
coming muon. This result is obtained without making any
assumptions on the masses of the leptons involved, so that
it trivially generalizes to arbitrary flavors and the process
ei ! ek�. For our purposes the only interesting question is
whether this chirality flip happens on one of the external
fermion lines, or arises as net effect of the loop.3 In the first
case the 1-loop diagram takes the following schematic
form (type A: LL, type B: RR):

Note that this is only very schematic and does not contain
several things: First of all, the outgoing photon is missing,
that can in general couple either to the internal boson b or
to the internal fermion f. The diagrams with photons
connected to external particles exactly cancel, as discussed
in Ref. [14]. This result is again independent of the small-
ness of the electron mass and hence generalizes to arbitrary
flavors. As we are dealing with leptons of the same chi-
rality at both vertices, we also have the same coupling
constants (or matrices, in case several distinct particles
can appear in the loop) at both vertices. We adopt the
general convention that P denotes a coupling matrix in-
volving left-handed leptons, while Q denotes a coupling
matrix involving right-handed leptons. We will also in the
following refer to diagrams of the above type, i.e. with an
implicit external helicity flip, as diagrams of type A, if they
have external left-handed leptons, and as diagrams of type
B if they have external right-handed leptons.

3A nice treatment of flavor-changing loop diagrams can be
found in Ref. [34].
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There is now also the possibility of having the chirality
flip as net effect of the loop. The 1-loop LFV diagram then
takes the following schematic form (type C):

Again, we have omitted the outgoing photon, as it can
couple to either of the internal lines. The chirality flip is
now explicitly shown, as a cross on the internal fermion
line. We will refer to such diagrams as diagrams of type C.
We do not distinguish according to the chirality of the
incoming lepton, as in general, if a process where the
helicity flips from left to right is possible, the reverse
process will be possible as well.

Let us now try to order the conditions under which a
flavor change does not occur: First of all, one needs exactly
one fermion and one boson in the loop, to ensure Lorentz
invariance. In general this means that we will have one
spin- 1

2 fermion and either a scalar or a vector boson in the
loop, as no renormalizable theories for particles with a
higher spin are known. Furthermore, SM leptons only carry
charge of the gauge groups SU�2�L and U�1�Y . Hence, this
must also be the case for the particle pair in the loop. The
internal fermion f may carry e.g. a color charge under
SU�3�C (or any other ‘‘exotic’’ charge in a theory beyond
the SM), as long as this can be compensated by the corre-
sponding internal boson b, so that they form a singlet under
every gauge group except SU�2�L �U�1�Y (� possible
other groups under which the charged leptons are no
singlets). Therefore, another sufficient condition for the
absence of flavor change at 1-loop level is

 b � f 6� 1 �under one gauge group except SU�2�L

�U�1�Y�: (34)

These are the obvious criteria for the absence of flavor
change. The question remains, what more subtle conditions
can be found. Let us consider the three cases we discussed
above:

(A) External flip, left-handed charged lepton at both
vertices:
In this case we have, at both vertices, a lepton which
is the T3 � �

1
2 component of an SU�2�L doublet

and has hypercharge Y � �1. As the photon does
not carry away any of these quantum numbers, the
tensor product of the internal particles must mimic
the transformation properties of the left-handed SM
lepton, i.e. b � f � �2L; Y � �1�. If no pair of
boson and fermion exists with these transformation
properties, diagrams of type A are forbidden.

(B) External flip, right-handed charged lepton at both
vertices:
Here, the situation is similar to the former case, with

the only difference that the leptons at each vertex
are now right-handed. Accordingly, the quantum
numbers of the internal particles must (at both
vertices) fulfill b � f � �1L; Y � �2�.

(C) Internal flip:
At first sight, this situation seems to be much less
straightforward than the other two. At one vertex
(the one involving a left-handed external lepton) the
boson and the fermion must fulfill the conditions of
type A, at the other vertex they must fulfill the
conditions of type B. This is naturally only possible
after electroweak symmetry breaking. The differ-
ence in quantum numbers can only be brought about
by a coupling to the Higgs VEV. This can corre-
spond to the mass insertion in the diagram. In that
case, the mass insertion serves a double purpose:
Inducing the necessary chirality flip and the neces-
sary change in quantum numbers. The chirality flip
and the quantum number change can, however, also
be independent of each other, that is if the Higgs
VEV couples to the boson line, e.g. through a
dimension three term. All we definitely need is a
coupling to the VEVof the SM Higgs somewhere in
the loop.
We conclude, that for diagrams of type C to occur, a
theory needs a boson and a fermion which fulfill the
condition for type A diagrams and another boson-
fermion pair that fulfills the condition for type B
diagrams. After electroweak symmetry breaking, a
superposition of the two fermions gives the mass
eigenstate f which appears in the diagram, while a
superposition of the two bosons gives the mass
eigenstate b. Hence, one can say in general, that
diagrams of type C are allowed only if both dia-
grams of type A and of type B are allowed. Note
that this condition is necessary, but not sufficient:
The mixing of the relevant fermions and bosons is
another necessary condition for diagrams of type C
to occur.

Realizing that these are really the only cases that matter,
a third sufficient condition for the absence of flavor change
at 1-loop level is

 8 b; f : b � f 6� �2L; Y � �1� and

b � f 6� �1L; Y � �2�:
(35)

Loop diagrams of the type discussed above even arise in
the standard model with neutrino masses. They are, how-
ever, strongly suppressed by the GIM-mechanism [35],
which we will generalize in the following.

Let b and f be the two particles in the loop. Now let
there be m copies of b and n copies of f, where copies
means that they differ only by their mass. Let ei denote as
before the SM charged leptons. We need to make no
assumptions concerning the number of generations, but
we assume 3 generations for simplicity. To produce all

ALEXANDER BLUM AND ALEXANDER MERLE PHYSICAL REVIEW D 77, 076005 (2008)

076005-8



the above loop diagrams, the Lagrangian must contain the
term

 bA�eL�iPiAjfj � bA�eR�iQiAjfj � H:c: (36)

For a fixed A, the PiAj and QiAj are in general 3�
n-matrices, while for a fixed j they are 3�m-matrices.
As they cannot necessarily be diagonalized, since they do
not even need to be square matrices, we assume the above
term to be written in the mass basis of the SM fermions, the
bA, and the fj.

This interaction now in general leads to 1-loop flavor-
changing diagrams. By a GIM-mechanism, we understand
a cancellation of these diagrams, such that the matrix

 �ik � ��ei ! ek�� (37)

is approximately diagonal. If it were exactly diagonal, this
would imply that the matrices PiAj and QiAj have at most
one nonzero entry per column (both for fixed A and fixed
j). This means explicit conservation of lepton flavor in the
interaction, or equivalently that we can assign a specific
lepton flavor number to any given boson-fermion pair bA
and fj. Through unitary transformations, any matrices PiAj
and QiAj can be brought to such a form, where they have at
most one nonzero entry per column. If they have this form
in the respective mass bases of the involved particles, it is
another incidence of basis alignment.

The GIM-mechanism, however, means that we can ex-
pand �ik in some small parameter and the zeroth order
coefficient in this expansion is diagonal. This is a slight
deviation from our method up until now, as we have so far
only considered explicit lepton flavor conservation.
However, as this is the mechanism which suppresses
LFV in the SM with non-seesaw neutrino masses, and as
it relies heavily on the flavor structure of a given model, we
find that it is necessary to discuss it here.

We give the discussion for left-handed (Qij � 0) and
fermionic (fixed A � A0, with bA0

� b) GIM, where the
summation runs over all possible internal fermions fj. This
is the case in the SM, with b being the W-boson, and the fj
being the light massive neutrinos. It is then straightforward
to generalize both to the case of bosonic GIM and to the
case of both right-handed and left-handed leptons taking
part in the process, i.e.Qij � 0. The partial decay width for
the decay ei ! ek� in the case of left-handed fermionic
GIM is [36]:

 �ik �
�m2

i �m
2
k�

3

16	m3
i

���������
Xn
j�1

PijP
y
jkF�mi;mk;mfj ; mb�

��������
2
�
:

(38)

To now obtain the desired result, that is �ik being approxi-
mately diagonal, we need two conditions to be fulfilled.
First, we need

 PPy �
!

diagonal (39)

and second

 F�mi;mk;mfj ; mb� � F�mi;mk;mfj0
; mb�

8 j; j0 2 f1; . . . ; ng and j � j0:
(40)

This condition is necessary, so that in a first approximation
F can be taken out of the sum and we can use the first
condition to diagonalize �. It can be considered as a
condition demanding approximate mass degeneracy.
What approximate mass degeneracy exactly means is, of
course, ill-defined. The light neutrinos, for example, are
not necessarily approximately degenerate in mass, how-
ever, their relative mass differences are small compared to
other mass scales in the amplitude, such as the W-boson
mass, because their absolute mass scale is small. We will
not enter further into this discussion, as it is not connected
to our main focus, the flavor structure and the particle
content of models. It is, however, important to keep in
mind, that, apart from the flavor structure, this approximate
mass degeneracy is a necessary condition for the GIM-
mechanism to work and thereby for the suppression of 1-
loop LFV.

Let us also consider the first condition in some more
detail. By singular value decomposition, we can write

 P � UP0Vy; (41)

where U is a 3� 3 unitary matrix, V is n� n and also
unitary, and P0 is a ‘‘diagonal’’ 3� n-matrix, that is its
only nonzero entries are P011, P022, and P033. Our first con-
dition can then be rewritten as

 UP0P0yUy �
!

diagonal: (42)

Our first observation is that the basis change for the fermi-
ons in the loop, given by the matrix V, drops out. This is in
keeping with the second condition, as for exactly degener-
ate masses, there would be no uniquely defined mass basis
anyhow. Second, we observe that P0P0y is, of course,
diagonal. So, we are again faced with two possibilities:
One is that the basis changeU defined by Eq. (41) is trivial,
that is the mass basis of the charged leptons coincides with
the interaction basis, another case of alignment. The other
possibility is that P0P0y is in fact the unit matrix, in which
case the above condition is automatically fulfilled—this is
the 1-loop equivalent of flavor universality, as the interac-
tion leading to the loop-diagram needs to be just that—
flavor universal.

The generalization is then straightforward. In the case of
the most general interaction, Eq. (37), we need to demand

 PPy �
!

diagonal; QQy �
!

diagonal;

PQy �
!

diagonal
(43)

in the mass basis, where the matrix multiplication is to be
understood in such a way that in each case we either keep A
or j fixed.
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A noteworthy special case is when f � e—the above
condition will then automatically be fulfilled if there is no
tree-level LFV (where we assign a separate lepton flavor
number to each generation), that is if P and Q are diagonal
in the mass basis.

The SM with neutrino masses only has GIM-suppressed
LFV. In the following discussion, we will not only check
for the presence of loop-level LFV, but we will also discuss
whether they are GIM-suppressed in the general sense we
just have defined.

A. The standard model

Standard model: Diagram A (f � 
L and b � W�� ) and
PPy � UyPMNSUPMNS � 1 (GIM)

The only possibility for a 1-loop level lepton flavor
violation like �! e� in the SM (with massive neutrinos)
is diagram A with b being a W�, which also emits the
photon, and with f being a neutrino, as will be shown.

The corresponding interaction Lagrangian looks like
[37]:

 L � �
e0���

2
p

sin�W
W�� eL��
L � H:c:

� �
e0���

2
p

sin�W
W�� e0L�

�UyPMNS

0
L � H:c: (44)

Now let us go through our criteria: We know that W� �
�3L; Y � 0� and 
L � �2L; Y � �1� with 
L � 
0L, while
they are singlets under all other gauge groups in the SM
(which is just SU�3�C). Hence, also the second sufficient
condition for the absence of flavor change is not fulfilled.
Now, in SU�2�, it holds that 3 � 2 � 2 ��4�, so the left-
handed neutrino can serve as f, since also the hypercharge
balance, namely Y�W�� � Y�
L� � 0� 1 � �1, turns
out to be the right one. Hence there exists, as expected,
lepton flavor violation in the SM, since the mixing matrix
Py � UPMNS is not diagonal. So in the SM, neutrino mix-
ing directly leads to processes like �! e� at loop-level.

However, the same mixing matrix also leads to GIM-
suppression: Since UPMNS is unitary, PPy �
UyPMNSUPMNS � 1 and hence trivially diagonal, which ex-
actly fulfills our condition, Eq. (43). This is, of course,
again due to the fact that the weak interaction is flavor
universal. As already mentioned, the condition of approxi-
mate mass degeneracy is also fulfilled due to the smallness
of the absolute neutrino mass scale.

B. Multi-Higgs models

Multi-Higgs models: A (f � 
R or 
Mheavy and b � H�k ),

GIM for PkP
y
k�

!
diagonal;

B (f � 
L or 
Mlight and b � H�k ), GIM for QkQ
y
k �

diagonal;

C (f � 
Dirac or b � H�k ), GIM for

QkU
y
PMNSP

y
k�

!
diagonal

If we have tree-level LFV in a multi-Higgs model, we
can easily obtain LFVat the 1-loop level by connecting two
of the external arms of the tree-level diagram with a mass
insertion, giving a diagram of type C. This mass insertion
can then also be moved to the two external arms giving
diagrams of type A and B. This is a generic statement in
models where tree-level LFV is present, so we will not
further consider the case of neutral scalars and charged
leptons in the loop.

We, however, also can get additional contributions with
a charged scalar and a neutrino in the loop. If we do not add
right-handed neutrinos to the model, the Lagrangian will
contain one relevant interaction, the SU�2�-counterterm to
the interaction given in Sec. II B,

 L �
Xn
k�1

H�k e
0
RQk
L � H:c: (45)

Formulated using the general conditions, we have that the
additional Higgs bosons transform as �2L; Y � �1� and

L � �2L; Y � �1�, and again they are color singlets,
thereby not satisfying the second sufficient condition for
the absence of LFV. Taking the product of the representa-
tions, we find that �2L; Y � �1� � �2L; Y � �1� �
�1L; Y � �2����3L; Y � �2�	, allowing for diagrams of
type B, with f � 
L and b � H�k . As indicated in
Eq. (45) we will have n negatively charged scalars: Out
of the (2n� 2) charged degrees of freedom, half are nega-
tive, one of which is eaten by the W�. This implies that in
the mass basis no linear combination of Qk is necessarily
diagonal, as that linear combination for neutral scalars
corresponds to the eaten scalar in the charged case. As
the mass eigenstates of the charged scalars do not neces-
sarily coincide with those of the neutral scalars, the Qk and
the Ck of Sec. II B (cf. Eq. (10)) are in general not equal.
They are, however, related, since if the original Yukawa
coupling matrices Yl are diagonal for all l, then bothCk and
Qk are diagonal for all k.

This interaction is written in the charged lepton mass
basis. This does not coincide with the neutrino mass basis,
as we know from the fact that the PMNS-matrix is not
diagonal. If we rotate the neutrinos to their mass basis, the
interaction reads:

 L �
Xn
k�1

H�k e
0
RQkU

y
PMNS


0
L � H:c: (46)

So we find that our coupling matrix QkU
y
PMNS is not

diagonal, that is diagrams of type B are allowed, even if
tree-level LFV is forbidden. The condition for GIM-
suppression then reads:

 QkU
y
PMNSUPMNSQ

y
k � QkQ

y
k �

!
diagonal: (47)
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This means that, if tree-level LFV is forbidden, and thereby
Qk is diagonal, these processes will always be GIM-
suppressed. As in the SM this is also due to the fact that
the absolute mass scale of the light neutrinos is small
compared to the mass of scalars.

If we add three right-handed neutrinos to the model,
there are two possibilities: One can either write down a
Majorana mass term for the right-handed neutrinos and
apply the type I seesaw mechanism or one can consider
neutrinos as Dirac particles.

In the first case, the mass eigenstates will be Majorana
particles, a superposition of left-handed and right-handed
neutrinos. We will write these as 
Mlight for the predomi-
nantly left-handed light neutrinos and as 
Mheavy for the
predominantly right-handed heavy neutrinos. As we have
so far always assumed a unitary PMNS-matrix, i.e. a
‘‘perfect’’ seesaw, we will assume that the light neutrinos
are purely left-handed and the heavy ones are purely right-
handed.4 We then still have the interaction of Eq. (46) with

0L replaced by 
Mlight and the same conditions for LFV and
GIM-suppression in diagrams of type B. The right-handed
or heavy neutrinos transform as total singlets under the SM
gauge groups, so that the product of their representation
with that of the Higgs bosons is �2L; Y � �1�, allowing for
diagrams of type A, with f � 
Mheavy and b � H�k .

The corresponding couplings are then the Yukawa cou-
plings which give the neutrinos their Dirac mass:

 L �
Xn
k�1

H�k e
0
LPk


M
heavy � H:c: (48)

As the matrices Pk play no role for tree-level LFV, we
make no further assumptions concerning their form.
However one needs to pay close attention in which basis
the above interaction is written: We have chosen the basis
in which the charged lepton and the right-handed neutrino
Majorana matrices are diagonal. If we had written the
interaction in another basis, one would here also have to
introduce a PMNS-type matrix, as was the case for the light
neutrinos. LFV processes will then occur if Pk is not
diagonal and the condition for GIM-suppression is then
simply

 PkP
y
k �

!
diagonal: (49)

This GIM-suppression, of course, demands that the heavy
neutrinos are approximately degenerate in mass. Such
processes, however, are strongly suppressed anyway, as
the heavy neutrinos decouple in the seesaw limit. Even
though diagrams of type A and B are allowed, no diagrams
of type C can be generated for Majorana neutrinos, as the
necessary condition that the fermions of diagrams A and B

mix after electroweak symmetry breaking is not fulfilled in
the seesaw limit.

Things are different for the case of Dirac neutrinos. One
again has the interactions of Eqs. (46) and (48), where

Mheavy must be replaced by 
0R, the right-handed neutrinos
in the neutrino mass basis. This means diagrams of type A
and type B can occur under the same conditions as above.
As left- and right-handed neutrinos mix in this case to form
a Dirac fermion after electroweak symmetry breaking,
diagrams of type C are now also possible, if either
QkU

y
PMNS or Pk is not diagonal. As we assume no tree-

level LFV, QkU
y
PMNS is automatically nondiagonal and

such processes can occur. The condition for GIM-
suppression is then

 QkU
y
PMNSP

y
k �

!
diagonal: (50)

We reach the conclusion that if tree-level LFV is forbidden
in a multi-Higgs model, then 1-loop LFV including left-
handed neutrinos will always be GIM-suppressed.
Observable LFV therefore necessitates the introduction
of right-handed neutrinos. As these will approximately
decouple in the Majorana case, only Dirac neutrinos lead
to observable 1-loop LFV processes. A GIM-suppression
of such processes could then only be brought about by
demanding the alignment conditions of Eqs. (49) and (50).

Further works that consider LFV in multi-Higgs models
are Refs. [22,23].

C. Universal extra dimensions

Universal extra dimensions: A (f � 
L�n� and b �
W���n�), as for SM (GIM);

A (f � 
R�n� and b � a�
�n�), where P � UyPMNScR and

PPy / 1 (GIM);
B (f � 
L�n� and b � a��n�), where Q � UyPMNS and

cLQQ
y / diag�m2

e; m
2
�;m

2
�� (GIM);

C (f � 
R=L�n� and b � a��n�), PQ
y / diag�me;m�;m��

(GIM)

A different type of models where lepton flavor violation
can occur are theories with extra spatial dimensions. There
is a huge variety of them—we will only be considering the
Appelquist-Cheng-Dobrescu (ACD) model [39], which is
also often called universal extra dimensions (UEDs). A key
feature of this model is that the particles of the SM propa-
gate in all 5 dimensions, where the 5th dimension is
compactified.

We adopt the notation of Ref. [40]. In this model, there
are then two types of particles that can play the role of the
boson b. First of all we have the vector bosons W�

�n�, where
n denotes the Kaluza-Klein (KK)-number. These KK-
modes of the W-boson transform in the same way as the
zero mode, which is just the SM W, under all SM gauge
groups. Hence, we know from Sec. IVA that a particle

4Limits on the nonunitarity of the PMNS-matrix are consid-
ered in Ref. [38].
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transforming as a left-handed neutrino can here be used as
the fermion f. UEDs lead to an additional symmetry which
needs to be conserved, the conservation of the KK-number
n. To ensure that the particles in the loop form a total
singlet under all non-SM symmetries, we need to demand
that the neutrinolike particle in the loop has the same KK-
number as does the boson. Therefore the only particle that
can here play the role of f is the nth KK-mode of the
neutrino, 
�n�. Otherwise, nothing changes compared to the
SM with massive neutrinos: Diagrams of type A will be
allowed and GIM-suppression will always occur due to the
unitarity of UPMNS. The nth KK-mode of a given neutrino

i will have mass m2

�n� � m2
i �

n2

R2 , where mi is the zero-
mode mass of the neutrino and R is the compactification
radius of the extra dimension. Hence, the mass degeneracy
is even more explicit here, as the mass differences of
neutrino KK-modes are small compared to their mass,
which is approximately n

R .
UEDs also lead to scalars that can take the part of b: The

higher KK-modes of the charged and pseudoscalar Higgs
fields are not entirely eaten by the corresponding vector
bosons, they also mix with the 5th component of those
vector bosons to form physical scalars, both charged (a�

�n�)
and neutral (a0

�n�). As these scalars transform as the SM
Higgs, they can form a loop with particles transforming as
neutrinos or as charged leptons, as discussed in Sec. IV B.
Again, we need to observe conservation of KK-number, so
f can only be 
�n� or the nth KK-mode of the charged
lepton, e�n�, respectively. So, we will have the same types
of diagrams as in a multi-Higgs model, with the particles in
the loop replaced by their higher KK-modes. As opposed to
a multi-Higgs model, the additional scalars can be consid-
ered as excitations of the same particle, and therefore all
couple in the same way. They will, however, couple differ-
ently from the SM Higgs, as they also have a gauge boson
contribution. All gauge interactions, however, remain fla-
vor universal, so we find, for the coupling of left-handed
charged leptons to e�n� and a0

�n�:

 P / �Ye � flavor universal contributions�: (51)

For the coupling of the right-handed charged leptons we
have no further complications from gauge interactions and
the coupling matrices Q will just be proportional to the
regular charged lepton Yukawa couplings Ye. One can then
see that all coupling matrices are diagonal in the charged
lepton mass basis, which is also the mass basis for the KK-
modes e�n�, and we therefore have no LFV for diagrams
with e�n� in the loop.

For neutrino KK-modes in the loop, we obtain the
Lagrangian [41]

 L � �
g2n���

2
p
MW�n�

�
R�n�cRe0L � 
L�n�cLe
0
R	a

�
�n� � H:c:

(52)

 

� �
g2n���

2
p
MW�n�

�
0R�n�U
y
PMNScRe

0
L � 


0
L�n�U

y
PMNScLe

0
R	a

�
�n�

� H:c:; (53)

with cL � diag�me;m�;m�� and cR � MW � 1. Note that
in principle there can be a correction to cR coming from the
neutrino Yukawa coupling matrix, but we will assume
neutrinos to be purely Dirac. In that case their masses are
negligible compared toMW and can be ignored in Eq. (53).
For comments on different methods of neutrinos mass
generation and their effect on LFV, see Sec. IV B. The
right-handed neutrinos in Eq. (53) are KK-modes of the
left-handed neutrino and so arise independently of the
origin of neutrino mass. We find that the relevant coupling
matrices P and Q are both the product of a flavor-diagonal
matrix and the nondiagonal, unitary UPMNS. We therefore
can construct LFV diagrams of all types; all such processes
will, however, be GIM-suppressed, as the mass degeneracy
of the 
�n� is again explicit. See Ref. [41] for a discussion of
the effect of summing over a large number of GIM-
suppressed amplitudes.

D. The minimal supersymmetric standard model

MSSM� 
R:
A (f � �~��=0

A;R �
0 and b � ~
0=~e0), where P � �C=N�R�l�A ,

and PPy � diagonal (GIM);
B (f � �~��=0

A;L �
0 and b � ~
0=~e0), where Q � �C=N�L�l�A ,

and QQy � diagonal (GIM);
C (f � �~��=0

A �0 and b � ~
0=~e0), where PQy � diagonal
(GIM)

The MSSM itself can only lead to 1-loop LFV diagrams,
since all tree-level vertices are forbidden due to R-parity
conservation. The discussion is somewhat similar to that of
Sec. IV C, as we again take the diagrams of the SM and
multi-Higgs models, and replace the particles in the loop
by other particles which transform in the same way under
the SM gauge groups, thereby delegating a large part of the
discussion concerning the general LFV conditions to
Secs. IVA and IV B. In the case of the MSSM, the particles
in the loop will be replaced by their superpartners, thereby
also ensuring that there is always one boson and one
fermion in the loop.

We begin by considering the supersymmetric analogon
of the LFV diagrams with neutrinos in the loop. The
neutrinos will be replaced by sneutrinos, which are then
the bosons in the loop, b � ~
. In the MSSM, the LFV
diagrams with a W in the loop (Sec. IVA) and with a
charged Higgs scalar in the loop (Sec. IV B—they arise
as the MSSM is a THDM) are both replaced by diagrams
with charginos, which are then the fermions in the loop,
f � ~��A (A � 1, 2). This is because the two ~��L ’s are
superpositions of the gaugino ~W�L (superpartner of the
W) and the Higgsino ~H�uL (superpartner of one Higgs
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boson), and conversely the two ~��R ’s are superpositions of
~W�R and ~H�dR. The sneutrinos will be massive, even if the

neutrinos are not, due to soft SUSY breaking, so we do not
need to worry about the origin of neutrino mass. The
sneutrino mass basis need not coincide with that of the
charged leptons and we expect LFV to occur. The interac-
tion Lagrangian is5

 

Lchargino �
X2

A�1

e0L C
R�l�
A �~�

�
A;R�

0~
0 � e0RC
L�l�
A �~�

�
A;L�

0~
0

� H:c: (54)

Here, all fields (also the bosonic ones) are written as mass
eigenstates, and CR=L�l�A denotes the coupling matrix of the
right- and left-handed chargino �~��A;R=L�

0, respectively, to
the charged leptons e and the sneutrino mass eigenstates ~
0.
The CR=L�l�A are thereby 3� 3-matrices. These matrices
contain all rotations to mass eigenstates, for the left- and
right-handed charginos as well as for the sneutrinos. For
diagram A, one then needs f � �~��A;R�

0, and P � CR�l�A has
to be nondiagonal. Diagram B is possible with f � �~��A;L�

0,

and Q � CL�l�A nondiagonal, and diagram C with f flipping
from �~��A;L�

0 to �~��A;R�
0, or vice versa, with the same P and

Q as before. If all CR=L�l�A turn out to be diagonal there is no
LFV at 1-loop level—this is, of course, a case of align-
ment, a term which actually appears to originate from the
supersymmetric case [44]. If the CR=L�l�A are not diagonal,
there is still the possibility of GIM-suppression, for which
the conditions are

 CR�l�A CR�l�yA �
!

diagonal �A�; (55)

 CL�l�A CL�l�yA �
!

diagonal �B�; (56)

 CR�l�A CL�l�yA �
!

diagonal �C�: (57)

These conditions are in fact always fulfilled: Since the
chargino is a superposition of Higgsino and wino, we
need to invoke the natural alignment of mass and
Yukawa interaction basis as well as the flavor universality
of the weak interaction. LFV only arises due to the non-
trivial, unitary transformations to mass eigenstates. The
critical question is therefore the approximate mass degen-
eracy, which can be achieved by giving approximately
universal soft masses to the sneutrinos. Their mass differ-
ences, corresponding to the mass differences of the neu-
trinos, then become negligible. This is commonly referred
to as the super-GIM mechanism [45] and is in fact covered
by the generalized GIM-mechanism.

In general, LFV diagrams with charged leptons in the
loop are only allowed if tree-level LFV is also allowed

(cf. Sec. IV B). As the KK-modes of the charged leptons
necessarily have the same mass basis as the charged lep-
tons themselves, the ‘‘partner’’ diagrams for UEDs also did
not lead to LFV (cf. Sec. IV C). Things are different in the
MSSM, as the superpartners of the charged leptons, the
charged sleptons ~e, do not necessarily have the same mass
basis, because their mass also arises from soft SUSY
breaking terms. Basis alignment can be achieved by im-
posing conditions on the soft SUSY breaking terms, such
as the popular mSUGRA boundary conditions, but in
general one can construct diagrams with charged sleptons
in the loop taking the role of b. The part of f is then taken
by a superposition of the superpartners of the neutral
electroweak gauge bosons and the neutral Higgs bosons.
The mass eigenstates are the neutralinos ~�0

A (A � 1; . . . ; 4),
where the �0

A is a superposition of the bino ~B, the neutral
wino ~W0, and the two neutral Higgsinos ~H0

u and ~H0
d). The

corresponding interaction Lagrangian is
 

Lneutralino �
X4

A�1

e0L N
R�l�
A �~�

0
A;R�

0~e0 � e0RN
L�l�
A �~�

0
A;L�

0~e0

� H:c:; (58)

where the matrices NR=L�l�
A now contain the rotations of

� ~B; ~W0; ~H0
u; ~H0

d�
T to mass eigenstates ��~�0

1�
0; . . . ; �~�0

4�
0�T for

both cases, R and L, and the rotations of the charged
sleptons to mass eigenstates, too. The cases that can appear
here are completely analogous to the ones for charginos,
just with �~���0 ! �~�0�0, ~
0 ! ~e0, and C! N for the mix-
ing matrices. The only difference is that there exist four
different neutralinos compared to only two negatively
charged charginos and six charged sleptons, making the
NR=L�l�
A 6� 3-matrices. Again the flavor condition for

GIM-suppression is automatically fulfilled, while the
mass degeneracy can be achieved by approximately uni-
versal soft masses.

V. SUMMARY AND CONCLUSIONS

In this paper, we have given general criteria a theory has
to fulfill in order to avoid or to allow for LFV-processes.
We have found that one can indeed give very simple
conditions that are sufficient for such statements, at least
for tree-level and 1-loop diagrams. These conditions only
refer to the particle content and the flavor structure of the
couplings of a given model.

As first possibility, we have considered the cases of
neutral (Sec. II) and doubly charged exchange bosons
(Sec. III), where the latter ones do not occur in the SM.
We have distinguished between scalar and vector bosons,
and have identified the SM transformation properties of all
particles that could mediate the respective process. We
have discussed how tree-level LFV-processes can be pre-
vented, even in the presence of such particles, by demand-
ing alignment or flavor universality in the flavor structure5For more details, see Refs. [42,43].
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of the couplings. We have attempted to give the conditions
in a concise and easily applicable way. To test their appli-
cability, we then applied our criteria to several models.

In Sec. IV we have investigated how LFV-processes can
occur at 1-loop level, again first determining the necessary
particle content. We also studied the general cases for
GIM-suppressed amplitudes, using a generalization of the
GIM-mechanism. The ideas of alignment and flavor uni-
versality were also generalized to the 1-loop case. We
found that, even if the loop processes look much more

complicated than their tree-level analogues, one can still
narrow down the necessary ingredients for a flavor change
to very simple requirements, for the occurrence of the
processes themselves as well as for a possible GIM-
suppression. Again, we have investigated the situation for
some exemplary models in order to clarify our criteria and
to prove their applicability.

A complete summary of our results can be found in the
summary table on the next page. Notations and conven-
tions we have used are listed in the appendix.

Model Conditions for the Conditions for the absence Conditions for the 1-loop flavor change
absence of tree-level of tree-level FC by doubly absence of 1-loop and GIM-suppression
FCNCs (S/V) charged bosons (Sab/V) flavor change

SM S) aut. Align N/A A: �
L;W�� �, Align excl. A: aut. GIM
Vab) FU

Multi-Higgs S) Align N/A A: �
Mheavy=
R;H
�
k �, Align A: Align, mass deg. for 
Mheavy

B: �
L=
Mlight; H
�
k �, Align excl. B: aut. GIM

C: �
Dirac; H
�
k �, Align excl. C: Align

Z0 Va) Align N/A N/I N/I
Triplet Higgs N/A Sa) Align excl. N/I N/I
331 S) Align Sab) Align N/I N/I

Va) FU V) Align
LR S) Align Sab) Align N/I N/I

Va) FU
UEDs N/A N/A A: �
L�n�; W���n��, Align excl. A, B, C: aut. GIM

A: �
R�n�; a��n��, Align excl.
B: �
L�n�; a��n��, Align excl.
C: �
R=L�n�; a��n��, Align excl.

MSSM� 
R N/A without R-parity N/A A: ��~��=0
A;R �

0; ~
0=~e0�, Align A, B, C: aut. Align, mass deg.
violation B: ��~��=0

A;L �
0; ~
0=~e0�, Align

C: ��~��=0
A �0; ~
0=~e0�, Align

aSummary table of our results. (N/A: not applicable; N/I: not investigated, due to presence at tree-level; aut. Align: alignment is
automatic in this model; Align excl.: alignment is excluded phenomenologically; Align: alignment needs to be imposed; FU: flavor
universality; aut. GIM: all GIM-conditions are automatically fulfilled; mass deg.: mass degeneracy needs to be imposed.)
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APPENDIX: NOTATIONS AND CONVENTIONS

(i) P L;R 

1�5

2 : left- and right-handed projection op-
erator (properties: P 2

L=R � P L=R, P L � P R � 1,
P RP L � P LP R � 0)

(ii) Charge conjugation: �C 
 C� ���T with C � i�2�0

(properties: C�T�C
�1����, C�1��C�CT�

Cy)

(iii) Relations with projection operators (using �y5 �
�T5 � ��5 � �5 and f��; �5g � 0 which leads to
��P L;R � P R;L��):

 P L;R� � �L;R; P L;R�C � ��R;L�
C;

�P L;R � �R;L; �CP L;R � ��L;R�
C:

(iv) Dirac mass terms:
A mass term for a general vector f �
�f1; f2; . . . ; fN�

T of Dirac fermions in an
N-dimensional flavor space is given by

 L Dirac � �fRMDfL � fLM
y
DfR; (59)

whereMD 2 CN�N is an arbitrary matrix in the N �
N flavor space. Hence, it can be diagonalized by a bi-
unitary transformation leading to
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DD � diag�m1; m2; . . . ; mN� � ULM
y
DU

y
R

� URMDU
y
L; with mi > 0; (60)

where UyL;R � U�1
L;R and ULM

y
DMDU

y
L �

URMDM
y
DU

y
R � D2

D.
Hence the transformation of f (which in this work
will—if not differently stated—be an eigenstate of
the respective interaction) to the mass eigenstate f0 is
given by

 fR � URf0R and fL � ULf0L: (61)

(v) Transformations of the eigenstates � of an interac-
tion into the mass eigenstates �0 (viewing � as a
vector in flavor space and keeping in mind that e.g.
�-matrices that act on spinors and hence on the
components of � must commute with a matrix U
in flavor space, since for such a matrix U they only
look like scalars):

 � � U�0; �C � U��0C;

� � �0Uy; �C � �0CUT:

(vi) Relation between vectors in flavor space,
SU�2�-doublets, and spinors: e � �e;�; ��T (compo-
nents are 4-spinors) and l � �
; e�T (components are
vectors in flavor space, whose components are 4-
spinors).

(vii) Convention for the PMNS-matrix: 
 � UyPMNS

0

(the complete mixing happens in the neutrino sector,
as usual).

(viii) Charged lepton quantum numbers
(SU�2�L-representation, weak isospin T3, hyper-
charge Y, electric chargeQ as obtained byQ � T3 �
Y
2 , and �5-eigenvalue):

Particle SU�2�L T3 Y Q �5-EV

eL, �eL�C 2 � 1
2 �1 �1 �1

eR, �eR�C 1 0 �2 �1 1
�eL�

C, eL 2 1
2 1 1 1

�eR�
C, eR 1 0 2 1 �1
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