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We perform a systematic study of dihedral groups used as flavor symmetry. The key feature here is the
fact that we do not allow the dihedral groups to be broken in an arbitrary way, but in all cases some
(nontrivial) subgroup has to be preserved. In this way we arrive at only five possible (Dirac) mass matrix
structures which can arise, if we require that the matrix has to have a nonvanishing determinant and that at
least two of the three generations of left-handed (conjugate) fermions are placed into an irreducible two-
dimensional representation of the flavor group. We show that there is no difference between the mass
matrix structures for single- and double-valued dihedral groups. Furthermore, we comment on possible
forms of Majorana mass matrices. As a first application we find a way to express the Cabibbo angle, i.e.
the Cabibbo-Kobayashi-Maskawa matrix element jVusj, in terms of group theory quantities only, the
group index n, the representation index j and the index mu;d of the different preserved subgroups in the up
and down quark sector: jVusj � j cos���mu�md�j

n �j which is j cos�3�7 �j � 0:2225 for n � 7, j � 1, mu � 3
and md � 0. We prove that two successful models which lead to maximal atmospheric mixing and
vanishing �13 in the lepton sector are based on the fact that the flavor symmetry is broken in the charged
lepton, Dirac neutrino and Majorana neutrino sector down to different preserved subgroups whose
mismatch results in the prediction of these mixing angles. This also demonstrates the power of preserved
subgroups in connection with the prediction of mixing angles in the quark as well as in the lepton sector.
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I. INTRODUCTION

Experiments have shown that the quark and lepton mix-
ing angles are completely different in size and hierarchy.
They are small in the quark sector

 �q12 � 13:1�; �q23 � 2:4�; �q13 � 0:23�

with the Cabibbo angle �q12 being the largest [1], while in
the lepton sector two of them are large, if not maximal,

 �l23 � 45�; �l12 � 33:2�;

together with the third angle �l13 being smaller than 9.1� at
the 2� level [2].

From the viewpoint of model building two special struc-
tures for the lepton mixing angles are very interesting:
(a) the case of tribimaximal (TBM) mixing [3] and
(b) the case of �� symmetry (MTS) [4] in the neutrino
sector. For tribimaximal mixing the sines of the mixing
angles are given by

 sin 2��l12� �
1

3
; sin2��l23� �

1

2
and sin2��l13� � 0

while �� symmetry only enforces

 sin 2��l23� �
1

2
and sin2��l13� � 0

leaving the angle �l12 undetermined. Both ansätze for the
mixing angles are compatible with the best fit values at the
2� level.

The standard model (SM) can only accommodate, but
not explain these data. The possible special structure for
the lepton mixing matrix together with the hierarchy of the
quark mixing angles is quite a strong hint for a flavor
symmetry GF which is broken in a nontrivial way.
Requiring that at least two of the three fermion generations
can be unified by GF and avoiding extra Goldstone or
gauge bosons from breaking GF spontaneously leads us
to the conclusion that the best choice for GF is a discrete,
non-Abelian symmetry.

Recently, in a series of papers [5] it has been shown that
the discrete symmetry A4, which is the symmetry group of
even permutations of four distinct objects, is able to ex-
plain TBM mixing in the lepton sector, if it acts on the
fermion generations in the following way: the three left-
handed lepton doublets transform as the irreducible three-
dimensional representation of A4, while the left-handed
conjugate charged leptons transform as the three singlets
of A4, 11, 12 and 13 (also called 1, 10 and 100).

In Ref. [6] this phenomenologically successful model
has been extended to the quark sector by using the sym-
metry group T0, which is the double-valued group of A4. In
the quark sector it allows for some nontrivial connections
among the Cabibbo-Kobayashi-Maskawa (CKM) quark-
mixing matrix elements and the quark masses.

The key point of these studies lies in the fact that the
Higgs fields which necessarily also transform nontrivially
under the flavor group in order to form A4 (T0) invariant
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Yukawa couplings do not acquire arbitrary vacuum expec-
tation values (VEVs), but VEVs which break the flavor
group A4 (T0) down to certain nontrivial subgroups, such
as Z2, Z3 and Z4. The fields which preserve a Z2 (in case of
A4, Z4 in case of T0) only couple to neutrinos at the leading
order, while the other fields breaking the flavor symmetry
of the model down to a Z3 subgroup only couple to charged
fermions at this level. This exactly leads to TBM mixing
and explains large lepton mixing angles as the result of two
different subgroups, whereas small quark mixing angles
come from mass matrices which are invariant under the
same subgroup.

These results trigger the following questions: Are A4 and
its double-valued group T0 the only groups in which such
results can be achieved? Or are there other groups among
the non-Abelian discrete symmetries which can lead to the
same or to a similar result by preserving some nontrivial
subgroup?

In order to answer these questions at least partly, we
investigate in this paper the dihedral groups Dn and their
double-valued groups D0n as flavor symmetries [7]. They
are non-Abelian for n > 2 and n > 1, respectively. The
group Dn is the symmetry group of a regular planar
n-gon. The dihedral groups and their double-valued groups
are well suited for a general study, since they form a series
of groups with similar properties, e.g. they all contain only
one- and two-dimensional representations. Among the dis-
crete groups there are several such series of groups: the
permutation groups Sn of n distinct objects, the alternating
groups An of even permutations of n objects, and the two
series of subgroups of SU�3�, ��3n2� and ��6n2� [8]. The
groups Sn and An are only interesting for small n (S2, S3, S4

and A3, A4, A5), since with increasing n the dimension of
their nontrivial representations increases beyond three. So
they are only appropriate for case-by-case studies and not
for a general study like ours. ��3n2� and ��6n2� are more
similar to the dihedral groups and therefore more interest-
ing, but also less known in particle theory [9].

In our general study we test whether the groups Dn and
D0n can be used to get a similar result as in the mentioned
A4 and T0 model, i.e. whether one can induce certain
mixing patterns in the lepton and/or quark sector by break-
ing to different subgroups. In order to do so, we first need
to establish the group theory of the groups Dn and D0n, in
particular, we carefully study all possible subgroups. We
show for each of them all representations and directions
which leave them invariant. In a next step we calculate all
possible mass matrices which can then arise in such a
model. Thereby the gauge group is taken to be the one of
the SM for simplicity. In order to keep the calculation
tractable we restrict ourselves to mass matrices with a
nonvanishing determinant and for Dirac mass matrices
we assume in a first step that all Higgs fields which trans-
form under the flavor symmetry are copies of the SM Higgs
doublet. Furthermore we do not discuss cases in which all

left-handed and left-handed conjugate fields transform as
singlets under the flavor group, since such structures can be
produced by the use of an Abelian group as well. Note that
this does not exclude the possibility that the Majorana mass
matrix originates from a coupling which involves only
fields transforming as one-dimensional representation
under the flavor group, as the Majorana mass term stems
solely from the coupling of two either left-handed or left-
handed conjugate fields. We present all mass matrices and
discuss differences among Dirac and Majorana mass ma-
trix structures.

As one interesting application we show that a prediction
of the Cabibbo angle �q12, more precisely of one of the
elements of the quark mixing matrix VCKM, in terms of only
group theoretical quantities, i.e. the index n of the group
Dn (D0n), the index of the representation and the breaking
direction in the flavor space, becomes possible.

Several smaller dihedral groups [10] and their double-
valued groups [11] were already used in the literature to
construct models with flavor symmetries. We comment on
some of them by comparing the mass matrices they use
with ours. We show that the prediction of �l23 � 45� and
�l13 � 0 of models using a flavor symmetry D4 � Z

�aux�
2

[12] and D3 � Z
�aux�
2 [13] results from the fact that in these

models nontrivial subgroups of D4 and D3 are preserved,
respectively.

We only briefly touch the question of the VEValignment
and the choice and stabilization of the desired vacuum
structure in our conclusions, since the study of the Higgs
potentials is beyond the scope of this paper. Nevertheless,
we emphasize that of course only the proof that an advo-
cated VEV structure is realized in a certain potential and
the proof of its stability can make the theory viable. A
detailed study of potentials of SM Higgs doublets which
transform underDn orD0n will be presented elsewhere [14].

The paper is structured as follows: in Sec. II we present
the basic group theory of the dihedral groups Dn and D0n;
Sec. III contains the analysis of the subgroups of Dn and
D0n; in Sec. IV we study the stepwise breaking of the
dihedral symmetries and show all possible breaking chains
for the single-valued groups Dn. We study in Sec. V all
Dirac as well as Majorana mass matrices with a nonvanish-
ing determinant which can arise from the distinct breakings
found in Sec. III and mention some possible applications in
Sec. VI. A comparison of our findings to the literature is
given in Sec. VII. Finally, we conclude in Sec. VIII and
comment on differences among models using flavor-
charged Higgs doublets and gauge singlets (flavons) as
well as on some simple Higgs potentials. The various
appendixes contain further group theoretical results which
are needed for our calculations such as Kronecker products
and Clebsch-Gordan coefficients as well as the decompo-
sition of representations of the dihedral groups into repre-
sentations of their subgroups and the breaking chains for
the groups D0n.
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II. PROPERTIES OF DIHEDRAL GROUPS

A. Single-valued groups Dn
All Dn groups are non-Abelian apart from D1 ( � Z2)

andD2 ( � Z2 � Z2). They only contain real one- and two-
dimensional irreducible representations. If its index n is
even, the group Dn has four one- and n

2� 1 two-
dimensional representations and for n being odd Dn has
two one- and n�1

2 two-dimensional representations. In the
following we denote the one-dimensional representations
with 1i and the two-dimensional ones with 2j where the
indices i and j are i � 1, 2 and j � 1; . . . ; n�1

2 forDn with n
odd and i � 1; . . . ; 4 and j � 1; . . . ; n2� 1 for Dn with n
even. The representation 11 is always the trivial one, i.e. the
one whose characters are 1 for all classes.1 The order of the
group Dn is 2n. The generators A and B of the one-
dimensional representations are A � B � 1 for 11 and
A � 1, B � �1 for 12. For even n we also have A �
�1, B � 1 for 13 and A � B � �1 for 14. The generators
of the two-dimensional representations are [15]:

 A �
e�2�i=n�j 0

0 e��2�i=n�j

 !
; B �

0 1
1 0

� �
(1)

with j � 1; . . . ; n2� 1 for n even and j � 1; . . . ; n�1
2 for n

odd. They fulfill the relations:

 A n � 1; B2 � 1; ABA � B: (2)

Note that we have chosen complex generators for the
two-dimensional representations. Since the representations
themselves are real, there exists a unitary matrix U which
links their generators to the complex conjugates: U �

0 1
1 0

� �
. For any

a1

a2

� �
	 2 the combination U

a
1
a
2

� �
�

a
2
a
1

� �
transforms as 2 instead of

a
1
a
2

� �
, as would be the

case for real generators A and B.

B. Double-valued groups D0n
The groupsD0n are the double-valued counterparts of the

groups Dn. All groups D0n with n > 1 are non-Abelian, D01
is isomorphic to Z4. The simplest non-Abelian double-
valued dihedral group, D02, is also called the quaternion
group. Hence, one often uses the notation Q2n instead of
D0n. The group D0n is of order 4n. Similar to the groups Dn
they only contain one- and two-dimensional irreducible
representations. The group D0n has four one-dimensional
and n� 1 two-dimensional representations. For n even,
the one-dimensional representations are real, i.e. their

characters are real. Furthermore the two-dimensional re-
presentations 2j with j even are real, i.e. not only their
characters are real, but there also exists a set of real
representation matrices. In contrast to this the representa-
tions 2j with j odd are pseudoreal, i.e. their characters are
real, but one cannot find a set of representation matrices
which are also real. If n is odd the one-dimensional repre-
sentations 11;2 are real, while 13 and 14 are complex con-
jugated to each other. As for n even, the representations 2j

with j even are real and with j odd are pseudoreal.
Compared to the groups Dn one has to add the pseudoreal
and complex representations to get D0n. Therefore the real
representations are usually called even, while the pseudo-
real and complex ones are named odd representations [16].
The generators for the one-dimensional representations are
the same as for Dn, if n is even. If n is odd, the generators
of the one-dimensional representations are A � B � 1 for
11, A � 1, B � �1 for 12, A � �1, B � �i for 13 and
A � �1, B � i for 14. The generators and their relations
for the two-dimensional representations also have a similar
form as in the case of Dn [16,17]:

 A �
e��i=n�j 0

0 e���i=n�j

 !
; B �

0 1
1 0

� �
(3)

for j even, and

 A �
e��i=n�j 0

0 e���i=n�j

 !
; B �

0 i
i 0

� �
(4)

for j odd. They fulfill:

 A n � R; B2 � R; R2 � 1; ABA � B;

(5)

with R being 1 in case of an even representation and �1
for an odd one. Comparing the generators of even and odd
representations one recognizes that the generator B con-
tains an extra factor i for odd representations. Since also
for D0n all two-dimensional representations are real or
pseudoreal, i.e. not complex, there has to exist a similarity
transformation U between the representation matrices and
their complex conjugates. If the index j of the representa-
tion 2j is even, U is the same as for the representations of

Dn. For j being odd, U �
0 �1
1 0

� �
such that

�a
2
a
1

� �
�

U
a
1
a
2

� �
transforms in the same way as

a1

a2

� �
	 2j with j

odd.

III. NON-TRIVIAL SUBGROUPS

In this section we determine the subgroups of a general
Dn or D0n group, using the generators given in Sec. II. This
can be done systematically by determining for each repre-
sentation the eigenvalues and eigenvectors of the group
elements. All group elements, which have the same eigen-

1The character of a representation for a certain group element
is just the trace of the corresponding representation matrix
independent of the choice of basis. For one-dimensional repre-
sentations the representation matrix is only a complex number
(unequal zero) which is then also the character of this
representation.
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vector corresponding to the eigenvalue of 1, form a sub-
group. We then determine the group structure, which is
simple, as all subgroups turn out to be either dihedral or
cyclic.

For the one-dimensional representations we only need to
look at which elements of the group are represented by a
1—these elements then form a subgroup. For the two-
dimensional representations, we need to determine all
representation matrices which have an eigenvalue of 1.
We only need to consider two general matrices: Ax and
BAy and calculate their eigenvalues as a function of x or y
and the index j of the representation 2j, and then calculate
the corresponding eigenvectors. All eigenvectors with ei-
genvalue 1 turn out to have the same structure:

 

e�4�ijm=g

1

 !
(6)

where g is the order of GF (2n for single-valued, 4n for
double-valued groups) and m is an integer. We thus have
for a given two-dimensional representation a class of sub-
groups, parametrized by m, where one of the generators of
the subgroup will be BAm. For group elements represented
by the unit matrix, which appear in unfaithful representa-
tions,2 an arbitrary eigenvector corresponds to an eigen-
value of 1. Hence we have for unfaithful two-dimensional
representations an additional subgroup made up of all
group elements represented by the unit matrix. To make
sure that we have determined all subgroups, we need to
consider possible combinations of 2 or more representa-
tions. Further subgroups will necessarily be subgroups of
the subgroups determined above. Since all of the subgroups
encountered so far are either dihedral or cyclic, we know
that all further subgroups will also be either dihedral or
cyclic. As it turns out, we need at most 2 different repre-
sentations to reach any possible subgroup of our original
Dn or D0n.

We come to a physical interpretation of our results by
using them to determine how the VEV of a scalar field
transforming nontrivially under GF will break that sym-
metry. A VEV of a scalar transforming under a given
representation conserves the subgroup of elements which
leave the VEV invariant, i.e. the VEV is an eigenvector to
the eigenvalue 1 and these we determined above. For two-
dimensional representations there can be several subgroups
and therefore the structure of the scalar VEV is important.
We denote an arbitrary VEV by h2ji, while a VEV propor-
tional to the eigenvector of Eq. (6) will be denoted by h2ji

0.
Subgroups corresponding to a combination of two repre-
sentations will be conserved by a combination of VEVs.
We get the following results for Dn groups:

 Dn!
h11iDn

 Dn!
h12iZn � hAi

 Dn!
h13iDn=2 � hA

2;Bi

 Dn!
h14iDn=2 � hA

2;BAi

 Dn!
h2ji

Zj � hA
n=ji �jjn�

 Dn!
h2ji

nothing �j�n�

Dn!
h2ji

0

Dj � hA
n=j;BAmi �jjn;m � 0; 1; . . . ;

n
j
� 1�

 Dn!
h2ji

0

Z2 � hBAmi �j�n;m � 0; 1; . . . ; n� 1�

Dn !
h12i�h13iZn=2 � hA

2i

(One can also use h12i � h14i or h13i � h14i.)

Dn ���!h13i�h2ji
0

Z2 � hBAmi (jjn, n
j odd; 0 � m � n

j � 1)
(m even for 13; for 14 m odd)
and for D0n groups we get:

 D0n!
h11iD0n

 D0n!
h12iZ2n � hAi

D0n !
h13i or h14iZn � hA2i �for odd n�

 D0n!
h13iD0n=2 � hA

2;Bi �for even n�

D0n!
h14iD0n=2 � hA

2;BAi �for even n�

 D0n!
h2ji

Zj � hA
2n=ji �jj2n�

 D0n!
h2ji

nothing �j�2n�

D0n!
h2ji

0

D0j=2 � hA
2n=j;BAmi�

j even; jj2n;m � 0; 1; . . . ;
2n
j
� 1

�

 D0n!
h2ji

0

Z4 � hBAmi �j even; j�2n;m � 0; 1; . . . ; n� 1�

D0n !
h12i�h13iZn � hA

2i �for even n�

(One can also use h12i � h14i or h13i � h14i.)

 D0n !
h13i�h2ji

0

Z4 � hBAmi

(n even; jj2n, 2n
j odd; 0 � m � 2n

j � 1)
(m even for 13; for 14 m odd)

 D0n !
h13i�h2ji

0

Z2 � hA
ni

2A representation is unfaithful if the number of distinct re-
presentation matrices is smaller than the order of the group.
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(n even; 2n
j odd; 0 � m � 2n

j � 1)
(m odd for 13; for 14 m even)

Some of these results can also be found in Refs. [18,19].
We now know the minimal VEV structure needed to break
GF down to a given subgroup. The maximal VEV structure
preserving that subgroup is then achieved by allowing
VEVs for all representations, which have at least one
component transforming trivially under the subgroup in
question. Therefore we list the transformation properties of
the representations of our original dihedral group under a
given subgroup. These can be found by expressing the
generators of the subgroup in terms of the generators A
and B of GF. As a general feature we remark that two-
dimensional representations become reducible in several
cases. The complete list of decompositions is given in
Appendix B along with the maximal VEV structure.

IV. BREAKING CHAINS

We have seen that a dihedral group will in general have
several nontrivial subgroups. We consider all possible
breaking patterns of a dihedral group, where the symmetry
breaking happens in an arbitrary number of steps.

The first step in every chain will be one of the breakings
induced by a single VEV, which we considered in Sec. III.
For the next step we need to consider how a second (differ-
ent) VEV will further break our symmetry group, by con-
sidering the intersection of the group elements leaving both
VEVs invariant, thereby finding the subgroup which is
conserved by both VEVs. We determine the group struc-
ture of these elements—if the new subgroup is in fact
smaller than the old one, we have found a viable next
step in the breaking sequence. This procedure is then
iterated until we reach either a Z2 (which has no further
subgroups, being the smallest nontrivial group), or until we
reach a Zj with arbitrary index j. Zj can always be further
broken down to a Zk, where k is a divisor of j, as we discuss
below.

We use the notationmj for the phase factorm in the VEV
h2ji

0. This classification according to different phase fac-
tors becomes important if a breaking sequence contains
VEVs of two distinct two-dimensional representations.

Note the breaking patterns marked with a star. These are
not just breaking sequences in their own right, but also can
be used as building blocks within or at the end of other
sequences. In general, we can reduce the order of a dihe-
dral or cyclic group step by step, until we have reached the
subgroup which we want to conserve, as long as the con-
ditions given for the starred breaking sequences are ful-
filled at each step.

We find two paths in the breaking sequences, one along
the dihedral groups and one along the cyclic groups, in the
minimal case eliminating one prime divisor of the order in
each step. At any point in the sequence we can step over
from the dihedral to the cyclic path (from which there is of
course no turning back). The cyclic path ends at Zq, q

being the smallest prime factor of n, while the dihedral
path, will end at D1 or D01 as these groups are nontrivial.
D1 � Z2 is simple, while D01 � Z4, is not just nontrivial
but also nonsimple, so that we can break one step further
down to the Z2 group generated by An. The breaking chains
for Dn are:

 Dn!
h12iZn!

h13iZn=2!
h2ji
Zj �jj

n
2
�

Dn!
h12iZn!

h2ji
Zj

 Dn!
h13iDn=2!

h12iZn=2!
h2ji
Zj �jj

n
2
�

Dn!
h13iDn=2!

h14iZn=2!
h2ji
Zj �jj

n
2
�

 Dn!
h13iDn=2!

h2ji
Zj �jj

n
2
�

Dn!
h13iDn=2!

h2ji
0

Dj!
h2kiZk �jj

n
2

; kjj�

(mj even for 13 and for 14 mj is odd)

Dn!
h13iDn=2!

h2ji
0

Dj!
h2ki

0

Z2 (jj n2 ; k�j; mj � mk even)

 Dn!
h13iDn=2!

h2ji
0

Z2 �j�
n
2
�

(mj even for 13 and for 14 mj is odd)

Dn ���!h2ji
0

Dj ���!h12i
Zj (mj arbitrary)

 Dn!
h2ji

0

Dj!
h13iZ2 �j�

n
2
�

(mj even for 13 and for 14 mj is odd)

Dn ���!h2ji
0

Dj ���!h2ki
Zk (kjj; mj arbitrary)

 Dn!
h2ji

0

Dj!
h2ki

0

Z2 �k�j;mj � mk�

 Dn!
h2ji

0

Z2

 
Dn!
h2ji
Zj!
h2kiZk �kjj�


Dn!
h2ji

0

Dj!
h2ki

0

Dk �kjj;mj � mk�

The corresponding results for D0n are given in
Appendix C. The conditions on the indices can be divided
into two types: One concerns the divisibility of indices.
These appear, when we need to ensure, that we have not
broken too far, i.e. that the subgroup we want to break to is
actually contained in the subgroup we have already broken
to. The second type of condition concerns restrictions on
the phase factorsmj. These appear, if the direction in which
we have broken is important. Several breaking directions
occur, if we deal with distinct subgroups showing the same
structure—for example in Dn we have two Dn=2 sub-
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groups: hA2;Bi and hA2;BAi. The Z2 subgroup generated
by BAm, for example, is only a subgroup of the first in the
case of m even and only a subgroup of the second, if m is
odd. Hence we need to impose restrictions on the phase
factor m.

Finally, note that in any of the chains given above we can
interchange 13 and 14 and again receive a viable breaking
sequence. This may cause some of the requirements to
change, as shown along with the breaking chains.

V. MASS MATRICES

We can determine the Dirac mass matrices M which are
generated when GF is broken to one of the subgroups we
determined in Sec. III by Higgs bosons transforming non-
trivially under GF. Majorana mass matrices are discussed
in Sec. V F. For simplicity we assume that the Higgs
bosons are SU�2�L doublets like the one in the SM. The
group theoretical tools we need, i.e. the Kronecker pro-
ducts and Clebsch-Gordan coefficients, are given in
Appendix A. As mentioned in Sec. I, we restrict ourselves
in a fairly major way: We do not consider mass matrices
with a zero determinant, that is with at least one zero
eigenvalue.

We need to decide how the (SM) fermions will transform
under GF. Their transformation properties are not limited
by our choice of subgroup. The only limitation we impose
here, is that we do not want all fermions to transform under
one-dimensional representations of GF, since the resulting
structures could also be obtained by an Abelian GF.
Therefore we will not allow for this possibility (for Dirac
mass terms),3 leaving us with two general options for the
transformation properties of the (SM) fermions. The first
possibility is

 L	 �1i1
; 1i2

; 1i3
�; Lc 	 �1j; 2k�

which we call the three singlet structure. The second
possibility is

 L	 �1i; 2j�; Lc 	 �1l; 2k�

which we call the two doublet structure. Note, that we do
not discuss explicitly the case where the left-handed fer-
mions transform under one one- and one two-dimensional
representation with the left-handed conjugate fermions
transforming under three one-dimensional representations,
since we only need to transpose the mass matrices of the
three singlet structure to switch the transformation proper-
ties of left-handed and left-handed conjugate fermions.

The mass matrices arise, when the Higgs bosons acquire
a VEV. We do not choose their transformation properties,
as we did for the fermion fields. In fact, we do not even
limit the number of Higgs bosons. In this way the mass
matrix structure is entirely determined by the properties of

GF and its subgroup, and not by our choice of scalar fields.
When determining the mass matrix generated by breaking
down to a certain subgroup, we reference Table III to
Table VI in Appendix B and determine which representa-
tions are allowed a VEV, while keeping that subgroup
intact. We then start by assuming that our model contains
a Higgs boson for each of these possible representations4

and that all of them acquire a VEV, with a structure
conserving the relevant subgroup. We can then easily
eliminate Higgs bosons from our model, by setting their
VEVs to zero in the mass matrix.

We first give our general results in Sec. VA. In Sec. V B
we give the conventions and notation we use in Sec. V C
and V D, where we discuss the three singlet and two
doublet structures, respectively, for single-valued groups
Dn. The resulting mass matrices will be discussed sub-
group by subgroup. In Sec. V E we discuss why no new
Dirac mass matrix structures appear for double-valued
groups. Finally, we present the possible Majorana mass
matrices in Sec. V F.

A. General results

We encounter a very limited number of distinct Dirac
mass matrix structures, i.e. in total only five distinct struc-
tures are possible. We display them for down-type fermi-
ons (down-type quarks and charged leptons). The changes
for up-type fermions, i.e. up-type quarks and neutrinos, are
discussed in Sec. V B.5 The first possible structure is a
diagonal mass matrix

 

A 0 0
0 B 0
0 0 C

0@ 1A: (7)

The second type are semidiagonal mass matrices, of the
form

 

A 0 0
0 0 B
0 C 0

0@ 1A (8)

where the squared mass matrix MMy has eigenvalues jAj2,
jBj2 and jCj2. We also encounter a block matrix structure

3For the case of Majorana mass terms: see below.

4We do not need to consider the case of two Higgs bosons
transforming under the same representation of the flavor group:
These two Higgs bosons would have identical quantum numbers,
and only the linear combination acquiring a VEV would appear
in the mass matrices. However, two Higgs fields transforming in
the same way can be very important for other aspects of a model,
especially when discussing the Higgs potential, as shown in
Ref. [20].

5We have to distinguish these two cases, since our Higgs fields
are always assumed to transform as the SM Higgs doublet. In the
SM the field H itself couples to the down-type fermions, while
its conjugate �H
 is coupled to up-type ones. This difference is
relevant here, since, for example, we decided to use complex
generators for the two-dimensional representations.
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A 0 0
0 B C
0 D E

0@ 1A (9)

for which the squared mass matrix has the characteristic
polynomial ���jAj2���2���jBj2�jCj2�jDj2�jEj2��
�jBj2�jCj2��jDj2�jEj2��jBD
�CE
j2�. These three
structures are so common, that we will not give them
explicitly each time. Instead, we will give the type of
matrix, followed by a listing of the nonzero entries, where
we use the notation and nomenclature introduced here.
Note, that in some cases the entries in the 2–3-submatrix
are further correlated, e.g. there exist equalities among
them.

Finally, we find two structures, which appear only once,
both times for the subgroups Z2 � hBAmi. One has one
texture zero and the general structure

 

0 C �Ce�i�k

A D De�i�k

B E Ee�i�k

0B@
1CA (10)

with the group theoretical phase

 � �
2�m
n

: (11)

In this case the squared mass matrix has the characteristic
polynomial ��� 2jCj2���2 � ��jAj2 � jBj2 � 2�jDj2 �
jEj2�� � �jAj2 � 2jDj2��jBj2 � 2jEj2� � jAB
 � 2DE
j2�.
This mass matrix only shows up for a three singlet struc-
ture. The other mass matrix structure has no texture zeros
and is of the form

 

A C Ce�i�k

B D E
Be�i�j Eei�k�j�� De�i�j�k��

0B@
1CA (12)

where the squared mass matrix has the characteristic poly-
nomial ��� jD�Eeik�j2���2� �jAj2� 2jBj2� 2jCj2�
jD�Eeik�j2��� �jAj2� 2jCj2��2jBj2� jD�Eeik�j2� �
2jAB
 �C�D
 �E
e�ik��j2�. This mass matrix only ap-
pears with a two doublet structure.

In all cases the characteristic polynomial can be factor-
ized into a linear and a quadratic one in �.

We additionally find one case, where all matrix elements
are distinct. We do not consider it, as it corresponds to a
smaller symmetry being fully broken: Dn breaks down to
Zq, where for all two-dimensional representations 2j show-
ing up in the model j is a multiple of q, i.e. j � cjq, cj an
integer. We can then replace the originalDn symmetry by a
Dn=q and all the representations 2j by 2cj

, as they are in fact
all unfaithful representations of the original Dn symmetry.
Breaking the original symmetry down to Zq then

corresponds to fully breaking the smaller symmetry.6 As
we want to consider conserved subgroups, we dismiss this
case, when it shows up.

Note, that such a case still allows for some nontrivial
correlations among the mass matrix elements.
Nevertheless, they are then not determined by a preserved
subgroup, but only by the fact that we use a non-Abelian
symmetry.

B. Conventions and notation

	’s and 
’s denote Yukawa couplings, h�ii denotes the
VEVof the Higgs field transforming as 1i. For the VEVs of
Higgs fields transforming as 2j we have two possibilities:
Either they are allowed to acquire an arbitrary VEV, in
which case we denote the VEV by

 

h 1
j i

h 2
j i

 !

or they are allowed only a certain VEV structure. As
discussed in Sec. III there is only one such structure. We
write the VEV of Higgs fields transforming as 2j and
acquiring this VEV structure as

 h ji
e�2�ijm=n

1

 !
:

Note that the VEV structure only determines the relative
phase between the two doublet components, so that we are
in general free to decide which component we want to
include the phase factor in. We will on several occasions
want to make use of this freedom, to simplify the appear-
ance of our mass matrix. For example, if we have a left-
handed fermion transforming as 13 or 14 and the left-
handed conjugate fermions transforming as 2j, we need a
Higgs boson transforming as 2��n=2��j� to form an invariant
Yukawa coupling. We then write the VEVs of these Higgs
fields as

 h �n=2��ji
��1�m

e�2�ijm=n

� �
:

In this way, only the phase factor e�2�ijm=n shows up in the
mass matrix and not its complex conjugate. Similarly the
VEVof Higgs fields transforming as 2�n��j�k�� is written as

 h n��j�k�i
1

e�2�i�j�k�m=n

� �
so that it contains the same phase as that of the Higgs fields
transforming as 2j�k.

6To be more precise: In all cases the representations of the
Higgs fields have the property that their index is divisible by q,
but this is not necessarily true for the representations under
which the fermions transform. However, one can then always
find some other representations for the fermions which repro-
duce exactly the same matrix structure and which have the
property that also their index is divisible by q such that the
case can be reduced to a smaller symmetry which is fully broken.
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To get the corresponding mass matrices for up-type
fermions a few changes have to be implemented.
Obviously, they have different Yukawa couplings, i.e.:

 	! 	u and 
! 
u: (13)

Furthermore all VEVs need to be complex conjugated.
This corresponds to the following substitutions:

 h�ii ! h�ii



h 1
j i ! h 

2
j i

 and h 2

j i ! h 
1
j i

 or

h ji ! h ji

e2�ijm=n:

(14)

These changes are only necessary, if up-type fermions
couple to Higgs bosons which transform in the same way
under SU�2�L �U�1�Y as the Higgs bosons which couple
to the down-type fermions, like it is in the SM. If they
couple to Higgs bosons with other transformation proper-
ties under SU�2�L �U�1�Y , as, for example, in the minimal
supersymmetric standard model (MSSM) with the Higgs
doublets hu and hd, such changes are obsolete and obvi-
ously then also the VEVs entering the up- and down-type
fermion mass matrices can never be the same.

We have in general left all minus signs and phases in the
mass matrices, even if they can be trivially rotated away.

C. Three singlet structure

To get a mass matrix with a nonzero determinant, at least
one two-dimensional representation has to get a VEV,
otherwise the second and third columns of the mass matrix
will be zero. This means we can ignore all subgroups,
where no two-dimensional representation is allowed a
VEV, leaving us with three subgroups to consider Z2 �
hBAmi, Dq and Zq. The two possible two-dimensional
representations that can show up are 2k and 2��n=2��k�

coming from the product of 2k with a one-dimensional
representation.

We first consider the subgroup, where all two-
dimensional representations acquire a VEV, that is Z2 �
hBAmi.

1. Z2 � hBAmi

Because of the large number of possible combinations of
one-dimensional representations, we shall only give rows
as building blocks for a mass matrix. We group them
according to the index j, i.e. according to the transforma-
tion properties of the first generation of left-handed con-
jugate fermions. We give the row vectors for the pth row of
the mass matrix, depending on the index ip, i.e. the trans-
formation properties of the pth generation of left-handed
fermions. We assume, that m is even. To get to an odd m,
we need to switch 13 and 14 and �3 and �4, as can be
inferred from Table III.

 j � 1; ip � 1

 �	ph�1i; 
ph ki; 
ph kie�2�ikm=n�

 j � 2; 4; ip � 1

 �0; 
ph ki; 
ph kie
�2�ikm=n�

 j � 3; ip � 1

 �	ph�3i; 
ph ki; 
ph kie
�2�ikm=n�

 j � 1; 3; ip � 2

 �0; 
ph ki;�
ph kie�2�ikm=n�

 j � 2; ip � 2

 �	ph�1i; 
ph ki;�
ph kie�2�ikm=n�

 j � 4; ip � 2

 �	ph�3i; 
ph ki;�
ph kie
�2�ikm=n�

 j � 1; ip � 3

 �	ph�3i; 
ph ��n=2��k�i; 
ph ��n=2��k�ie
�2�ikm=n�

 j � 2; 4; ip � 3

 �0; 
ph ��n=2��k�i; 
ph ��n=2��k�ie�2�ikm=n�

 j � 3; ip � 3

 �	ph�1i; 
ph ��n=2��k�i; 
ph ��n=2��k�ie�2�ikm=n�

 j � 1; 3; ip � 4

 �0;�
ph ��n=2��k�i; 
ph ��n=2��k�ie�2�ikm=n�

 j � 2; ip � 4

 �	ph�3i;�
ph ��n=2��k�i; 
ph ��n=2��k�ie
�2�ikm=n�

 j � 4; ip � 4

 �	ph�1i;�
ph ��n=2��k�i; 
ph ��n=2��k�ie
�2�ikm=n�:

These building blocks end up giving us only one general
option for a mass matrix, that is a mass matrix with one
zero entry. Mass matrices with more than one zero entry or
no zero entry give a determinant of zero, and so will not be
considered here. This is due to the fact, that there is a
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correlation between the entry in the first column and the
relative sign of the entries in the second and third column.
A nonzero entry in the first column necessarily implies
either a relative sign between the entries in the other two
columns (for j � 2 and j � 4) or no relative sign (for j � 1
and j � 3)—we can not however have both cases in the
same mass matrix. To see what a typical mass matrix looks
like, consider an example. Let j � i2 � 1, i1 � 2 and i3 �
3. The mass matrix then reads:

 

0 
1h ki �
1h kie
�2�ikm=n

	2h�1i 
2h ki 
2h kie�2�ikm=n

	3h�3i 
3h ��n=2��k�i 
3h ��n=2��k�ie
�2�ikm=n

0B@
1CA:
(15)

The scalar representations and the position of the zero
(within the first column) can vary, depending on our assign-
ment of fermion representations, but the general structure
will always be the one texture zero structure of Eq. (10).

2. Dq � hAn=q;BAmi

We continue with those cases, where not all two-
dimensional representations can acquire a VEV. For the
subgroupsDq, we only need to consider the case, where nq is
odd. As the only two-dimensional representation for the
fermions is 2k, the only relevant two-dimensional repre-
sentations for Higgs fields are 2k and 2��n=2��k�. Now we
can read off Table IV that the Higgs bosons transforming
under these representations can only acquire a VEV if q
divides k and q divides n

2� k, respectively. If n
q is even,

these two conditions are equivalent, i.e. either both Higgs
fields can receive a VEV and we are effectively dealing
with a smaller GF which is then broken down to Z2 �
hBAmi, or neither can receive a VEV, and we end up having
the second and third columns equal to zero.

If, however n
q is odd, these two conditions are mutually

exclusive (except where q � 1, but D1 is the same as Z2 �
hBAmi), and we consider them separately below. We do not
need to consider the case where neither of the two con-
ditions are fulfilled, as then no Higgs field transforming
under a two-dimensional representation will acquire a
VEV and we are again left with a mass matrix containing
two zero column vectors.

As in Sec. V C 1, we consider the structure of the pth
row, depending on ip, j and k. The simplest entry is theMp1

element. We have, since only �1 can acquire a VEV that
Mp1 � 	ph�1i if ip � j or Mp1 � 0 otherwise. We give
the other entries as building block row vectors (Mp2 Mp3).
They are, for q dividing k

 i p � 1: �
ph ki; 
ph kie
�2�ikm=n�

ip � 2: �
ph ki;�
ph kie�2�ikm=n�

ip � 3; 4: �0; 0�

and for q dividing n
2� k

 i p � 1; 2: �0; 0�

 i p � 3:

 ���1�m
ph ��n=2��k�i; 
ph ��n=2��k�ie�2�ikm=n�

 ip � 4:

 ���1�m�1
ph ��n=2��k�i; 
ph ��n=2��k�ie
�2�ikm=n�:

As in Sec. V C 1 the multiple possibilities can be reduced to
one general form. This is again due to the fact, that we have
a correlation between the element in the first column and
those in the second and third columns. Only those rows, for
which ip � j can have a nonzero element in the first
column. So if we choose the element in the first column
to be nonzero, we have also determined whether the ele-
ments in the second and third columns are zero. We must
have at least one zero entry in the second and third column,
otherwise we are only breaking a smaller GF down to its
subgroup Z2 � hBAmi, a case we have already discussed.
So, we need to choose j in such a way, that zero elements in
the second and third column are not correlated with a zero
element in the first column, otherwise we would end up
with a zero row vector. This means that j � 3 or j � 4 for q
dividing k, while if q divides n

2� k we must choose j � 1
or j � 2. We can then not have another row, where ip � j,
because there again the elements in the second and third
column would be zero and two row vectors would be
linearly dependent. So exactly one of the ip must be equal
to j, say i1. And we can say even more: To ensure a nonzero
determinant, i2 and i3 must be unequal, since otherwise the
second and third row vector will be linearly dependent. We
can then write the particle content more exactly as L	
�1i1

; 1i2
; 1i3
� and Lc 	 �1i1

; 2k�. All mass matrices will then
be of the block form of Eq. (9). We give as an example the
entries for i1 � 3, i2 � 1, i3 � 2 and q dividing k:

 A � 	1h�1i; B � 
2h ki;

C � 
2h kie�2�ikm=n; D � 
3h ki;

E � �
3h kie�2�ikm=n:

(16)

3. Zq � hAn=qi

The major difference between the subgroups Zq and Dq

is that in the former all doublets will acquire arbitrary
VEVs, and hence the mass matrices will exhibit less sym-
metry. We have only, as for theDq subgroups, to consider nq
odd. The reasons however are slightly different: As can be
inferred from Table III, all one-dimensional representa-
tions can acquire a VEV if nq is even, so either again none
of the relevant Higgs bosons that transform under a two-
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dimensional representation of the flavor group can acquire
a VEV (if q does not divide k), or we are faced with the
case where all Higgs fields relevant for Yukawa terms (that
is both those transforming under one-dimensional and
under two-dimensional representations) can acquire a
VEV—this corresponds to the case discussed in Sec. VA
of a smaller flavor symmetry being fully broken.

So we can again set nq to be odd and start by giving the
elements in the first column. They are Mp1 � 	ph�1i if
ip � j, Mp1 � 	ph�2i if 1ip � 1j � 12 or Mp1 � 0 other-
wise, whereas the elements in the second and third co-
lumns are, for q dividing k:

 i p � 1: �
ph 2
ki; 
ph 

1
ki�

ip � 2: �
ph 2
ki;�
ph 

1
ki�

ip � 3; 4: �0; 0�

and for q dividing n
2� k

 i p � 1; 2: �0; 0�

ip � 3: �
ph 1
��n=2��k�i; 
ph 

2
��n=2��k�i�

ip � 4: �
ph 1
��n=2��k�i;�
ph 

2
��n=2��k�i�

We can reduce the large number of possibilities. First we
set j, which must either be in f1; 2g or in f3; 4g. If we want
the Mp1 element to be nonzero, then ip must be in the same
set as j and we also know whether the elements in the
second and third column are zero or not. If we now choose j
in such a way, that a nonzero element in the first column
implies nonzero elements in the second and third column
(and thereby a zero element in the first column implies a
zero row vector), we are left to choose between a mass
matrix with 9 distinct nonzero elements and a mass matrix
with at least one zero row vector and thereby a zero
determinant. We therefore need to choose j in such a
way, that a nonzero element in the first column implies a
zero in the second and third column, i.e. j � 3 or j � 4 if q
divides k, j � 1 or j � 2 if q divides n

2� k. If we however
choose two elements in the first column to be nonzero, then
those two row vectors will be linearly dependent, and we
will have a zero determinant. So, we need to choose one ip
in the same set as j, while the other two must lie outside
that set—and, again, they cannot be equal, to ensure linear
independence of the corresponding row vectors. The gene-
ral structure will then always be a block matrix. We give as
an example the entries for the case where j � 3, i1 � 4,
i2 � 1, i3 � 2 and q divides k:

 A � 	1h�2i; B � 
2h 2
ki; C � 
2h 1

ki;

D � 
3h 
2
ki; E � �
3h 

1
ki:

(17)

D. Two doublet structure

In our discussion of the two doublet structure we fre-
quently use an additional index, p, given by 1i � 1l � 1p.
Without loss of generality we assume j  k.

For the two doublet structure we will discuss all possible
subgroups, as they all give viable mass matrices. Another
difference compared to the three singlet structure is that the
mass matrices given in this section are also potential
candidates for Majorana mass matrices, if we impose the
conditions j � k and i � l. If a mass matrix can also be
used as a Majorana mass matrix, we will mention this and
briefly note, which Yukawa couplings need to be equal in
that case and which terms drop out due to antisymmetry.

1. Zn � hAi

We read off Table III, that only�1 and�2 can get a VEV
when conserving this subgroup. This limits our freedom in
choosing representations for the fermions: The two dou-
blets must couple to form a 11 or a 12, otherwise the second
and third row vectors of the mass matrix will be zero. This
imposes the condition j � k. Also, we need p � 1 or 2,
otherwise the first row vector will turn out to be zero. These
restrictions leave us with a semidiagonal mass matrix
structure with entries:

 A � 	1h�pi; B � 	2h�1i � 	3h�2i;

C � 	2h�1i � 	3h�2i:
(18)

If p � 1 this is also a possible structure for a Majorana
mass matrix. In this case the antisymmetric part, i.e. the
terms containing h�2i drop out.

2. Zn=2 � hA2i

From Table III we infer that this subgroup only allows
for one-dimensional representations to acquire a VEV. So,
we need the product of the two doublets to contain at least
one one-dimensional representation. We are thereby left
with three possibilities:
Case (i) j � k, j� k � n

2 gives a semidiagonal matrix.

 A � 	3h�pi; B � 	1h�1i � 	2h�2i;

C � 	1h�1i � 	2h�2i:
(19)

Case (ii) j� k � n
2 , j � k � n

4 gives a block structure.
 

A � 	5h�pi; B � 	3h�3i � 	4h�4i;

C � 	1h�1i � 	2h�2i; D � 	1h�1i � 	2h�2i;

E � 	3h�3i � 	4h�4i: (20)

Case (iii) j � k, j� k � n
2 gives a diagonal structure.

 

A � 	3h�pi; B � 	1h�3i � 	2h�4i;

C � 	1h�3i � 	2h�4i: (21)
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Cases (i) and (ii) are also a possibility for Majorana mass
matrices. In this case the antisymmetric terms containing
h�2i drop out.

3. Zq � hAn=qi

This subgroup requires quite an amount of case
differentiation, since we want to make the discussion as
general as possible, and allow all possible relations be-
tween q and the other indices of the model. We will first
discuss the case where n

q is even, and then, at the end of this
subsection, discuss the slight changes induced by n

q being
odd.

As an ordering principle in our discussion, we have
taken the structure of the resulting mass matrix, as only
the three characteristic types discussed in Sec. VA will
show up.

Most of the conditions deal with the question, which
two-dimensional representations are allowed a VEV. This
translates directly into deciding whether q divides the
index of that representation. The two-dimensional repre-
sentations which can show up are 2j and 2k, 2��n=2��j� and
2��n=2��k� from the coupling of two-dimensional with one-
dimensional representations and 2j�k, 2�n��j�k�� and 2j�k

from the coupling of the two two-dimensional representa-
tions. We will only give mass matrices for the case where
2j � 2k contains 2j�k. Mass matrices for the case where it
contains 2�n��j�k�� can be obtained by replacing  j�k by
 n��j�k� and then switching the components of the doublet
(see Appendix A 2).

As q must divide n for Zq to be a subgroup of Dn, q
dividing j� k and q dividing n� �j� k� are equivalent.
As already noted, q dividing j is equivalent to q dividing
n
2� j, if nq is even, which we assume for this discussion.

To ensure a nonzero determinant, q must at least divide
either j� k7 or j� k: If not, the two-by-two submatrix in
the lower right-hand corner of the mass matrix will be zero.
This implies directly that q must divide either both j and k,
or neither of the two. If q divides j and k however, then it
also divides j� k and j� k—hence all relevant two-
dimensional representations can acquire an arbitrary
VEV and all one-dimensional representations can acquire
a VEV anyway. As this leads to the case where the mass
matrix contains 9 distinct entries, we disregard this case.
We summarize our findings in Table I and discuss the
different cases below in detail.

Diagonal matrix.—This structure appears in the follow-
ing case: qmust divide j� k but q does not divide (j� k), j
or k. Note that this case is not possible for q � 2, since the
sum and the difference of two numbers are either both odd
or both even, nor is it possible for j � k. For j� k � n

2 this

gives

 A � 	1h�pi; B � 	2h 
2
j�ki; C � 	2h 

1
j�ki:

(22)

If j� k � n
2 the mass matrix entries are

 A � 	3h�pi; B � 	1h�3i � 	2h�4i;

C � 	1h�3i � 	2h�4i:
(23)

Semidiagonal Matrix.—This structure shows up, if q
divides (j� k), but not j� k, j or k. This is not possible
if q � 2, nor is it possible for j� k � n

2 , since this contra-
dicts the conditions q��j� k� � n

2 and n
q being even. This

leaves two cases: For j � k the mass matrix entries are

 A � 	2h�pi; B � 	1h 2
j�ki; C � 	1h 1

j�ki;

(24)

while for j � k we get

 A � 	3h�pi; B � 	1h�1i � 	2h�2i;

C � 	1h�1i � 	2h�2i;
(25)

which is a candidate for a Majorana mass matrix if we omit
the antisymmetric terms.

Block matrix.—This structure shows up, if q divides
(j� k) and j� k, but not j and k. This forces q to be
even, as q must divide 2j � �j� k� � �j� k� while not
dividing j, that is a factor of 2 is relevant for making a
number divisible by q. In case j� k � n

2 , j � k we get

 A � 	4h�pi; B � 	1h�3i � 	2h�4i;

C � 	3h 2
j�ki; D � 	3h 1

j�ki;

E � 	1h�3i � 	2h�4i:

(26)

In case j� k � n
2 and j � k, we get

 

A � 	3h�pi; B � 	2h 
2
j�ki; C � 	1h 

2
j�ki;

D � 	1h 1
j�ki; E � 	2h 1

j�ki; (27)

and if j� k � n
2 and j � k, we get

TABLE I. Index relations and corresponding mass matrix
structure.

j k j� k j� k Structure

q divides Det�M� � 0
q divides � Diagonal
q divides � Semidiagonal
q divides � Det�M� � 0
q divides � Det�M� � 0
q divides � � Block
q divides � � � � Full

7This includes the case j � k, as all numbers divide zero,
corresponding to the fact, that 11 and 12 can get a VEV for an
arbitrary q.
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A� 	4h�pi; B� 	3h 
2
2ji; C� 	1h�1i �	2h�2i;

D� 	1h�1i �	2h�2i; E� 	3h 1
2ji: (28)

Finally, concerning the case j � k, j� k � n
2 : this leads

us to the conditions q j n2 and q� n
4 � j � k, which implies

either q � n
2 (already covered) or q even and n

4 odd. The
mass matrices are the same in both cases, with entries:
 

A � 	5h�pi; B � 	3h�3i � 	4h�4i;

C � 	1h�1i � 	2h�2i; D � 	1h�1i � 	2h�2i;

E � 	3h�3i � 	4h�4i: (29)

For nq even q either divides both j and ( n2� j) or neither, and
we need no further case differentiation.

If however nq is odd, we need to pay closer attention. In
case i and l are both in f1; 2g, the discussion is as above,
since 2��n=2��j� and 2��n=2��k� will not show up as the
representation of a Higgs field. In case i and l are both in
f3; 4gwe can also use the above discussion if we substitute j
by ( n2� j) and k by ( n2� k) in the conditions, which
changes nothing concerning the conditions regarding
sums and differences, as q will always divide n.

Further changes occur due to the fact that�3;4 	 13;4 are
not allowed a VEV anymore, see Table III.

Finally, we are left with the following: We drop for a
moment the condition that j  k and instead impose the
condition i 2 f1; 2g and l 2 f3; 4g. This means that M11

will be zero, since p � 3 or 4 and �p is then not allowed a
VEV due to n

q being odd. If we now want to avoid having a
zero column or row vector in our mass matrix, both  �n=2��j

and  k must acquire a VEV, i.e. q must divide k and ( n2�
j). By assumption however, q does not divide n

2 , which
leads us straight to the conclusion that q does not divide
j� k or jj� kj, thereby leaving the two-by-two matrix in
the lower right-hand corner of the mass matrix zero, which
we have excluded.

4. Z2 � hBAmi

As this structure also strongly depends on the one-
dimensional representations under which the fermions
transform, we have reduced it entirely to building blocks,
to avoid having to deal with too many subcases. As we can
read off Table III, all Higgs bosons transforming under a
two-dimensional representation will acquire a structured
VEV. The only constraints that arise are therefore due to
the Higgs bosons transforming under one-dimensional

representations. This means that the M11 entry is of special
interest. We will first write down the general structure and
then use this to explain, why M11 has to be nonzero to
ensure a nonzero determinant.

 

	3w 	4X1 	4Y1e��2�ikm=n�

	5X2 	1u 	2v
	5Y2e��2�ijm=n� 	2ve��2�i�j�k�m=n� 	1ue��2�i�j�k�m=n�

0B@
1CA

(30)

where:
u � h�3i if j� k � n

2 , m even
u � h�4i if j� k � n

2 , m odd
u � h min�j�k;n�j�k�i if j� k � n

2

 v � h�1i if j � k

v � h j�ki if j � k

w � h�pi where p � 1, 3 if m even, p � 1, 4 if m odd.
Note that some of the phase factors degenerate to signs,

in case of j � k or j� k � n
2 . Xi and Yi depend on the

transformation properties of the doublets and singlets in-
volved, i.e. X1 and Y1 depend on i and k, X2 and Y2 depend
on j and l. Building blocks for X1 and Y1 are given in
Table II. The same table can be used for X2 and Y2,
substituting l for i and j for k.

For the discussion of the M11 element let us assume that
m is even; the reasoning for an odd m will be analogous.
w � 0 implies that p � 2 or 4, that is i � 1 or 3 while l �
2 or 4. Switching i and l is also possible—the reasoning is
again analogous. If we now consult the table for the X and
Y entries, we see that this implies a relative minus sign
between the X2 and Y2 entries, while there is no relative
minus sign between the X1 and Y1 entries, so the sum of the
second and third row vector is proportional to the first row
vector. This is true also with nontrivial phases. Therefore
w � 0 must hold.

If j � k and i � l, the matrix can be made symmetric by
imposing 	4 � 	5 and can then also show up as a
Majorana mass matrix.

5. Dn=2 � hA2;Bi and Dn=2 � hA2;BAi

The discussion for these subgroups is very similar to that
of the subgroup Zn=2, as only one-dimensional representa-
tions can receive a VEV, however in this case not all of
them (see Table IV). We receive the mass matrices for
Dn=2 � hA

2;Bi by simply eliminating all terms containing
�2 and �4 from the mass matrices for Zn=2, making sure

TABLE II. Building blocks for matrix of two doublet structure under the subgroups Z2 �
hBAmi.

i � 1 i � 2 i � 3 i � 4

X1

Y1

� �
�

h ki

h ki

� �
h ki

�h ki

� �
��1�mh ��n=2��k�i

h ��n=2��k�i

� �
��1�m�1h ��n=2��k�i

h ��n=2��k�i

 !
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that we do not end up with a zero determinant. To prevent
this 1p must be allowed a VEV, that is p must be 1 or 3. We
can then distinguish between the following three subcases
as for Zn=2:
Case (i) j � k gives a semidiagonal structure.

 A � 	2h�pi; B � 	1h�1i; C � 	1h�1i: (31)

Case (ii) j � k, j� k � n
2 gives a block structure.

 A � 	3h�pi; B � 	2h�3i; C � 	1h�1i;

D � 	1h�1i; E � 	2h�3i:
(32)

Case (iii) j � k, j� k � n
2 gives a diagonal structure.

 A � 	2h�pi; B � 	1h�3i; C � 	1h�3i: (33)

Note that in cases (i) and (iii) we get two degenerate
eigenvalues. We can get the mass matrices generated by
breaking to Dn=2 � hA

2;BAi by substituting �3 by �4 in
the matrices above. In this case p must either be 1 or 4 and
there is also a relative minus sign between the two occur-
rences of h�4i. Cases (i) and (ii) are applicable for
Majorana mass matrices—in this case p � 1 since i must
be equal to l.

6. Dq � hAn=q;BAmi

This case is very similar to the Zq case. The two differ-
ences are: (a) Less one-dimensional representations are
allowed a VEV and (b) the two-dimensional representa-
tions are only allowed a structured VEV (see Table IV).
The first difference implies restrictions on the index p—if
the entry in the upper left-hand corner is zero, the deter-
minant is zero too. So, we need to impose the condition that
1p is allowed a VEV which depends on the evenness and
oddness of m and n

q , see Table IV.
The second difference means replacing the arbitrary

doublet VEV components by one with same absolute value
and fixed relative phase. The case where we have 9 inde-
pendent entries thereby does not show up here—instead
the full matrix structure now corresponds to breaking a
smaller GF down to Z2 � hBAmi. We briefly comment on
this at the end of this subsection.

We will do the entire discussion assuming an even m.
This means p has to be either 1 or 3 ( nq even). To get the
mass matrices for an odd m exchange �3 and �4, taking
care to also switch indices in the conditions. The relative
signs that occur in this case are encoded in factors of
��1�m, which are therefore left in, even though the rest
of the discussion concerns only even m.

As for the case of Zq there are no major differences
between n

q being even or odd, except that we need to impose
the condition p � 1, if nq is odd, as then only 11 is allowed a
VEV. Furthermore, if i and l are in f3; 4g, one must also
replace j and k by n

2� j and n
2� k in the conditions,

respectively. The structuring we use is the same as in

Sec. V D 3, that is the mass matrices are classified accord-
ing to their structure.

Diagonal matrix.—For this structure we must have q
dividing j� k but q not dividing (j� k), j or k. This is not
possible for q � 2 nor for j � k. For j� k � n

2 this gives

 A � 	1h�pi; B � 	2h j�ki;

C � 	2h j�kie��2�im�j�k�=n�:
(34)

If j� k � n
2 the mass matrix entries are

 A � 	2h�pi; B � 	1h�3i; C � ��1�m	1h�3i:

(35)

Note, that for both of these matrices the squared mass
matrix MMy has two degenerate eigenvalues.

Semidiagonal matrix.—For this structure q must divide
(j� k), but not j� k, j or k. This is not possible if q � 2,
nor is it possible for j� k � n

2 . We are left with two cases:
If j � k we end up with

 A � 	2h�pi; B � 	1h j�ki;

C � 	1h j�kie��2�im�j�k�=n�;
(36)

while for j � k we get

 A � 	3h�pi; B � 	1h�1i; C � 	1h�1i; (37)

which is a candidate for a Majorana mass matrix if i � l.
Both these matrices give degenerate eigenvalues in the
squared mass matrix.

Block matrix.—This structure shows up, for q dividing
(j� k) and j� k, but not j and k. This forces q to be even.
For j� k � n

2 , j � k we get

 A � 	2h�pi; B � 	1h�3i; C � 	3h j�ki;

D � 	3h j�kie��2�im�j�k�=n�; E � ��1�m	1h�3i:

(38)

In case j� k � n
2 and j � k, we get

 

A � 	3h�pi; B � 	2h j�ki; C � 	1h j�ki;

D � 	1h j�kie��2�im�j�k�=n�;

E � 	2h j�kie
��2�im�j�k�=n�: (39)

If j� k � n
2 and j � k, we get

 A � 	2h�pi; B � 	3h 2ji; C � 	1h�1i;

D � 	1h�1i; E � 	3h 2jie��4�imj=n�;
(40)

and if j� k � n
2 and j � k � n

4 , that is for q even and n
4 odd,

we get

 A � 	3h�pi; B � 	2h�3i; C � 	1h�1i;

D � 	1h�1i; E � ��1�m	2h�3i:
(41)
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Full matrix.—If q divides all relevant indices, that is if it
divides j and k and thereby automatically divides (j� k)
and j� k, we are actually breaking a smaller GF down to
its subgroup Z2 � hBAmi, as discussed in Sec. V C 2. This
is because Z2 � hBAmi is equivalent to D1, where the
above conditions are automatically fulfilled, as 1 divides
any integer. We therefore do not need to consider this case.

E. Mass matrices in D0n
One can immediately see, that the Dirac mass matrix

structures for double-valued dihedral flavor symmetries are
very similar to those generated by single-valued groups. A
general correspondence between subgroups of Dn and D0n
can be established, by looking at the allowed VEVs in
Table III to Table VI:

Dn Zn Zn=2 Zq D2 Dn=2 Dq Z�q�2� Z2

D0n Z2n Zn Zq Z4 D0n=2 D0q=2 Z2

As one can see n always has to be replaced by 2n in the
discussion. The only relevant difference between single-
and double-valued groups is the existence of odd represen-
tations. Therefore, at least one of the fermion generations
should transform as an odd representation in order to find
possible new mass matrix structures.

Odd two-dimensional representations do not get a struc-
tured VEV and in case they get a VEV, all VEVs will be
arbitrary. This is only possible for the subgroup Zq.
Similarly, for the odd one-dimensional representations,
i.e. 13 and 14 of D0n with n odd, only two subgroups allow
nonvanishing VEVs, namely Zn and Zq for 2n

q being even.
Note that in both cases 13 and 14 simultaneously get a
VEV.

The only changes that appear are additional signs due to
differences in the Clebsch-Gordan coefficients (see
Appendix A 2 b). If the Higgs fields transform as odd
representations, such additional signs are not relevant,
since they can be absorbed into the VEVs, as these are
arbitrary anyway.

Furthermore one sees, that if at least one of the fermion
representations is an odd two-dimensional representation,
this results in the 3rd column being multiplied by �1 for
the mass matrix structures of Eq. (7)–(9). These additional
signs can be rotated away by redefining the left-handed
conjugate fermions. We would need the mass matrix struc-
ture of Eq. (10) or Eq. (12) for this sign change to have
phenomenological consequences. These mass matrix
structures however only appear for the subgroup Z2 �
hBAmi, which has no counterpart for double-valued
groups, so that these two structures do not arise for
double-valued groups.

Strictly speaking, we encounter fermion mass matrix
structures like Eqs. (10) and (12) also here, but all such
cases can be reduced to a single-valued group. In the
simplest case we have used only even representations for
the fermions. Then it is clear that one could also have used

a single-valued group right from the beginning. Another
case occurs, if all the fermions transform as odd represen-
tations. Then the Higgs fields have to transform as even
ones. One cannot simply reduce this case to a single-valued
group, as one does not find odd representations in Dn
groups. However, one always finds some equivalent assign-
ment for the fermions using only even representations
which leads to the same mass matrix structure and which
can then be reduced to the case of a single-valued group.
Furthermore, one finds cases in which the mass matrix is
allowed to have arbitrary entries, but there exists no
smaller symmetry of the original group which is fully
broken. This is the same case as already mentioned for
the Dn groups, if the subgroup is Zq. Similarly to there, we
can find equivalent assignments for the fermions which
result in the same matrix structure and which indeed
correspond to a smaller group being fully broken.

We thus conclude that no new Dirac mass matrix struc-
tures appear for double-valued groups.

For an odd n, we need to take into account that 13 and 14
are complex (conjugated). This implies that 13 � 14 � 11,
so we have to replace h�3i in the mass matrices by h�4i,
and vice versa, even where they show up only implicitly as
h�pi. This also leads to differences, when switching to up-
type mass matrices: �
4 transforms as 13. So if we encoun-
ter a h�3i in the down-type mass matrix, we need a h�4i




for the up-type mass matrix. For odd two-dimensional
representations an additional minus sign is introduced
along with the second component of the VEV when
switching to the up-type mass matrix, due to the matrix
U introduced in Sec. II B. All these changes do not lead to
new structures.

F. Majorana mass matrices

Majorana mass matrices correspond to Yukawa cou-
plings involving two identical fermions, either L or Lc.
The relevant Higgs fields are then SU�2�L triplets or gauge
singlets, respectively, whereby VEVs of total singlets can
be replaced by direct mass terms. The fact that we couple
identical fermions, forces Majorana mass matrices to be
symmetric.

One comment is in order concerning our exclusion
criterion of demanding a nonzero determinant: This is no
longer phenomenologically motivated in this case, since
Majorana masses are only allowed for neutrinos and the
data still allow one neutrino to be massless. Nevertheless,
we restrict ourselves in this way in order to keep the
discussion manageable.

We have already mentioned when and how Majorana
mass terms can show up if the Majorana fermions trans-
form under one two- and one one-dimensional representa-
tion ofGF, as these correspond to mass matrices of the two
doublet type. ForD0n, we have to mention that in the case of
odd two-dimensional representations the terms containing
h�1i are antisymmetric. So, whenever we remark in
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Sec. V D that the antisymmetric terms containing h�2i
drop out, it is instead the terms containing h�1i that will
drop out. This does not lead to any new structures com-
pared to the Dirac case.

However, other structures can appear, since we allow
either L or Lc to transform under three one-dimensional
representations of GF. Thereby we also need to consider
the case where all fermions in the Yukawa term transform
under one-dimensional representations.

ForDn with n arbitrary and forD0n with n even we know
that, in addition to the Majorana mass matrix being sym-
metric, all diagonal entries will be nonzero, as two identi-
cal one-dimensional representations always couple to form
a trivial representation.

We first discuss the case of n even for Dn and D0n.
Looking at Table III to Table VI we see that depending
on the preserved subgroup the following one-dimensional
representations can get a VEV: only 11, 11 and 1i with i �

1 or all one-dimensional representations. Especially, the
case in which three representations get a VEV is excluded.
Concerning the assignment of the fermions we can distin-
guish the following three cases: either all three generations
transform in the same way or two of them transform as the
same representation or all three transform as different
representations. If the three generations are assigned to
�1i; 1i; 1i�, all mass matrix entries are nonzero, i.e. the
Majorana mass matrix is a general symmetric matrix
with 6 independent parameters, as 1i � 1i � 11 holds.
For the assignment �1i1

; 1i1
; 1i2
� there exist two possible

structures: either the matrix has a block structure or it has 6
independent entries. In the first case one has to ensure that
1i1
� 1i2

is not allowed a VEV by the preserved subgroup,
while in the second case 1i1

� 1i2
should also acquire a

VEV. In the last case, all fermions transform under differ-
ent one-dimensional representations, which allows apart
from the block and the arbitrary structure the possibility of
having a matrix with nonvanishing entries on the diagonal
only. The case only occurs, if the preserved subgroup only
allows 11 to acquire a VEV and therefore the flavor sym-
metry is not broken in the Majorana mass sector.

For the case of Dn with n odd, we only have two one-
dimensional representations to choose from. Therefore at
least two generations of fermions have to transform under
the same representation, forbidding the structure with non-
vanishing entries only on the diagonal.

For D0n with n odd, structures not found above could
only arise from fermion assignments involving the repre-
sentations 13 and 14, as 13 and 14 are complex and hence
13 � 13 and 14 � 14 � 12. This means if 12 is not allowed
a VEV, we can have zero elements on the diagonal.
However, we find that if 12 is not allowed a VEV, only
the trivial representation 11 is allowed a VEV for n odd, i.e.
the dihedral symmetry is unbroken in the Majorana mass
sector. The structure arising from L�c� 	 �1i1

; 1i2
; 1i3
� with

i1 2 f1; 2g and i2, i3 2 f3; 4g, i2 � i3 is then the same as in

the case of the two doublet assignment, if the two odd one-
dimensional representations 13 and 14 are replaced by the
doublet, i.e. it is a semidiagonal matrix with the obvious
restriction that C equals B.

As already mentioned, if 11 is the only representation
which gets a VEV, the flavor symmetry is unbroken in the
Majorana sector. This happens in models in which the
flavor symmetry is only spontaneously broken at a low
energy scale, for example, at the electroweak scale. All the
possible mass matrix structures have been enumerated
above.

VI. APPLICATIONS

In this section we show that we can predict the Cabibbo
angle, i.e. jVusj, in the quark sector in terms of group
theoretical quantities, i.e. the index n of the group, the
index of the representations i, j, k and l under which the
generations of left- and left-handed conjugate fields trans-
form,

 Q	 �1i; 2j�; dc; uc 	 �1l; 2k�;

and the breaking direction in flavor space, mu and md. In
Sec. V D 4 we showed that in the case of a preserved
subgroup Z2 � hBAmi of Dn the resulting mass matrix
Md for the down quark sector is of the form

 Md �
Ad Cd Cde�i�dk

Bd Dd Ed
Bde�i�dj Ede�i�d�j�k� Dde�i�d�j�k�

0B@
1CA (42)

where we defined:

 �d �
2�
n
md; md � 0; 1; 2; . . .

such that we break down to a subgroup Z2 � hBAmdi of
Dn. Ad; Bd; . . . are in general independent complex num-
bers which are products of VEVs and Yukawa couplings.
MdM

y
d can be diagonalized by the unitary matrix

 Ud �

cos��d�e
i�d 0 sin��d�e

i�d

� sin��d���
2
p ei�d j��

2
p cos��d���

2
p

� sin��d���
2
p e�i�dj � 1��

2
p cos��d���

2
p e�i�dj

0BB@
1CCA (43)

with �d � arg�AdB
d � Cd�Dd � Edei�dk�
� and �d de-
pending on Ad; Bd; . . . in a nontrivial way. The mass ei-
genvalues for the first, second and third generation are
then:
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m2
d �

1

2
�jAdj2 � 2�jBdj2 � jCdj2� � jDd � Edei�dkj2 � ��jAdj2 � 2�jBdj2 � jCdj2� � jDd � Edei�dkj2� sec�2�d��;

ms � jDd � Edei�dkj;

m2
b �

1

2
�jAdj

2 � 2�jBdj
2 � jCdj

2� � jDd � Edei�dkj2 � ��jAdj
2 � 2�jBdj

2 � jCdj
2� � jDd � Edei�dkj2� sec�2�d��: (44)

The mass matrixMu for the up-type quarks has the form:

 Mu �
Au Cuei�uk Cu

Buei�uj Duei�u�j�k� Euei�u�j�k�

Bu Eu Du

0B@
1CA (45)

with

 �u �
2�
n
mu; mu � 0; 1; 2; . . .

such that Z2 � hBAmui is the subgroup of Dn which is
preserved by the Higgs fields coupling to the up-type
quarks. Au; Bu; . . . are in general complex quantities like
Ad; Bd; . . . .

The unitary transformation of the left-handed fields is
given by

 Uu �

0 cos��u�e
i�u sin��u�e

i�u

� ei�u j��
2
p � sin��u���

2
p cos��u���

2
p

1��
2
p � sin��u���

2
p e�i�uj cos��u���

2
p e�i�uj

0BB@
1CCA (46)

where �u � arg�AuB


u � Cu�Du � Eue�i�uk�
� ��uj and

�u is a function of the parameters Au; Bu; . . . .
The masses for the first, second and third generation

read:

 m u � jDu � Eue�i�ukj;

m2
c �

1

2
�jAuj2 � 2�jBuj2 � jCuj2� � jDu � Eue�i�ukj2 � ��jAuj2 � 2�jBuj2 � jCuj2� � jDu � Eue�i�ukj2� sec�2�u��;

m2
t �

1

2
�jAuj

2 � 2�jBuj
2 � jCuj

2� � jDu � Eue�i�ukj2 � ��jAuj
2 � 2�jBuj

2 � jCuj
2� � jDu � Eue�i�ukj2� sec�2�u��:

(47)

Taking Eqs. (43) and (46) we arrive at the following form for the CKM mixing matrix VCKM:

 VCKM � UT
uU


d �

1

2

�ei�djx�sd �x� ei�djx�cd
2ei
cdcu � y�sdsu �e�i�djy�su 2ei
cusd � y�cdsu
�y�cusd � 2ei
cdsu e�i�djy�cu y�cdcu � 2ei
sdsu

0B@
1CA (48)

where we defined: x� � �1� ei��j�, y� � �1� e�i��j�,
�� � �u ��d, 
 � �u � �d and used the abbrevia-
tions: sd;u � sin��d;u� and cd;u � cos��d;u�.

As one can see the element jVusj solely depends on the
group theoretical quantities n, j, mu and md:

 jVusj �
1

2
j1� ei��jj �

��������cos
�
��mu �md�j

n

��������� (49)

Note further that only the transformation properties of
the left-handed fields which form a doublet under the flavor
groupDn are relevant, since only their representation index
j appears in Eqs. (48) and (49).8

The other two mixing angles �q13 and �q23 can be tuned by
the use of the two unconstrained angles �u and �d. The

Jarlskog invariant J CP [21] depends on the phase 
. In this
way the experimental value of J CP of 3:08� 10�5 can be
reproduced.

In the case of n � 7 and �mu �md�j � 3, e.g. md � 0,
mu � 1 and j � 3, we arrive at a value of j cos�3�7 �j �
0:2225 for jVusj which is only 2% smaller than the mea-
sured value 0:2272�0:0010

�0:0010 [1]. In other words the size of the
Cabibbo angle can be explained by group theoretical
means derived from a flavor symmetry Dn which is broken
down to two distinct subgroups, Z2 � hBAmui and Z2 �
hBAmdi with mu � md, in the up and down quark sector.
This obviously requires that up-type and down-type quarks
do not couple to the same Higgs fields, i.e. a further
separation mechanism is needed here. In the SM one can
simply assume an extra Z2 symmetry:

 Qi ! Qi; uci ! uci and dci ! �d
c
i

for the fermions and for the Higgs fields:

 ’ui ! ’ui and ’di ! �’di

8To be correct, the phases �u;d also depend on the index k of
the doublet representation under which the left-handed conjugate
fields transform. Nevertheless these phases depend on many
other parameters Au;d; Bu;d; . . . such that they are primarily not
determined by the group theory of the flavor symmetry.
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where ’ui denote all Higgs fields which can couple to the
up-type quarks, while ’di only couple to down-type
quarks. In order to obtain two distinct VEV configurations
for the fields ’ui and ’di which either break to Z2 �
hBAmui or Z2 � hBAmdi we also need a separation mecha-
nism in the Higgs sector, but this issue will not be discussed
here.

Equations (44) and (47) for the masses of the up-type
and down-type quarks already show some possible source
of fine-tuning, since the smallness of the up quark mass mu
as well as of the strange quark mass ms must be due to the
smallness of the expression jDu � Eue�i�ukj and jDd �
Edei�dkj, respectively. A further study of this issue is
however beyond the scope of this paper and will be treated
in detail elsewhere [22].

There is a second way to generate such a mixing matrix:
If we change the transformation properties of the left-
handed conjugate fields to

 dc; uc 	 �1i1
; 1i2

; 1i3
�;

we arrive at a mass matrix which is of the form of the
transpose of the one shown in Eq. (10). The preserved
subgroup is then also of the form Z2 � hBAmi, as ex-
plained in Sec. V C 1. The number of free parameters is
again five and therefore the chances to find a numerical
solution which can reproduce all the masses and mixing
parameters correctly apart from the predicted value for one
of the elements of VCKM are similar as in the case above.
However, in a complete model one or the other mass matrix
may be more easily accommodated with the suitable num-
ber of Higgs fields, VEV alignments, etc. From the theo-
retical viewpoint the model in which the left- as well as the
left-handed conjugate fields are partially unified into a
doublet and a singlet representation of the discrete group
might be favorable.

In all cases a thorough check whether one can accom-
modate all the quark masses and the rest of the mixing
angles is necessary, although we believe that this can be
done due to the number of free parameters. Furthermore a
Higgs potential which allows for the breaking into the two
different directions needs to be constructed and proven to
be stable against corrections. And also an extension of this
idea to include leptons is desirable. All these issues com-
bined with a numerical study are delegated to a future
publication [22].

VII. COMPARISON WITH THE LITERATURE

The fact that preserved subgroups of a dihedral group
can play an important role in obtaining certain mixing
patterns is often not explicitly discussed. Several results
from the literature can however easily be obtained from the
group theoretical considerations we have performed in this
paper. Realizing this can help to understand how and why
flavor symmetry models work, as the following exemplary
discussion shows.

In Ref. [12] a D4 flavor symmetry is used, with an
additional Z�aux�

2 for separating the three different Yukawa
sectors: the charged lepton sector, the Dirac neutrino sector
and the Majorana neutrino sector. The transformation
properties of the fermions are chosen to give a two doublet
structure in all three sectors. Then one breaks down to a
different subgroup in each sector: D2 is conserved in the
charged lepton sector. D4 is conserved in the Dirac neu-
trino sector, while it is broken down to Z2 in the Majorana
neutrino sector. As the authors use a different basis, the
actual mass matrices differ from ours. The resulting physi-
cal mixing angles however are unaffected, i.e independent
of the basis. Here we just describe the result for the mass
matrices in their basis. The mass matrix for the charged
leptons as well as the Dirac neutrino mass matrix are
diagonal, i.e. they do not contribute to the lepton mixing.
Two texture zeros in the right-handed neutrino mass matrix
are obtained, which only appear because a gauge singlet
transforming as a further nontrivial D4 singlet is absent
from the model. They are removed when the seesaw
mechanism is applied. The resulting mass matrix for the
light neutrinos is �� symmetric, i.e. it has a maximal
mixing angle �l23, a zero mixing angle �l13 and a free
mixing angle �l12. The texture zeros in the right-handed
neutrino mass matrix effect the relations between the ei-
genvalues of the light neutrino mass matrix, i.e. they en-
force a normal hierarchy. Nevertheless, this model is not
complete, as quarks are not discussed in this context.
Reference [23] goes on to discuss soft breaking of the D4

in the scalar potential. More precisely, the Z2 subgroup is
broken explicitly. Thus, the resulting doublet VEV no
longer conserves Z2, which can lead to sizable deviations
from a maximal �l23, while leaving �l13 � 0.

A similar result is reproduced by a D3 flavor symmetry
in Ref. [13]. In this case, the authors work in the same
group basis we have used, so a comparison is more
straightforward. Nevertheless, they present their Dirac
mass matrices in the basis �LR, while our results are always
given in the basis of LLc. TheD3�� S3� flavor symmetry is
again joined by a Z2 symmetry, which creates the same
three sectors. D3 is then broken to Z3 in the charged lepton
sector. In the Dirac neutrino sector the entire flavor sym-
metry is conserved, while it is broken down to a Z2 in the
Majorana neutrino sector—in this case all three equivalent
subgroups hBi, hBAi and hBA2i are mentioned. The
charged lepton mass matrix and the Dirac mass matrix
for the neutrinos are again diagonal, i.e. the nontrivial
mixing stems from the right-handed neutrino mass matrix.
Here the maximal scalar field content is allowed, resulting
in the same light neutrino mass matrix as for theD4 model.
The additional parameter which arises from having the full
scalar field content does not affect the structure of the
neutrino mass matrix obtained from the type I seesaw
formula, can however affect the neutrino mass hierarchy,
as in this case the normal hierarchy is not necessarily
predicted.
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We finally mention some further examples, where non-
trivial subgroups of dihedral flavor symmetries are con-
served and explicitly mentioned. References [24,25]
mention the possibility of breaking their dihedral flavor
symmetry down to a nontrivial subgroup. Reference [24]
uses a D3 flavor symmetry, which is then broken down to
Z2 to achieve maximal atmospheric mixing and �l13 � 0.
Reference [25] uses a D5 symmetry. If this is broken down
to Z2, maximal mixing can be achieved. However, without
separating the Yukawa sectors or explicitly breaking the
residual symmetry, the resulting maximal mixing angles in
the neutrino and charged lepton sector will cancel in the
leptonic mixing matrix.

The use of a dihedral symmetry is not only limited to the
determination of the leptonic mixing angles. The breaking
chains of Sec. IV can also be employed to explain the
fermion mass hierarchy, by giving mass to different gene-
rations at different breaking scales. Reference [26] breaks
D03 down to Z6 and then further down, while [27] breaks a
D6 flavor symmetry down to Z2 and then fully breaks it.

VIII. CONCLUSIONS

We have determined the possible Dirac and Majorana
mass matrix structures that arise if a dihedral flavor group
Dn is broken down to a nontrivial subgroup by VEVs of
some scalar fields. In order to exploit the non-Abelian
structure of the dihedral groups we only considered assign-
ments where at least two of the left-handed or left-handed
conjugate (SM) fermions are unified into an irreducible
two-dimensional representation, i.e.

 L	 �1i1
; 1i2

; 1i3
�; Lc 	 �1j; 2k� (50)

or

 L	 �1i; 2j�; Lc 	 �1l; 2k� (51)

We constrained ourselves by the requirement that the
mass matrices have to have a nonvanishing determinant to
reduce the number of cases so that a general discussion
becomes possible. The number of different mass matrix
structures we encounter is then limited. We find the follow-
ing mass matrix structures:

 

0 C �Ce�i�k

A D De�i�k

B E Ee�i�k

0B@
1CA (52)

and

 

A C Ce�i�k

B D E
Be�i�j Eei�k�j�� De�i�j�k��

0B@
1CA: (53)

Both of these matrix structures are associated with a con-
served subgroup Z2. The other mass matrices which can

arise from a conserved subgroup are either diagonal, semi-
diagonal or of block form.

All these mass matrices can result from a Dirac mass
term and several ones also from a Majorana mass.

For Majorana mass terms we additionally allow the
assignment that all involved fermions can transform as
one-dimensional representations. Furthermore, we also
studied the case of an unbroken dihedral group.

It turns out that the double-valued groupsD0n do not lead
to additional structures. We observe one slight difference in
case of a Majorana mass term for D0n with n odd, if the
fermions transform as three one-dimensional representa-
tions. Because of the odd one-dimensional representations
a semidiagonal mass matrix can arise. Although this struc-
ture cannot be deduced with one-dimensional representa-
tions in the groups Dn (n arbitrary) and D0n (n even), this
structure is not new, as it can be reproduced, if the fermions
which transform as the two odd one-dimensional represen-
tations are unified into a two-dimensional representation.

Note that all these matrix structures are based on the
assumption that for each representation � which is/con-
tains a trivial representation under the residual subgroup of
the flavor symmetry there is a Higgs field present in the
theory which transforms as �. In this way the structures of
the mass matrices only depend on the choice of the original
group, the subgroup as well as the transformation proper-
ties of the fermions, but not on the choice of the Higgs
content. Therefore our results are less arbitrary. Reducing
the Higgs content is also possible by simply setting the
corresponding VEV to zero in the mass matrix. In some
cases this just reduces the number of parameters and there-
fore increases the predictive power of the model [12],
while in other cases this is essential in order to get the
desired mixing pattern [6,20,28].

In general one observes that for several subgroups the
mass matrices (can) exhibit 2� 3-interchange symmetry,
as, for example, Eq. (53), if the group theoretical phase �
is set to zero. This can be used to obtain maximal atmos-
pheric mixing in the leptonic sector.

Interestingly, it is not only possible to predict such
special mixing angles as 45� or zero with a dihedral flavor
symmetry, as we showed in the very first application of our
general study. There we were able to describe one element
of the CKM mixing matrix, namely jVusj, which corre-
sponds to the Cabibbo angle, only in terms of group
theoretical quantities, like the index n of the dihedral group
Dn, the index j of the representation under which the (left-
handed) quarks transform as well as the indices of the
preserved subgroups of Dn, mu and md:

 jVusj �
��������cos

�
��mu �md�j

n

����������
��������cos

�
3�
7

���������� 0:2225:

(54)

Since these dihedral symmetries have already been used
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several times in the literature, it was interesting to see
whether the successful models, like the ones by Grimus
and Lavoura which can predict �� symmetry with the help
of the flavor symmetry D4 � Z

�aux�
2 [12] or D3 � Z

�aux�
2

[13], already make use of our described idea. And indeed
these two models are examples in which the three sectors
represented by the charged lepton mass matrix, the Dirac
neutrino mass matrix and the Majorana mass matrix for the
right-handed neutrinos preserve different nontrivial sub-
groups of the employed flavor symmetry. This mismatch of
the different preserved subgroups then leads to the non-
trivial mixing pattern.

The notation L and Lc of the fermions in our discussion
always implied that they transform under the SM gauge
group. However, all structures remain the same, if we
consider the MSSM as framework. Concerning a GUT
like SU�5� the 15 fermions of one generation are unified
into 10 and �5. As a consequence, for example, the (Dirac)
mass matrix for the up-type quarks stems from the cou-
plings of two 10s. Therefore only the two doublet structure
with i � l and j � k applies here. Similar changes occur, if
we consider other (unified) gauge groups. As our study
includes all the possible mass matrix structures arising
from the two assignments Eqs. (50) and (51), choosing a
gauge group other than the one of the SM under which the
mass terms are invariant does not give rise to new cases.

In our study we always assumed that the involved Higgs
fields (in case of the Dirac mass matrix) are copies of the
SM Higgs SU�2�L doublet. This might cause problems in a
complete model, since it is well-known that multi-Higgs
doublet models suffer from flavor-changing neutral-current
interactions whose bounds usually demand that the Higgs
fields have masses above 10 TeV. However, all structures
we have presented can also be achieved in models in which
only the SM Higgs doublet (or in the MSSM the Higgs
fields hu and hd) exists and the flavor symmetry is broken
by some gauge singlets, usually called flavons, mostly at a
high energy scale. Then one has to deal in general with
nonrenormalizable operators consisting of two fermions,
the usual Higgs field and appropriate combinations of the
flavon fields. According to their mass dimension the ope-
rators then have different suppression factors compared to
the multi-Higgs doublet case where all operators arise at
the renormalizable level. In an explicit realization one
therefore has to check whether all results which are pro-
duced in a multi-Higgs doublet model can be reproduced
by the usage of nonrenormalizable operators in a natural
way. For example, the top Yukawa coupling has to be large
and should come from a renormalizable term.

We mainly concentrated on the explanation of the mix-
ing pattern of the fermions by the flavor symmetry and its
breaking to subgroups. However it is also interesting to ask
whether the hierarchy among the fermion masses, espe-
cially among the up-type quarks, could also be accommo-
dated in this framework, for example, by some stepwise

breaking of the symmetry. Obviously, it is an advantage, if
this could also be done. If not, the Froggatt-Nielsen mecha-
nism [29] could be used as an explanation. For this an extra
U�1� flavor symmetry is needed. It is in general nontrivial
to combine a certain assignment of the fermions under the
discrete flavor group with a certain set of U�1� charges
being necessary for the mass hierarchy. As mentioned
above the usage of flavon fields is already a kind of
implementation of the Froggatt-Nielsen mechanism, as
their existence generally leads to nonrenormalizable ope-
rators, whose suppression according to the number of
insertions of flavon fields might be the origin of the fer-
mion mass hierarchy.

And finally we want to comment on the VEValignment.
As we saw, there exists a specific VEV structure for scalar
fields transforming under a two-dimensional representa-
tion which is necessary for conserving certain subgroups.
This VEV structure

 h ji
e�2�ijm=n

1

 !
(55)

can in fact arise naturally from the extremization of a scalar
potential. For example:

(i) a D3-invariant two Higgs potential, with the two real
scalar fields transforming as SM gauge singlets and
as 2 under D3,

(ii) the equivalent potential for D4, with two real scalar
fields transforming as SM gauge singlets and as 2
under D4,

(iii) the most simple phenomenologically viable D3 in-
variant potential for SU�2�L doublet scalars, which is
now a three Higgs potential with the three scalar
fields transforming as SU�2�L doublets and as 2
and 11 under D3.9,10

One finds in all cases that the VEV structure given above
is the only one that can extremize the potential while
breaking the flavor symmetry, if one assumes real parame-
ters in the potential and possibly also no correlations
among the parameters of the potential.

In contrast to this, one finds that for the simplest SU�2�L
doublet potential in D4 no such explicit statement can be
made. Nevertheless, the above VEV structure is still
allowed.

These statements make us confident that there is some
way to get the announced VEV structure, even if more
scalar fields exist in the model.

9Without the additional singlet the potential exhibits an acci-
dental U�1� symmetry, apart from the gauge symmetries [14].

10Here we preferred to use real representation matrices which
then have real eigenvectors belonging to the eigenvalue 1 such
that we could solve the extremization conditions under the
assumption of real parameters and also real VEVs. In this way
all allowed VEV configurations correspond to the specific VEV
structure.
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Regarding the success of models like [6,20] the crucial
issue of the VEV alignment might be solved in a more
efficient way in the context of supersymmetric models with
flavon fields. The main reason is that the (super-)potential
itself is significantly simplified by using gauge singlet
scalars which transform nontrivially under GF.
Furthermore, as these fields are gauge singlets which break
the flavor symmetry at a high energy scale �>mSUSY, the
condition that the F-terms of some flavored gauge singlet
fields vanish determine the equations for the VEVs. These
can then be often solved analytically.
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APPENDIX A: MORE GROUP THEORY

1. Kronecker products

The products of the one-dimensional representations of
Dn are:

� 11 12 13 14

11 11 12 13 14

12 12 11 14 13

13 13 14 11 12
14 14 13 12 11

where the representations 13;4 only exist in groupsDn with
an even index n. The products 1i � 2j transform as

 1 1;2 � 2j � 2j

and for n even there are also

 1 3;4 � 2j � 2k with k �
n
2
� j:

If 4 is a divisor of n, the product of the representation 2j
with j � n

4 with any one-dimensional representation of the
group also transforms as 2j.

The products 2i � 2i are of the form 11 � 12 � 2j with
j � min�2i; n� 2i�. In case that the group Dn has an index
n which is divisible by four one also finds the structure
2i � 2i �

P4
j�1 1j for i � n

4 . This shows that there is at
most one representation in each group Dn with this prop-
erty. The mixed products 2i � 2j can have two structures:
(a) 2i � 2j � 2k � 2l with k� ji� jj and l � min�i�
j; n� �i� j�� and (b) 2i � 2j � 13 � 14 � 2k with k �
ji� jj for i� j � n

2 .

For D0n with n even the one-dimensional representations
have the same product structure as forDn while for n being
odd they are

� 11 12 13 14

11 11 12 13 14

12 12 11 14 13

13 13 14 12 11

14 14 13 11 12

due to the fact that the two one-dimensional representa-
tions 13 and 14 are complex conjugated to each other. The
rest of the formulas for the different product structures are
the same as in the case of D2n, i.e. in each formula above
which is given for Dn one has to replace n by 2n.

The Kronecker products can also be found in Ref. [31].

2. Clebsch-Gordan coefficients

a. for Dn

For 1i � 1j � 1k the Clebsch-Gordan coefficient is
trivially one. For 1i � 2j the Clebsch-Gordan coefficients
are:

 for i � 1:
1 0
� �

0 1
� �� �

	 2j and

for i � 2:
1 0
� �
0 �1
� �� �

	 2j:

If the index n of Dn is even, the group has two further one-
dimensional representations 13;4 whose products with 2j

are of the form:

 for i � 3:
0 1
� �
1 0
� �� �

	 2��n=2��j� and

for i � 4:
0 1
� �
�1 0
� �� �

	 2��n=2��j�:

For the products 2i � 2i the covariant combinations are:

 

0 1
1 0

� �
	 11;

0 1
�1 0

� �
	 12

and

 

1 0
0 0

� �
0 0
0 1

� �
0BB@

1CCA	 22i or

0 0
0 1

� �
1 0
0 0

� �
0BB@

1CCA	 2n�2i:

If the index n of Dn is even and i � n
4 (4 has to be a divisor

of n), there is a second possibility: 2i � 2i �
P4

j�1 1j.
The Clebsch-Gordan coefficients are

 

0 1
1 0

� �
	 11;

0 1
�1 0

� �
	 12;

1 0
0 1

� �
	 13;

1 0
0 �1

� �
	 14:

For the products 2i � 2j with i � j there are the two
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structures 2i � 2j � 2k � 2l with k � ji� jj and l �
min�i� j; n� �i� j�� or 2i � 2j � 13 � 14 � 2k with
k � ji� jj, if i� j � n

2 (obviously n has to be even).
The Clebsch-Gordan coefficients for 2i � 2j � 2k � 2l

are:

 

0 1
0 0

� �
0 0
1 0

� �
0BB@

1CCA	 2i�j or

0 0
1 0

� �
0 1
0 0

� �
0BB@

1CCA	 2j�i

and

 

1 0
0 0

� �
0 0
0 1

� �
0BB@

1CCA	 2i�j or

0 0
0 1

� �
1 0
0 0

� �
0BB@

1CCA	 2n��i�j�:

For the structure 2i � 2j � 13 � 14 � 2k with i� j � n
2

the Clebsch-Gordan coefficients are

 

1 0
0 1

� �
	 13;

1 0
0 �1

� �
	 14

and

 

0 1
0 0

� �
0 0
1 0

� �
0BB@

1CCA	 2i�j or

0 0
1 0

� �
0 1
0 0

� �
0BB@

1CCA	 2j�i:

b. for D0n
For n even the Clebsch-Gordan coefficients for the

products 1i � 2j � 2k are the same as in the case of D2n,
i.e. for i � 3, 4 the condition for k is j� k � n instead of
n
2 .

If n is odd, the same holds for j odd whereas for j even
the Clebsch-Gordan coefficients of the products 13 � 2j

and 14 � 2j have to be interchanged.
The Clebsch-Gordan coefficients for the products 2i �

2i are the same as forD2n, if i is even. Similarly, the ones of
2i � 2j with i � j are the same, if i, j are both even or one is
even and one is odd, if n is even. For n being odd the only
difference is that in the case that the product is of the form
2i � 2j � 13 � 14 � 2k the Clebsch-Gordan coefficients
for the covariant combination transforming as 13 and 14
are interchanged.

Concerning the structure of the products 2i � 2i � 11 �

12 � 2j with j � min�2i; 2n� 2i� for i odd, one finds the
following:

 

0 1
�1 0

� �
	 11

0 1
1 0

� �
	 12

and

 

1 0
0 0

� �
0 0
0 �1

� �
0BB@

1CCA	 22i or

0 0
0 1

� �
�1 0
0 0

� �
0BB@

1CCA	 22n�2i:

If i � n
2 (n even), then one has 2i � 2i �

P4
j�1 1j. The

Clebsch-Gordan coefficients are

 

0 1
�1 0

� �
	 11;

0 1
1 0

� �
	 12;

1 0
0 �1

� �
	 13;

1 0
0 1

� �
	 14:

2i � 2j for i, j being odd is either 2k � 2l with k � ji� jj
and l � min�i� j; 2n� �i� j�� or 13 � 14 � 2k with k �
ji� jj, if i� j � n. The Clebsch-Gordan coefficients in the
first case are:

 

0 1
0 0

� �
0 0
�1 0

� �
0BB@

1CCA	 2i�j or

0 0
1 0

� �
0 �1
0 0

� �
0BB@

1CCA	 2j�i

and

 

1 0
0 0

� �
0 0
0 �1

� �
0BB@

1CCA	 2i�j or

0 0
0 1

� �
�1 0
0 0

� �
0BB@

1CCA	 22n��i�j�:

In the second one the Clebsch-Gordan coefficients are:

 

1 0
0 �1

� �
	 13;

1 0
0 1

� �
	 14

and

 

0 1
0 0

� �
0 0
�1 0

� �
0BB@

1CCA	 2i�j or

0 0
1 0

� �
0 �1
0 0

� �
0BB@

1CCA	 2j�i:

APPENDIX B: DECOMPOSITION UNDER
SUBGROUPS

The decomposition of representations of GF under its
subgroups is given in Tables III, IV, V, and VI. We have
used the following nonstandard convention for the repre-
sentation of Zn: The representation 1k transforms as
e�2�i=n��k�, so that 10 denotes the trivial representation and
1�n�k� � 1k.

We will denote the components of the two-dimensional
representation 2k by

 2 k 	
ak

bk

� �
:

For two-dimensional representations under dihedral sub-
groups, we find in the tables the general identification 2k 	
2k. However, dihedral subgroups will have less two-
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dimensional representations than the original group, so we
need to make the following identifications, if the dihedral
subgroup has no representation 2k:
In Dj, j even:

 �e�imj=naj=2 � bj=2� 	 13; ��e�imj=naj=2 � bj=2� 	 14

(B1)

 �e2�imj=naj � bj� 	 11; ��e2�imj=naj � bj� 	 12

(B2)

 

e2�imk=nak

bk

 !
	 2k

�
if k<

j

2

�
(B3)

 

bk

e2�imk=nak

� �
	 2j�k

�
if j> k>

j

2

�
: (B4)

In Dj, j odd:

 �e2�imj=naj � bj� 	 11; ��e2�imj=naj � bj� 	 12

(B5)

 

e2�imk=nak

bk

 !
	 2k

�
if k �

j� 1

2

�
(B6)

 

bk

e2�imk=nak

� �
	 2j�k

�
if j> k>

j� 1

2

�
: (B7)

If k> j, 2k 	 2�k mod j�. If j divides k, then 2k transforms
just as 2j, i.e. as 11 � 12. For D0j one can make the same
identifications as for Dj, j even, if one makes the substitu-
tions j! 2j and n! 2n. For j dividing k, 22k then trans-
forms as 22j, i.e. as 11 � 12.

APPENDIX C: BREAKING CHAINS FOR D0n

We give the possible breaking sequences for a double-
valued dihedral group D0n. The breaking sequences for Dn
along with a discussion of the conventions used is given in
Sec. IV.

TABLE III. Transformation properties of the representations
of a dihedral group under its Abelian subgroups, as determined
in Sec. III. The rightmost column shows whether a representa-
tion has a component, which transforms trivially under the
subgroup, i.e. if a scalar field transforming under this represen-
tation can acquire a VEV, while conserving this subgroup. If
only a specific VEV structure is allowed, it is given explicitly,
otherwise an arbitrary VEV is allowed.

Dn ! Subgroup VEV allowed?

Zn � hAi
11 ! 10 Yes
12 ! 10 Yes
13 ! 1n=2

14 ! 1n=2

2k ! ak 	 1k, bk 	 1�n�k�

Zj � hA
n=ji

11 ! 10 Yes
12 ! 10 Yes
13 ! 1n=2 If n

j even

14 ! 1n=2 If n
j even

2k ! ak 	 1k, bk 	 1j�k If j j k

Z2 � hBAmi

11 ! 10 Yes
12 ! 11

13 ! 1m If m even
14 ! 1m�1 If m odd

2k ! �e2�imk=nak � bk� 	 10,
��e2�imk=nak � bk� 	 11

e�2�ikm=n

1

 !

Zn=2 � hA
2i

11 ! 10 Yes
12 ! 10 Yes
13 ! 10 Yes
14 ! 10 Yes
2k ! ak 	 1k, bk 	 1��n=2��k�

TABLE IV. Transformation properties of the representations
of a dihedral group under its non-Abelian subgroups. For further
details see caption of Table III.

Dn ! Subgroup VEV allowed?

Dn=2 � hA
2;Bi

11 ! 11 Yes
12 ! 12

13 ! 11 Yes
14 ! 12

2k ! 2k

Dn=2 � hA
2;BAi

11 ! 11 Yes
12 ! 12

13 ! 12
14 ! 11 Yes
2k ! 2k

Dj � hA
n=j;BAmi

11 ! 11 Yes
12 ! 12

13 ! 11 ( nj even, m even) Yes

12 ( nj even, m odd)

13 ( nj odd, m even)

14 ( nj odd, m odd)

14 ! 11 ( nj even, m odd) Yes

12 ( nj even, m even)

13 ( nj odd, m odd)

14 ( nj odd, m even)

2k ! 2k
e�2�ikm=n

1

 !
(if j j k)
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 D0n!
h12iZ2n!

h13iZn!
h2ji
Zj �jjn�

 D0n!
h12iZ2n!

h2ji

Zj

 D0n!
h13iZn!

h2ji

Zj �jjn; n odd�

 D0n!
h13iD0n=2!

h12iZn!
h2ji
Zj �jjn; n even�

 D0n!
h13iD0n=2!

h14iZn!
h2ji
Zj �jjn; n even�

 D0n!
h13iD0n=2!

h2ji
Zj �jjn; n even�

 D0n!
h13iD0n=2!

h2ji
0

Z4!
h14iZ2 �j�

n
2
�

(mj even and for 13 and 14 exchangedmj is odd)

D0n!
h13iD0n=2!

h2ji
0

Z4!
h2ki

0

Z2 (j� n
2 ;mj � mk)

(mj even for 13 and for 14 mj is odd)

D0n!
h13iD0n=2!

h2ji
0

D0j=2!
h14iZj (jjn)

(mj even—for 13 and 14 exchanged mj is odd)

D0n!
h13iD0n=2!

h2ji
0

D0j=2!
h2kiZk (jjn; kjj)

(mj even for 13 and for 14 mj is odd)

D0n!
h13iD0n=2!

h2ji
0

D0j=2!
h2ki

0

Z4!
h14iZ2 (j j n;mj � mk; k�j)

TABLE V. Transformation properties of the representations of
a double-valued dihedral group under its Abelian subgroups. For
the decomposition of the two-dimensional D0n representations
under its subgroup Z4 one has to mention that 2k for k even splits
up into 10 and 12 under Z4, while for k being odd the represen-
tations are 11 and 13. For further details see caption of Table III.

D0n Subgroup VEV allowed?

Z2n � hAi
11 ! 10 Yes
12 ! 10 Yes
13 ! 1n
14 ! 1n
2k ! ak 	 1k, bk 	 1�2n�k�

Zn � hA
2i

11 ! 10 Yes
12 ! 10 Yes
13 ! 10 Yes
14 ! 10 Yes
2k ! ak 	 1k, bk 	 1�n�k�

Zj � hA
2n=ji

11 ! 10 Yes
12 ! 10 Yes
13 ! 1n If 2n

j even

14 ! 1n If 2n
j even

2k ! ak 	 1k, bk 	 1j�k If j j k (k can be odd)

Z4 � hBAmi

11 ! 10 Yes
12 ! 12

13 ! 10 (n even, m even) Yes

11 (n odd, m odd)

12 (n even, m odd)

13 (n odd, m even)

14 ! 12 (n even, m even)

13 (n odd, m odd)

10 (n even, m odd) Yes

11 (n odd, m even)

2k ! �e�imk=nak � bk� 	 10;1,
��e�imk=nak � bk� 	 12;3

e��ikm=n

1

 !
(if k even)

Z2 � hA
ni

11 ! 10 Yes
12 ! 10 Yes
13 ! 1n If n even
14 ! 1n If n even
2k ! ak 	 1k, bk 	 1k If k even

TABLE VI. Transformation properties of the representations
of a double-valued dihedral group under its non-Abelian sub-
groups. For further details see caption of Table III.

D0n ! Subgroup VEV allowed?

D0n=2 � hA
2;Bi

11 ! 11 Yes
12 ! 12
13 ! 11 Yes
14 ! 12

2k ! 2k

D0n=2 � hA
2;BAi

11 ! 11 Yes
12 ! 12

13 ! 12

14 ! 11 Yes
2k ! 2k

D0j=2 � hA
2n=j;BAmi

11 ! 11 Yes
12 ! 12

13 ! 11 ( 2n
j even, m even) Yes

12 ( 2n
j even, m odd)

13 ( 2n
j odd, m even)

14 ( 2n
j odd, m odd)

14 ! 11 ( 2n
j even, m odd) Yes

12 ( 2n
j even, m even)

13 ( 2n
j odd, m odd)

14 ( 2n
j odd, m even)

2k ! 2k
e��ikm=n

1

 !
(if j j k), k even
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(mj even—for 13 and 14 exchanged, mj is odd)

D0n!
h13iD0n=2!

h2ji
0

D0j=2!
h2ki

0

Z4!
h2li

0

Z2 (j jn;mj�mk �ml;k�j)
(mj even for 13 and for 14 mj is odd)

D0n!
h2ji

0

Z4!
h13iZ2 (mj arbitrary)

D0n!
h2ji

0

Z4!
h2ki

0

Z2 (mj � mk)

D0n!
h2ji

0

D0j=2!
h12iZj (mj arbitrary)

D0n!
h2ji

0

D0j=2!
h13iZj (jjn)

(n odd ormj odd—if 13 ! 14, then n is odd ormj is even.)

D0n!
h2ji

0

D0j=2!
h13iZ2 (j�n; n even)

(mj odd for 13 and for 14 mj is even)

D0n!
h2ji

0

D0j=2!
h13iZ4!

h14iZ2 (n even)

(mj even—for 13 and 14 exchanged mj is odd)

D0n!
h2ji

0

D0j=2!
h13iZ4!

h2ki
0

Z2 (n even;mj � mk)
(mj even for 13 and for 14 mj is odd)

D0n!
h2ji

0

D0j=2!
h2kiZk (kjj;mj arbitrary)

D0n!
h2ji

0

D0j=2!
h2ki

0

Z4!
h13iZ2 (n even;mj � mk; k�j)

(mj odd for 13 and for 14 mj is even)

D0n!
h2ji

0

D0j=2!
h2ki

0

Z4!
h2li

0

Z2 (mj � mk�� ml�; k�j)


D0n!
h2ji
Zj!
h2kiZk (kjj)


D0n!
h2ji

0

D0j=2!
h2ki

0

D0k=2 (kjj;mj � mk).
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