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We compute an effective action for a composite Higgs boson formed by new fermions belonging to a

general technicolor non-Abelian gauge theory, using a quite general expression for the fermionic self-

energy that depends on a certain parameter (�), that defines the technicolor theory from the extreme

walking behavior up to the one with a standard operator product expansion behavior. We discuss the

values of the trilinear and quadrilinear scalar couplings. Our calculation spans all the possible physical

possibilities for mass and couplings of the composite system. In the case of extreme walking technicolor

theories we verify that it is possible to have a composite Higgs boson with a mass as light as the present

experimental limit, contrary to the usual expectation of a heavy mass for the composite Higgs boson. In

this case we obtain an upper limit for the Higgs boson mass, (MH � Oð700Þ GeV for SUð2ÞTC), and the

experimental data on the Higgs boson mass constrain SUðNÞTC technicolor gauge groups to be smaller

than SUð10ÞTC.
DOI: 10.1103/PhysRevD.77.075012 PACS numbers: 11.15.Tk, 12.60.Nz, 12.60.Rc

I. INTRODUCTION

In the standard model of elementary particles the fer-
mion and gauge boson masses are generated due to the
interaction of these particles with elementary Higgs scalar
bosons. Despite its success there are some points in the
model as, for instance, the enormous range of masses
between the lightest and heaviest fermions and other pecu-
liarities that could be better explained at a deeper level. The
nature of the Higgs boson is one of the most important
problems in particle physics, and there are many questions
that may be answered in the near future by the LHC
experiments, such as: Is the Higgs boson, if it exists at
all, elementary or composite? What are the symmetries
behind the Higgs mechanism?

The possibility that the Higgs boson is a composite state
instead of an elementary one is more akin to the phenome-
non of spontaneous symmetry breaking that originated
from the effective Ginzburg-Landau Lagrangian, which
can be derived from the microscopic BCS theory of super-
conductivity describing the electron-hole interaction (or
the composite state in our case). This dynamical origin of
the spontaneous symmetry breaking has been discussed
with the use of many models, the most popular one being
the technicolor (TC) model [1]. Unfortunately we do not
know the dynamics that form the scalar bound state, which

should play the role of the Higgs boson in the standard
model symmetry breaking, and no phenomenologically
satisfactory model along this line has been derived up to
now.
Most of the models for the spontaneous symmetry

breaking of the standard model based on the composite
Higgs boson system depends on specific assumptions about
the theory particle content and consequently on the dy-
namics responsible for the bound state formation [2], and
one of the questions that we address in this work is how can
we make predictions about the effective Higgs Lagrangian
without assuming specific models or dynamics? In princi-
ple, new fermions are bounded by a new interaction
stronger than QCD and originate a composite scalar state
whose wave function is a solution of the Bethe-Salpeter
equation. In non-Abelian gauge theories this wave function
(or the Bethe-Salpeter kernel �BSðp; qÞ) is related to the
self-energy of the new fermions [3]

�ðp2Þ ¼ �BSðp; qÞjq!0; (1)

and here we shall assume for this self-energy (�ðp;�Þ) a
very general expression that interpolates between all pos-
sible scalar wave functions (or all possible non-Abelian
gauge group dynamics) as we vary a specific parameter (�)
present in this function [4]. When this parameter goes to 1
we obtain a fermionic self-energy that behaves as �ðp2Þ /
�3=p2, which is the usual operator product expansion
(OPE) behavior for a gauge theory that develops a dynami-
cal mass scale � [5]. When �! 0 the self-energy is the
one that appears in the extreme walking technicolor theo-
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ries [6]. Using this self-energy ansatz we can study several
properties of the composite Higgs boson in a model inde-
pendent way [7], as we choose the free parameter (�)
which defines the theory to be considered.

Observe that Eq. (1) shows that there is formal relation
between the fermion self-energy (�ðp2Þ) and the scalar
boson wave function. In principle this means that if we
know�ðp2Þwe know all the properties of the scalar boson.
However, we must keep in mind that the calculation of the
effective action is not performed with an exact expression
for the self-energy (or scalar wave function), but with a
simple approximation of this function which obeys the
leading order solution of the Schwinger-Dyson equation
(SDE) for the fermion propagator. By leading order SDE in
the case of non-Abelian gauge theories we understand that
the SDE are solved using as input the bare gauge boson
propagator and solely the effect of the running coupling in
the vertex function. This approximation is usually assumed
as reasonable and has already been tested at higher order
for walking technicolor theories [8]. On the other hand we
also point out that the effective action is a dressed loop
expansion, which is able to capture the nonlinearities of the
dynamical symmetry breaking under a controllable ap-
proximation, as shown by Cornwall and Shellard in
Ref. [9], but if we neglect the next order of the loop
expansion and consider the leading order and simple ap-
proximation for the fermionic self-energy we will surely
have an uncertainty in the boson masses and couplings that
we quote.

With the general self-energy (or composite state wave
function) we can compute an effective action (�) for
composite operators [10] of the effective Higgs system,
which is a type of calculation already performed for several
specific models (see, for instance, Refs. [11,12]). However
the effective potential has not been computed up to now
with the general self-energy ansatz that we referred to
above. Moreover, the effective potential by itself does not
give the full information about the composite Higgs sys-
tem. The effective action contains a kinetic term, which, as
demonstrated by Cornwall and Shellard [9], has the form

�K ¼ 1

2

Z
d4x

½@��ðxÞ�2
�

; (2)

where � is related to the composite wave function and to
obtain a conventional kinetic term we define

�ðxÞ ¼ Z�1=2�ðxÞ; (3)

where� plays the role of the physical field and Z ¼ � acts
as a renormalization constant. The constant Z is important
to set the right scale in our ‘‘Ginzburg-Landau’’ effective
Lagrangian; actually, it will be fundamental to the results
in order to provide the right values of the composite scalar
boson mass and self-coupling constants. This effective
Lagrangian will be useful to set limits on the composite
Higgs boson system in a quite general way, and it will be

given by� which is composed by the kinetic term�K and
the effective potential part�V . Another point that, as far as
we know, has not been extensively discussed in the litera-
ture and we discuss here are the different contributions to
the effective potential that come from the new fermions
that form the scalar composite state, and the ones that come
from ordinary fermions. Both contributions are respon-
sible, as we shall see, for determining the value of the
composite Higgs boson mass which, as our result indicates,
can be as light as a few hundred GeV, corroborating the
results of Ref. [13].
This paper is organized as follows: In Sec. II we discuss

the effective potential for composite operators and how the
kinetic term of the effective action is generated through the
use of the general self-energy ansatz. Section III contains
the actual calculation of the effective action. In Sec. IV we
gather our results and compute the Higgs boson masses,
and in Sec. V we draw our conclusions.

II. EFFECTIVE ACTION AND FERMION SELF-
ENERGY

The effective action for composite operators [10] ( ��), is
a function of the Green functions Gi, and is stationary with
respect to variations of Gi:

� ��

�Gi

¼ 0: (4)

The effective potential is defined by

VðGiÞ
Z
d4x ¼ � ��ðGiÞjtranslation invariant: (5)

In terms of the complete fermion (S) and gauge boson (D)
propagators, VðGiÞ can be written as

VðS;DÞ ¼ �i
Z d4p

ð2�Þ4 TrðlnS�1
0 S� S�1

0 Sþ 1Þ

þ V2ðS;DÞ; (6)

where S0 (and D0) stands for the bare fermion (gauge
boson) propagator.
V2ðS;DÞ is the sum of all two-particle irreducible vac-

uum diagrams. The only contribution that we shall con-
sider to V2ðS;DÞ is the one depicted in Fig. 1, and the
equation

FIG. 1. Two-particle irreducible contribution to the vacuum
energy.
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�V

�S
¼ 0; (7)

gives the SDE for the fermion propagator. We are not
considering contributions to the potential due to gauge
and ghosts loops, because we are interested only in the
fermionic bilinear condensation in the scalar channel,
keeping in mind that we should consider a non-Abelian
gauge theory, stronger than QCD, whose fermions form the
composite Higgs boson. Of course, we are also not con-
sidering the possibility of gauge boson mass generation in
this non-Abelian theory, as may happen in QCD [14], that
could imply only in a change of the potential value at the
minimum, but not in the symmetry breaking pattern of the
effective Higgs theory.

We can represent V2ðS;DÞ analytically in the Hartree-
Fock approximation by

iV2ðS;DÞ ¼ �1
2 Trð�S�SDÞ; (8)

where � is the fermion proper vertex. In Eq. (8) we have
not written the gauge and Lorentz indices, as well as the
momentum integrals.

The physically meaningful quantity that we must com-
pute is the vacuum energy density given by

�V ¼ VðS;DÞ � VðS0; D0Þ; (9)

where we are subtracting the symmetric part of the poten-
tial from the potential that admits condensation in the
scalar channel, that is denoted by VðS0; D0Þ and is a
function of the perturbative propagators (S0 and D0),
where the complete propagator S is related to the free
propagator by

S�1 ¼ S�1
0 � �; (10)

where S0 ¼ ip6 .
The vacuum energy density, if we remove all indices and

integrations, can be written as [10,12]

�V ¼ �iTrðlnS�1
0 S� S�1

0 Sþ 1Þ þ iTr�ðS� S0Þ
þ 1

2iTrð�S�S� �S0�S0ÞD: (11)

Using Eq. (10) and assuming �S0 small, it is possible to
expand �V in powers of �, that gives [10,12]

�V ¼ iTr lnð1� �S0Þ þ 1
2iTr�S0�S0

þ 1
2iTrS0�S0�S0�S0�S0�S0�D0: (12)

In Eq. (12) we have kept terms only up to the �4 term that
comes from the two-loop contribution. Note that expand-
ing the logarithmic term the �2 contribution is absent,
which is a consequence of the fact that � obeys the linear
homogeneous SDE for the fermion propagator [10,15].

We parametrize the self-energy � as [4]

�ðp2Þ ��

�
�2

p2

�
�½1þ bg2 lnðp2=�2Þ��� cosð��Þ: (13)

In the above expression � is the characteristic scale of
mass generation of the theory forming the composite Higgs
boson, which hereafter will be identified with the TC scale,
�TC. b is the coefficient of the g3 term in the renormaliza-
tion group � function, � ¼ 3c=16�2b, and c is the qua-
dratic Casimir operator given by

c ¼ 1
2½C2ðR1Þ þ C2ðR1Þ � C2ðR3Þ�;

where C2ðRiÞ are the Casimir operators for fermions in the
representations R1 and R2 that form a composite boson in
the representation R3. The only restriction on this ansatz is
� > 1=2 [5], and if we consider the formal equivalence
between the solution of the Schwinger-Dyson equation
with the Bethe-Salpeter one for scalar bound states, the
above restriction indicates a condition on the composite
wave-function normalization.
The ansatz in Eq. (13), proposed in Ref. [4], interpolates

between the standard OPE result for the technifermion
self-energy, which is obtained when �! 1, and the ex-
treme walking technicolor solution obtained when �! 0
[6], i.e., this is the case where the symmetry breaking is
dominated by higher order interactions that are relevant at
or above the TC scale, leading naturally to a very hard
dynamics [16,17]. As two of us have pointed out in Ref. [7]
only such kind of solution is naturally capable of generat-
ing a large mass to the third fermionic generation, which
has a mass limit almost saturated by the top quark mass.
This variation of the ansatz with � is what makes our
calculation a general one; it covers all possible solutions
of the Schwinger-Dyson equation (or Bethe-Salpeter equa-
tion) for fermions forming the composite boson.
We can now determine a complete effective theory (or

the Ginzburg-Landau Lagrangian), including the kinetic
term of the effective action. To start with, let us suppose
that the real vacuum leads to fermion condensation and
denote the true ground state by j�i. Taking into account
the structure of the real vacuum, the fermion propagators
are described by a fermion bilinear which is not transla-
tionally invariant

Sðx; yÞ	
 ¼ �ih�jT½�	ðxþ 1
2yÞ 
ðx� 1

2yÞ�j�i: (14)

The Fourier transform of Eq. (14) can be written as

Sðp; kÞ ¼ S0ðp; kÞ þ�ðp; kÞ; (15)

where S0ðp; kÞ is the bare propagator (which is translation-
ally invariant) given by

S0ðp; kÞ ¼ ð2�Þ4�4ðp� kÞ=6k; (16)

and �ðp; kÞ is a gap equation, which can be separated in its
regular part (�R—one that does not represent symmetry
breaking) and a singular part that breaks the symmetry
(�Sðp; kÞ)

�ðp; kÞ ¼ ð2�Þ4�RðkÞ�4ðp� kÞ þ �Sðp; kÞ: (17)
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Our ansatz for �ðp2Þ that appears in Eq. (13) is nothing
else than the linearized solution of �ðp; kÞ.

If we suppose that the expectation value of the fermion
bilinear has the following operator expansion [9]

h�jT½�ðxþ 1
2yÞ ðx� 1

2yÞ�j�i �
y!0

CðyÞ�ðxÞ; (18)

where CðyÞ is a c-number function, and �ðxÞ acts like a
dynamical effective scalar field with anomalous dimension
2�. Therefore we can write

�ðp; kÞ ��ðkÞ
�
�2

p2

�
�½1þ bg2 lnðp2=�2Þ��� cosð��Þ

� �ðkÞ~�ðp2Þ: (19)

As seen in Eq. (19), working in the true vacuum generates a
nontrivial dependence on the momentum k for our varia-
tional parameter �. The kinetic term for our effective
theory is obtained inserting �ðkÞ in the effective action
and expanding around k ¼ 0. The diagrams contributing to
the kinetic part of the energy density are shown in Fig. 2

III. THE GINZBURG-LANDAU LAGRANGIAN

In order to determine the effective Lagrangian we start
computing the kinetic term contribution, which is given by
the polarization diagrams (�ðk2; �Þ) of Fig. 2. This con-
tribution is important in our calculation because it will give
the correct normalization of the effective fields, as dis-
cussed after Eq. (3). The renormalization constant for the
scalar composite field is obtained from [9],

Z � 2
d�ðk2; �Þ

dk2

��������k2¼0
: (20)

The Taylor expansion of Z around k2 ¼ 0 gives

Z � k2

8
g��

@

@k�

@

@k�
�ðk2; �Þ

��������k2�0
; (21)

which after some algebra can be written as

ðZð�ÞÞ�1 � NTCnF
4�2

Z
dp2 ðp2Þ2 ~�2ðp2Þ

ðp2 þ�2
TCÞ3

; (22)

where the index � is related to the ansatz of Eq. (19).
Using Eq. (19), considering that the fermions in the loop

have technicolor and flavor numbers equal to NTC and nF,
respectively, and after some calculation we obtain

Zð0Þ � 4�2�ð2�� 1Þ
NTCnF

�
1þ �

�ð�� 1Þ þ . . .

�
; (23)

where Zð0Þ is the normalization constant obtained perform-
ing the kinetic loop calculation and expanding the result in
the limit �! 0. In Eq. (23) � ¼ bg2. The limit �! 0
will correspond to the extreme walking limit of our effec-
tive Lagrangian. We do the same calculation for the case
�! 1, obtaining

Zð1Þ � 8�2

NTCnF

�
1� ��

�
þ . . .

�
: (24)

Our effective Lagrangian will be given by

�ð�Þ ¼
Z
d4x

�
1

2Zð�Þð�Þ@��@
��

�
��ð�Þ

V ; (25)

where �ð�Þ
V can be written in powers of � leading to

�ð�Þ ¼
Z
d4x

�
1

2Zð�Þð�Þ@��@
��� �ð�Þ

4V

4
�4

� �ð�Þ
6V

6
�6 � . . .

�
; (26)

that after renormalization by Zð�Þ translates to

�ð�Þ
R ¼

Z
d4x

�
1

2
@��@

��� �ð�Þ
4VR

4
�4 � �ð�Þ

6VR

6
�6 � . . .

�
:

(27)

In this expression we have defined the renormalized field

� � ½Zð�Þ��ð1=2Þ�, and the renormalized couplings for the
two limits, �! 0 and �! 1, are given, respectively, by

�ð0Þ
4VR � �ð0Þ

4V½Zð0Þ�2

¼ NTCnF
4�2

½Zð0Þ�2 �
��

1

�ð4�� 1Þ þ
1

2

�

� 4�

�ð4�� 1Þ
�

1

ð4�� 2Þ þ 2�

��
;

�ð0Þ
6VR � �ð0Þ

6V½Zð0Þ�3 ¼ �NTCnF
4�2

½Zð0Þ�3
�2

TC

; (28)

and

�ð1Þ
4VR � �ð1Þ

4V½Zð1Þ�2

¼ NTCnF
4�2

½Zð1Þ�2 �
�
1

4

�
1þ c�TC

2�

�

� �

4�

�
�þ c�TC

8�
ð4�þ 1Þ

��
;

�ð1Þ
6VR � �ð1Þ

6V½Zð1Þ�3 ¼ �NTCnF
4�2

½Zð1Þ�3
7�2

TC

; (29)

where the �ð�Þ
nV are the couplings computed in Appendix A.

Note also that besides the absence of a �2 term, due to
the fact that we assumed that our ansatz satisfies the linear

FIG. 2. Diagrams contributing to the kinetic term in the effec-
tive Lagrangian.
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fermionic self-energy equation, we do not have odd powers
of the effective � field in the potential because we are
assuming massless technifermions [18].

Up to now we have discussed the contributions to the
effective Lagrangian that are originated from the new
fermions responsible for the composite scalar state. In
models based on the technicolor idea the composite scalar
boson is made of these new fermions only. Of course there
are models like topcolor [19] where the top quark has a
strong interaction such as it could supply the scalar com-
posite necessary to the dynamical symmetry breaking of
the electroweak theory. This last possibility would change
the contributions that we should consider to the potential,
but as there is no observed signal in the top quark physics
up to now indicating such a possibility, we do not follow
this path and consider that our composite state is formed
only by new fermionic degrees of freedom. However, even
in this case we still have other contributions to the effective
Lagrangian. The contributions that we are referring to are
the ones coming from ordinary massive quarks and leptons
that couple to the scalar boson. These contributions will be
dominated by the heaviest fermion (the top quark) and will
generate terms of order �3, �4, and higher as will be
discussed in the sequence.

The�3 and�4 contributions to the effective Lagrangian
due to the ordinary massive fermions are given, respec-
tively, by the diagrams of Figs. 3 and 4, where the effective
ff� coupling is determined through Ward identities as
discussed in Refs. [16,17,20], and it is easy to verify that
such a coupling will be given by

{��ff / �{ gW�fðkÞ
2MW

: (30)

Notice that the ordinary fermions masses in composite
Higgs models come from a new type of interaction, that in
the most common approach is called extended technicolor
interaction (ETC). As we do not know the dynamics (or
model) for this specific interaction, we cannot formally
derive their contribution to the effective action. However,
we can compute the effect of ordinary fermions to the
effective potential as a function of their masses, exactly
as performed by Carpenter et al. [21]. These contributions
are expected to be small, since the ordinary fermion masses

are smaller than the characteristic composite scale (�TC).
The calculation of the �3 and �4 terms are presented in
Appendix B, where we determine the effective trilinear and
quadrilinear couplings (the contributions to �V are ob-
tained multiplying these couplings by the normalized
fields). The couplings are equal to:
(a) Trilinear coupling when �� 0

�ð0Þ
3f � 9g3W

32�2

mt

�ð4�� 1Þ
�
mt

MW

�
3

�
�
1� 4�

�ð4�� 2Þ þ . . .

�
; (31)

(b) Trilinear coupling when �� 1

�ð1Þ
3f � 9g3W

32�2

mu

4

�
mu

MW

�
3
�
1� �ð4�� 1Þ

4�
þ . . .

�
;

(32)

(c) Quadrilinear coupling when � ¼ 0

�ð0Þ
4f � 3g4W

64�2M4
W

m4
t

�ð4�� 1Þ ; (33)

This result is the same as the one obtained by
Carpenter et al. [21].

(d) Quadrilinear coupling when � ¼ 1

�ð1Þ
4f � 3g4W

64�2M4
W

m4
u

4
: (34)

The fact that when �� 1 we introduced the massmu, as
discussed in Appendix B, is an approximation, because in
this case we can only generate light fermion masses, in
order to be consistent with the absence of flavor changing
neutral currents. Actually we should say that this last case
is not important and should not be considered, since a
relevant contribution would come from heavy fermions,
and as far as it is known up to now [7], such heavy mass
could only be naturally generated in extreme walking
gauge theories.

FIG. 3. Heavy ordinary fermions (f) contribution to the tri-
linear composite (�) Higgs boson coupling. The gray blobs are
proportional to the effective ff� coupling.

FIG. 4. Heavy ordinary fermions (f) contribution to the
quadrilinear composite (�) Higgs boson coupling. The vertices
are proportional to the effective ff� coupling.
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Observe that the above Eqs. (31)–(34) can easily be
rewritten in terms of the TC scale�TC if we use the relation
between MW and the technipion constant F�,

M2
W ¼ g2wndF

2
�

4
; (35)

where nd is the number of technifermion doublets and F�

is obtained from the Pagels and Stokar relation [22],

F2
� ¼ NTC

8�2

Z dp2p2

ðp2 þ �2ðp2ÞÞ2
�
�2ðp2Þ

� p2

2

d�ðp2Þ
dp2

�ðp2Þ
�
: (36)

After transforming the above momentum integral in
Eq. (36) through a Mellin transformation,

�
1þ � ln

p2

�2
TC

��2� ¼ 1

�ð2�Þ
Z 1

0
dzz2��1e�z

�
p2

�2
TC

���z
;

(37)

and using Eq. (13) and the following expression for the
factor Z

ðZð�ÞÞ�1 � NTCnF
4�2

1

�ð2�Þ
Z 1

0
dz

z2��1e�z

ð2�þ �zÞ ; (38)

we can rewrite the equation for F� in terms of Zð�Þ, which
leads to

ndF
2
� ¼

�
1þ �

2

�
�2

TC

Zð�Þ : (39)

Equation (39) is an interesting example of how the tech-
nipion decay constant varies with the theory dynamics (or
with �). Notice that if we change the dynamics of the
theory we cannot obtain F2

� just with a simple scaled

QCD. Another interesting fact is also the relation between

F2
� and Zð�Þ. Since the fields in the effective Lagrangian

are normalized by different powers of Zð�Þ (or powers of
F2
�, that also varies with �), and since F2

� is fixed by the

weak gauge boson masses, we verified that the behavior of
the effective theory is quite different according to the
different limits of the � parameter.

IV. RESULTS

The full effective Lagrangian for the composite Higgs
system will be given by

� ¼
Z
d4x

�
1

2Zð�Þ @��@
��

�
��V: (40)

Introducing the normalized field

� ¼ �½Zð�Þ��1=2; (41)

we can write

�ð�Þ
R ¼

Z
d4x

�
1

2
@��@

��� �ð�Þ
3fR

3
�3

� ð�ð�Þ
4VR þ �ð�Þ

4fRÞ
4

�4 � �ð�Þ
6VR

6
�6 þ . . .

�
: (42)

The coupling constants that appear in Eq. (42) are the
ones obtained in the previous section. It must be noticed
that the couplings originated from the ordinary fermion
masses are smaller than the ones generated from the tech-
niquarks effective potential. For example,

�ð0Þ
4V

�ð0Þ
4f

� ðNTCnFÞ3
12ð16�2�ð2�� 1ÞÞ2

�
�TC

mt

�
4
: (43)

The �ð2�� 1Þ factor appearing in the denominator is
usually of Oð1Þ for several gauge groups. Assuming a
SUð4ÞTC technicolor theory with nF ¼ 14 [23], in the
case when �! 0, we will obtain a ratio of the following
order

�ð0Þ
4V

�ð0Þ
4f

� Oð10Þ: (44)

In the case when �! 1 the difference can be even larger.
This means that we can neglect the ordinary massive

fermions contribution to �ð�Þ
R (proportional to �ð�Þ

nf ) com-

pared to the one of techniquarks (proportional to �ð�Þ
nV ). The

only exception is the ð�ð�Þ
3fR=3Þ�3 term, which is small but

is the leading term of this order in the effective action and
introduces some effect in the scalar mass calculation.
We can now compute the scalar mass which is deter-

mined from the following equation:

M2ð�Þ
� ¼ @2�ð�Þ

R

@�2

���������¼�min

: (45)

After neglecting terms proportional to �6 and of higher
order when substituting the minimum value in the potential
we obtain

M2ð�Þ
� � 2�ð�Þ

4VR

�
�ð�Þ
4VR

�ð�Þ
6VR

�
þ 5�ð�Þ

3fR

�
�ð�Þ
4VR

�ð�Þ
6VR

�
1=2
: (46)

With Eq. (46) we can compute numerically the Higgs
boson mass in the extreme walking behavior (�! 0) and
the result is plotted in Fig. 5. Notice that as we go to larger
values of NTC while keeping a slowly TC running coupling
constant (a �TC function close to zero) we verify that the
current experimental limit on the Higgs boson mass does
not allow us to have a technicolor gauge group arbitrarily
large (NTC < 10). The possibility that a composite Higgs
boson can be as light as the present experimental limit has
been already noticed in a series of papers [13]. The authors
of these papers particularly discuss a more interesting case
where the walking behavior is obtained in theories where
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the fermions are in higher dimensional representations of
the technicolor group, turning unnecessary the introduction
of a quite large number of fermions, as happens in the case
where the fermions are in the fundamental representation.
Moreover, it was also shown that exactly for the extreme
walking case these theories, with a light composite Higgs,
are totally in agreement with the precision electroweak
measurements [13]. In obtaining Fig. 5 we have used the
� function up to two loops, where nF for each SUðNTCÞ has
to be fixed accordingly, i.e., nF ¼ 8; 11; 14; . . . for NTC ¼
2; 3; 4; . . .

Considering the smallest possible non-Abelian unitary
technicolor gauge group, i.e., SUð2ÞTC, we can observe
from Fig. 5 that, in the extreme walking regime, the
Higgs boson mass has an upper limit of about
Oð700Þ GeV. In order to have models with dynamical
symmetry breaking along the technicolor idea without
the problems of neutral flavor changing currents, the walk-
ing scenario seems to be the most promising possibility [6].
In this context our result implies a crucial test for the
walking technicolor hypothesis since such mass values
may be promptly assessed at LHC.

Let us consider the limit �ð�Þ
3fR ! 0. In this case we

obtain the conventional result for M2ð�Þ
� given by the ef-

fective potential

M2ð�Þ
� � 2

½�ð�Þ
4V �2
�ð�Þ
6V

: (47)

We can observe that the top quark mass (mt � 175 GeV)
will usually give a contribution of the order of 10% of the
composite Higgs boson mass through the trilinear Higgs
boson coupling. We show in Fig. 6 some values for the
Higgs mass versus the trilinear coupling for some techni-
color models already discussed in the literature [6]. The
points that we have chosen in Fig. 6 correspond to extreme
walking technicolor theories, and we expect the possible
range of couplings and masses for other � values to be

located between these points and the standard model curve
[7].
Finally, in the limit �! 1 we simply obtain scalar

boson masses in the TeV region as usual, but these models
are known to be plagued by unwanted flavor changing
neutral currents.

V. CONCLUSIONS

We have computed an effective action for a composite
Higgs boson system formed by new fermions belonging to
a general technicolor non-Abelian gauge theory. The cal-
culation is based on an effective action for composite
operators. The novelty is that the effective action is com-
puted with the help of a quite general self-energy that
depends on a certain parameter (�), which, when variated
from 0 to 1, provides an interpolation of the fermionic self-
energy from the extreme walking technicolor behavior up
to the self-energy expression that obeys the standard op-
erator product expansion. This means that our calculation
is quite general in the sense that choosing values for �,
which is equivalent to choosing different dynamics for the
strong interaction forming the composite scalar boson, we
can obtain the different mass and couplings of the effective
theory.
There are two other improvements in our calculation.

The first one is the calculation of the kinetic term of the
effective theory. This term appears with a coefficient that
differs from the standard parametrization of the kinetic
term of a scalar Lagrangian. When the effective
Lagrangian is normalized to reproduce a standard scalar
effective field theory we also must modify the remaining
terms, leading to a nontrivial change of the scalar self-
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FIG. 5. Higgs mass as a function of NTC in the extreme
walking technicolor regime. The shaded band is the experimen-
tally excluded region [25].

FIG. 6 (color online). Trilinear scalar coupling as a function of
composite boson mass. We plot a solid line with the standard
model value for this relation and show the expected values for a
composite Higgs boson based on SUð2ÞTC, SUð3ÞTC, and
SUð4ÞTC models, with nf ¼ 8, 11, 14, respectively.
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couplings. The second improvement is that we also con-
sider the effect of ordinary massive fermions to the effec-
tive Lagrangian. This contribution is usually neglected and
is indeed small except by the contribution of the heavy top
quark. An ordinary massive fermion contribution is also
important because it introduces odd powers of scalar field
self-couplings in the theory, i.e., the trilinear composite
scalar self-coupling is originated from the loop of the top
quark, while the quadrilinear self-coupling is dominated by
the techniquarks interactions as well as, in a minor extent,
from the top quark loop contribution. Of course, this result
would change if there is a fourth ordinary fermion family
or if the techniquarks have a large current mass (above the
TC scale).

With the general fermionic self-energy (or composite
state wave function) we computed the effective Lagrangian
presenting the results for � ¼ 0 and � ¼ 1, which corre-
spond to the limits of the extreme walking technicolor
theory and the standard view of the technicolor theory
that can be obtained by scaled QCD. For other � values
the scalar mass and self-couplings are located between the
ones obtained for the extreme cases (0 and 1). In the case of
an extreme walking behavior (�! 0), we obtain an upper
limit for the Higgs boson mass, (MH � Oð700Þ GeV for
SUð2ÞTC), and the experimental data on the Higgs boson
mass constrain SUðNÞTC technicolor gauge groups to be
smaller than SUð10ÞTC, whereas when �! 1 the scalar
mass is expected to be much heavier. Therefore we agree
with the earlier results of Ref. [13] that we may have quite
a light composite Higgs scalar boson in the case of extreme
walking TC theories.

It is fair to mention that another source of uncertainty in
our approach, besides that assumed in the SDE, is that we
are showing results for the extreme walking behavior (�!
0), for which we consider the� function up to 2 loops. This
obviously constrains the number of fermions introduced in
our computation of the effective potential. Higher loops
certainly change the number of fermions needed to get the
walking behavior, implying a change in our numerical
results for the triple and quartic gauge couplings as well
as the Higgs mass. It is possible that going to further orders
of the beta function could modify the specific shape of the
Higgs mass function shown in Fig. 5 and shift the cou-
plings relative to the expected results of the standard model
plotted in Fig. 6. Given the degree of approximations we
have already assumed in computing the effective potential,
we thought it was reasonable to truncate the beta function
to the order that its coefficients are universal. However, it is
interesting to notice that a complete all orders beta function
obtained in Ref. [24] could be used in a more general
approach and also when different representations are con-
sidered and could be helpful in developing an extended
analysis in a future work.

In theories where the scalar Higgs boson is composite
we need new ‘‘extended technicolor’’ interactions in order
to give masses to the ordinary fermions. As far as we know

there is no phenomenologically viable ETC model and its
effect enters in our effective Lagrangian parametrized in
the massive ordinary fermion contributions. This contribu-
tion is important, as discussed above, because it is respon-
sible for the trilinear scalar coupling and we expect that
other ETC contributions decouple from the effective
Lagrangian. The ordinary fermion contributions to the
effective Lagrangian are roughly 1 order of magnitude
smaller than the one of techniquarks. This is an expected
behavior since their masses are smaller than the TC mass
scale.
At present the walking technicolor models seem to be

the most promising possibility for dynamically broken
gauge theories. Therefore if this scenario is appropriate
to describe the dynamics of symmetry breaking (with a
unitary gauge group in the fundamental representation),
our limit implies that the scalar composite boson should be
observed at LHC with a mass up to 700 GeV, a quite
interesting outcome considering a composite nature for
the Higgs boson.
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APPENDIX A: �4 AND �6 CONTRIBUTIONS TO
�V

In this appendix we compute the�4 and �6 terms of the
effective potential �V . We start from the effective action
up to two loops (see Eq. (12)):

�ð�Þ
V ¼ iTr lnð1� �S0Þ þ 1

2iTr�S0�S0

þ 1
2iTrS0�S0�S0�S0�S0�S0�D0; (A1)

where the last term comes from the two-loop contribution.
Expanding the term proportional to lnð1��S0Þ, con-

sidering the propagators, vertices, and the � ansatz with
the momentum dependence of Eq. (19), we obtain

�ð�Þ
V ¼NTCnF

16�2

1

�ð4�Þ
Z dzz4��1e�z

ð4�þ�zÞ Trð�4Þ

þNTCnF
16�2

3�TCc

4�ð2þ4�Þ
4

�ð4�þ1Þ
�
Z dzzð4�þ1Þ�1e�z

ð4�þ�zÞ Trð�4Þ

þNTCnF
16�2

Tr

�
�4

�X
m¼1

ð �2

�2
TC

Þm
ð2mþ4Þ

ð�1Þm
ðmþð2mþ4Þ�Þ

��
;

(A2)

where the contribution of Oð�2Þ is canceled between the
two first terms of Eq. (A1), and the last term is what
remains of the lnð1��S0Þ expansion after cancellation
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of the �2 contribution and extraction of the �4

contribution.
We can compute Eq. (A2) in the limits � ¼ 0 and � ¼

1. In the case � � 0 we have

�ð0Þ
V ¼ NTCnF

16�2

��
1

�ð4�� 1Þ þ
1

2

�

� 4�

�ð4�� 1Þ
�

1

ð4�� 2Þ þ 2�

��
Trð�4Þ

þ NTCnF
16�2

�
��4

TC Tr

�
�2

�2
TC

�
þ�4

TC

2
Tr

�
�4

�4
TC

��

þ NTCnF
16�2

�
Tr

��
1� �4

�4
TC

�
ln

�
1þ �2

�2
TC

���
: (A3)

If we assume �2

�2
TC

� 1 we obtain

�ð0Þ
V ¼ NTCnF

16�2

��
1

�ð4�� 1Þ þ
1

2

�

� 4�

�ð4�� 1Þ
�

1

ð4�� 2Þ þ 2�

��
Trð�4Þ

� NTCnF
16�2

�
2

3�2
TC

�
Trð�6Þ þOðTrð�8ÞÞ . . . (A4)

In the limit � � 1 we have

�ð1Þ
V ¼NTCnF

16�2

�
1

4

�
1þc�TC

2�

�

� �

4�

�
�þc�TC

8�
ð4�þ1Þ

��
Trð�4ÞþNTCnF

16�2

�
�
�4

TCTr

�
�2

�2
TC

�
2�32F1

�
1;
1

3
;
4

3
;� �2

�2
TC

����

þNTCnF
16�2

�
��4

TC

4
Tr

�
�4

�4
TC

�
þ�4

TC ln

�
1þ �2

�2
TC

��
;

(A5)

where pFqða1; . . . ; ap; b1; . . . bq; xÞ is the hypergeometric

function.

Again assuming �2

�2
TC

� 1 we obtain the following �4

and �6 contributions to �ð1Þ
V

�ð1Þ
V ¼ NTCnF

16�2

�
1

4

�
1þ c�TC

2�

�

� �

4�

�
�þ c�TC

8�
ð4�þ 1Þ

��
Trð�4Þ

� NTCnF
16�2

�
2

21�2
TC

�
Trð�6Þ þOðTrð�8ÞÞ . . . (A6)

From Eqs. (A4) and (A6) we can read the values of the

couplings �ð0Þ
4V and �ð1Þ

4V , which are given, respectively, by

�ð0Þ
4V � NTCnF

16�2

�
1

�ð4�� 1Þ þ
1

2

�
; (A7)

�ð1Þ
4V � NTCnF

16�2

1

4

�
1þ c�TC

2�

�
: (A8)

The (1=2) factor at the end of Eq. (A7) comes from the
two-loop contribution.

In the same way, as done above for the �ð�Þ
4V coupling, we

can easily obtain the �ð�Þ
6V from Eqs. (A4) and (A6). These

results are the ones shown in the Sec. III.

APPENDIX B: TRILINEAR AND QUADRILINEAR
COUPLINGS ORIGINATED FROM ORDINARY

FERMIONS

The trilinear and quadrilinear couplings that are origi-
nated from the ordinary massive fermions are obtained
from the calculation of Figs. 3 and 4, respectively.
Assuming that the coupling � �ff, of the composite Higgs
scalar boson � to the ordinary fermions, at large momen-
tum p2 is given by [17]

��ff � �gW�fðp2Þ
2MW

;

we obtain

�ð�Þ
4f � 1

64�2

g4WnFNc
ðMWÞ4

Z dp2p6�4
fðp2Þ

ðp2 þm2
fÞ4

; (B1)

where in this expression �fðp2Þ is parametrized by the

ansatz of Eq. (13). Moreover, the infrared cutoff �, which
is the characteristic scale of the mass generation in
Eq. (13), in this case will be identified with � ¼ mf

exactly as performed in Ref. [17]. After some calculation
we can write, in the limit � ¼ 0, the following quadrilinear
coupling

�ð0Þ
4f � 3g4W

64�2M4
W

m4
f

�ð4�� 1Þ : (B2)

The largest contribution comes from the heaviest fermion,
which can be identified with the top quark ðmf ¼ mfð0Þ �
mtÞ or the lepton tau ðmf ¼ mfð0Þ � m
Þ, if we consider

leptons. We do the same calculation for the case � ¼ 1,
obtaining

�ð1Þ
4f � 3g4W

64�2M4
W

m4
f

4
: (B3)

The self-energy solution, in this specific limit, cannot
generate large fermion masses [7] (without generating
large flavor changing neutral currents). Therefore we can
expect that ðmf ¼ mfð1Þ � muÞ or ðmf ¼ mfð1Þ � meÞ.
The trilinear self-coupling of the composite Higgs bosons
with the ordinary fermions can be obtained in the same
way, and the result is

�ð�Þ
3f � 3g3WnFNc

ðMWÞ3
1

32�2

Z dp2p4�4
fðp2Þ

ðp2 þm2
fÞ3

; (B4)

where for �� 0 and �� 1 we obtain

�ð0Þ
3f � 9g3W

32�2

mfð0Þ
�ð4�� 1Þ

�
mfð0Þ
MW

�
3
�
1� 4�

�ð4�� 2Þ þ . . .

�
;

(B5)
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�ð1Þ
3f � 9g3W

32�2

mfð1Þ
4

�
mfð1Þ
MW

�
3
�
1� �ð4�� 1Þ

4�
þ . . .

�
:

(B6)

The couplings shown in Eqs. (B2)–(B6) are the ones
appearing in Eqs. (31)–(34).
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