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We study the properties of configurations from which P-vortices on one hand or Abelian monopoles on

the other hand have been removed. We find that the zero modes and the band of nonzero modes close to

zero disappear from the spectrum of the overlap Dirac operator, confirming the absence of topological

charge and quark condensate. The different behavior of the modified ensembles under smearing compared

to the unmodified Monte Carlo ensemble corroborates these findings. The gluonic topological suscepti-

bility rapidly approaches zero in accordance with Qindex ¼ 0. The remaining (ultraviolet) monopoles

without vortices and—to a less extent—the remaining vortices without monopoles are unstable under

smearing whereas smearing of the unmodified Monte Carlo ensemble affects the monopoles and vortices

only by smoothing, reducing the density only slightly.
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I. INTRODUCTION

There are two popular phenomenological scenarios ex-
plaining confinement in lattice gluodynamics, monopole
condensation [1], and the center vortex [2] mechanism.
The basic ideas of both scenarios go back to ’t Hooft [3,4].
Both have been recently discussed in Refs. [5,6]. For our
discussion, monopoles and center vortices are defined by
projection to Abelian Uð1ÞN�1 or ZðNÞ gauge fields, re-
spectively. In order to distinguish them from extended
vortices, these ZðNÞ center vortices are called P-vortices.
The two types of excitations, when derived from the
Maximally Abelian Gauge (MAG) or from the Maximal
Center Gauge (MCG), respectively, reproduce about 90%
[7] and about 70% [8] of the non-Abelian string tension.
This observation is called monopole and center dominance.
The monopole dominance should not be confused with
Abelian dominance, which describes the fact that the pro-
jected degrees of freedom (the Uð1ÞN�1 valued links)
reproduce the original string tension equally well.
Without gauge fixing the full static potential is reproduced
by Abelian projected or center projected links [9,10].

The importance of the topological excitations and of the
corresponding MAG or MCG fixing, rests more on the
physical reality of the excitations as the possibly relevant
infrared degrees of freedom than on the monopole or P-
vortex dominance. The reality is witnessed by their local-
ization and the local excess of action and topological
charge carried by monopoles and P-vortices. The infrared
degrees of freedom could be used to derive effective theo-

ries to describe the infrared physics, for instance, the Dual
Ginzburg-Landau theory [11]. This paper elaborates on
some other aspects of the physical reality of monopoles
and P-vortices. It turns out that they are constitutive also
for other nonperturbative features besides confinement.
Removing monopole degrees of freedom [12,13] or P-
vortices [14–16] from the (lattice) fields should leave
only inert and topologically trivial gauge field
configurations.
For the issue of physical reality the conjecture [17,18]

was very important that monopoles and P-vortices are
geometrically interrelated. Indeed, this was found to be
the case in SUð2Þ gluodynamics. More than 90% of mono-
pole currents are localized on the P-vortices [18–20]. The
effect of eliminating one or the other, however, is more
complicated and obviously destroys this geometrical
interrelation.
It was realized that the removal of monopoles destroys

only large (infrared) P-vortex clusters whereas the total
density of P-vortex plaquettes is suppressed by less than an
order of magnitude [21]. In the case of removal of vortices
the total density of monopole links is even increased
compared to the initial equilibrium configurations [21].
In that paper we have confirmed (for a finite temperature
T � 0:75Tdec in the confinement phase) that for the ma-
nipulated lattice ensembles confinement is missing. In
particular, we were able to point out why the apparently
percolating clusters of monopoles remaining after vortex
removal cannot produce confinement. After this observa-
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tion it is impossible to directly infer confinement from the
existence of percolating monopoles.

In the present paper we turn our attention to the topo-
logical and chiral aspects of monopoles and vortices. The
first new element in comparison with all previous studies of
monopole removal and all but one paper on vortex removal
is that we use chirally perfect overlap fermions [22,23] as a
probe to confirm the loss of topological charge and the
vanishing of the quark condensate in the modified ensem-
bles obtained by monopole or vortex removal. The other
new feature is that for the first timewe employ an improved
lattice gauge action in this kind of study. For all 50 con-
figurations in the original and the modified ensembles we
have determined 20 (in modulus) lowest eigenvalues �N
and the corresponding eigenmodes (not used here) of the
massless Neuberger overlap Dirac operator. To identify the
topological charge we refer to the index of this Dirac
operator. This is complemented by an improved gluonic
expression for the topological density, leading to the same
conclusion. We notice that the gluonic measurement of the
topological charge requires a certain amount of APE
smearing. This gives us the opportunity to investigate in
what respect the modified ensembles differ from the origi-
nal Monte Carlo one with respect to moderate smearing.
For this part of our study an enlarged ensemble of 100
configurations has been used.

In Sec. II we give necessary information about the lattice
ensembles that we have used. In Sec. III the effect of the
removal of monopole, photon, and vortex degrees of free-
dom on the spectrum close to �N ¼ 0 and on the topologi-
cal charge is described. In Sec. IV we describe the behavior
under smearing—concerning the measured monopole, vor-
tex, and topological content—which is strikingly different
between the equilibrium ensemble and the modified en-
sembles with monopoles and vortices removed. Section V
contains our conclusions. In the Appendix all necessary
definitions are collected.

II. SIMULATIONAL SETUP

In two previous papers [24,25] we have applied the
overlap Dirac operator for SUð2Þ lattice gauge theory in
conjunction with the tree-level tadpole-improved
Symanzik action. This will be the setup also here. The
overlap construction [22,23] provides a perfectly chiral
description for lattice fermions. The choice of action is
motivated as follows. In our first paper [24] we have
applied the overlap Dirac operator for a very specific
investigation, to find evidence for a partially dyonic, par-
tially caloronic structure of the topological charge distri-
bution at T ¼ Tdec. For this purpose it was essential to
make sure that the configurations are smooth enough such
that the number of zero modes and the gross structure of
the spectrum of lowest overlap Dirac eigenvalues are ro-
bust with respect to a change of temporal boundary con-
ditions and with respect to smearing. This would not be the

case for the Wilson action. For the tree-level tadpole-
improved Symanzik action at high enough �imp this re-

quirement is fulfilled. This has determined us to work on a
203 � 6 lattice in the paper [24] where �imp;c ¼ 3:25 has

been found to be the deconfinement critical point. In a
second paper [25] we have extended our investigation with
this action to temperatures T below Tc and up to 2Tc. Here
our focus was the dependence of the spectral density and
the localization behavior of the eigenmodes on the sign of
the spatially averaged Polyakov loop L as soon as it ceases
to vanish in the deconfined phase. In this paper it has been
found that a gap opens in the spectral density for T >
1:05Tdec, but only for configurations with a positive spa-
tially averaged Polyakov loop, L > 0, in agreement with
predictions by Stephanov [26].
We refer to these two papers for details concerning the

action and the implementation of the overlap Dirac opera-
tor. For the present investigation we have chosen the same
lattice size 203 � 6 and the same action. We work at
�imp;c ¼ 3:25. There is no need to compare different

boundary conditions. Now the overlap Dirac operator is
uniquely endowed with antiperiodic boundary conditions
in the temporal and periodic ones in the spatial directions.
We have extended the ensemble to 50 configurations, that
was begun with 20 configurations for Ref. [24]. The ei-
genvalues �imp of the improved Neuberger operator [27]

are obtained by stereographic projection from �N situated
on the Ginsparg-Wilson circle onto the imaginary axis,
such that in the following the eigenvalues are understood
as � � Im�imp.

Since we have chosen to work at the deconfinement
temperature, it makes no sense to discuss here once more
the influence of the removal of monopoles or vortices on
the string tension [21]. We are concentrating here on the
effect of monopoles and vortices on the topological charge
Q via the Atiyah-Singer index theorem [28],

Q ¼ N� � Nþ; (1)

with Nþ and N� the number of zero modes of positive and
negative chirality, and the spectral density �ð�Þ near � ¼
0, which is related via the Banks-Casher relation [29]

h �  i ¼ ���ð0Þ
V

(2)

(with the four-volume V ¼ N3
sNta

4) to the quark conden-
sate. Whenever more than one zero mode is found for one
configuration, the chirality of all of them is found to be the
same.
For the ensemble of configurations at T ¼ Tdec in

Ref. [24] the gross spectral density was seen to be inde-
pendent of the boundary condition which means that it is
insensitive also to the sign of the (very small) average
Polyakov loop in our ensemble. This makes it possible to
study the nontrivial effect of monopole or vortex removal
on the spectral density in an unambiguous way.
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The monopole line density [30] and the P-vortex pla-
quette density referred to later are defined in units of the
lattice spacing as

�mona
3 ¼ hNmoni

4N3
sNt

and �vorta
2 ¼ hNvorti

6N3
sNt

; (3)

where Nmon is the number of dual links carrying nonvan-
ishing monopole currents for an Abelian projected gauge
field obtained from the MAG. Nvort is the number of dual
plaquettes belonging to the total P-vortex area after apply-
ing the center projection to the gauge field put into the
direct maximal center gauge (DMCG) [31]. More about
these definitions and the procedures that lead to the detec-
tion and removal of monopoles and vortices can be found
in the Appendix.

The following results concerning the density of mono-
poles and vortices and the investigation of the behavior
under smearing in Sec. IVare based on an ensemble of 100
configurations.

At T ¼ Tdec, for our equilibrium configurations the vor-
tex density is found to be �vorta

2 ¼ 0:0231ð4Þ. With the
zero-temperature string tension �0 ¼ �ðT ¼ 0Þ setting the
scale, this corresponds to �vort=�0 ¼ 0:417ð8Þ or �vort ¼
2:08ð4Þ fm�2. This number is essentially smaller than the
zero-temperature density found with the Wilson action to
be about 4 fm�2 [32]. We think that this large difference is
mostly due to difference in actions used in Ref. [32] and in
this paper rather than due to finite temperature effects, i.e.,
it indicates that the vortex density with improved action is
substantially smaller than with Wilson action.

The monopole density in the equilibrium ensemble

amounts to �mona
3 ¼ 0:0117ð1Þ, that means �mon=�

3=2
0 ¼

0:897ð9Þ or �mon ¼ 10:0ð1Þ fm�3. For comparison, we re-
call an estimate [33] of the monopole density at T ¼ 0 for
�imp ¼ 3:25 and the same action: �mona

3 ¼ 0:0126ð1Þ.
That means that the monopole density is only insignifi-
cantly suppressed at Tdec compared to T ¼ 0.

These densities have to be taken with a grain of salt
because it is known that they should be decomposed in an
infrared and an ultraviolet part. The presence of both
components becomes obvious in studies of universality
[33] where only the infrared part possesses a finite contin-
uum limit that can be compared between different actions.
This problem will show up in the process of smearing
discussed in Sec. IV.

The topological susceptibility of the equilibrium en-
semble defined by hQ2

overlapi ¼ 7:3� 1:5 translates to

�top=�
2
0 ¼ 0:049� 0:010 or, assuming

ffiffiffiffiffiffi
�0

p ¼ 440 MeV,

to �top ¼ ð207� 10 MeVÞ4. This is in the right ballpark

for the (unsuppressed) topological susceptibility. Once
monopole or vortex degrees of freedom are removed
from the configurations the fermionic (overlap) topological
charge is strictly vanishing. It might come unexpectedly
thatQoverlap is not preserved if the regular (photon) degrees

of freedom are removed from the configurations. We will

point out later that in this case also the opposite (vanishing
topological charge) could have been expected. For this
modified ensemble hQ2

overlapi ¼ 5:3� 1:25 has been

measured.

III. THE SPECTRUMOF LOW-LYINGMODES FOR
CONFIGURATIONS WITH REMOVED

MONOPOLES, PHOTONS, AND VORTICES

In this section we demonstrate the disappearance of the
quark condensate and the complete loss of topological
charge in modified ensembles of configurations having
monopoles or vortices removed. We emphasize that this
effect has been partly studied already [12–16], for either
monopoles or vortices removed, with various gauge actions
and fermionic actions (staggered, chirally improved) for
the confinement phase. Thus, the results of this section are
a confirmation of the crucial role of monopole and vortex
degrees of freedom for the spectral properties obtained
with a new, more convincing tool—the overlap Dirac
operator. Let us note that results obtained at the edge of
the confining phase of quenched SUð2Þ gluodynamics are
not less interesting. At this temperature the topological
susceptibility is still approximately the same as for T ¼
0, and the spectral gap is not yet opened [25].
In Fig. 1 we illustrate this by one configuration. The

panel on the extreme right shows the spectrum of low-lying
modes of overlap fermions after removing the vortex de-
grees of freedom. This should be compared with the origi-
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FIG. 1 (color online). The eigenvalues of the 20 lowest non-
zero modes (open symbols) and the eventual zero mode (filled
symbol) of the overlap Dirac operator lying on the Ginsparg-
Wilson circle for one of the equilibrium configurations; for the
original configuration (extreme left), the configuration with
removed photon degrees of freedom (middle left), with removed
monopole degrees of freedom (middle right), and with vortices
removed (extreme right). The zero mode (green in online color)
is pulled away from the Ginsparg-Wilson circle for better
visibility of all modes.
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nal spectrum shown on the extreme left. The originally
existent zero mode has disappeared, and the nonzero
modes have moved outward. A similar change of the
spectrum can be observed on the middle right panel after
removing the monopole degrees of freedom from the same
configuration. In the middle left panel the effect of remov-
ing the regular (photon) part from the Abelian projected
field is shown. This spectrum differs only in minor details
from the original spectrum, but the number of zero modes
and the interval covered by the 20 modes remained un-

affected. We have to stress that the number of zero modes
is not always stable with respect to the removal of the
regular part of the Abelian field. The latter comparison
enforces the conclusion that, from the point of view of
Abelian projection, the decisive role for chiral symmetry
breaking is played by the monopole part of the Abelian
projected field, whereas the topological charge is not ro-
bust against the reduction of the Abelian field to its singu-
lar (monopole) part.
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FIG. 2 (color online). The gap distributions (distributions of the first nonzero positive eigenvalue �1) for the four ensembles of 50
lattice configurations: (a) the original equilibrium configurations (solid line) and the configurations with removed photons (dashed
line), (b) the configurations with removed monopoles (solid line) and with removed vortices (dashed line).
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FIG. 3 (color online). The histogram of the eigenvalues � for 20 lowest nonzero modes. The shadowing on top of the columns (red
in color online) represents the statistical error. The total number of zero modes of the overlap Dirac operator is shown by the height of
the spike (green in color online) drawn at zero. The plots show the four corresponding ensembles of 50 lattice configurations: (a) the
original equilibrium configurations, (b) the configurations with removed photons, (c) the configurations with removed monopoles, and
(d) with removed vortices. The spectra are shown in an interval defined by the minimum over 50 configurations of the largest (in
modulus) of 20 individual configuration eigenvalues, thus eliminating the dependence of the shown part of the spectrum on the number
of actually calculated eigenvalues.
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In Fig. 2 we show the distribution of the first nonzero,
positive eigenvalue � for the four ensembles. After remov-
ing the regular part of the Abelian projected gauge field the
distribution is only very minimally widened compared to
the distribution of the original ensemble [see Fig. 2(a)].
After removing monopoles the distribution changes com-
pletely. It is rather wide with some tail towards � ¼ 0, but
with a clear gap separating it from � ¼ 0, while the gap is
wider and less fluctuating in the case of removed vortices
[see Fig. 2(b)].

The respective average cumulated spectral densities as
anticipated from all lowest 20 eigenmodes in our equilib-
rium ensemble of 50 configurations and the modified en-
sembles are shown as histograms in Fig. 3. The spike at
zero shows the total number of zero modes in the ensemble
of 50 configurations (irrespective of their chirality). The
height corresponds to the scale of the embedding histo-
gram. We see that zero modes and hence the topological
charge completely disappear after monopoles (bottom left)
or vortices (bottom right) are removed from the configura-
tions while the spectral density is pushed outward. This
effect is stronger if vortices are removed, less if monopoles
are removed. The appearance of the gap among the near-
zero modes signals the vanishing of the quark condensate
which is still nonvanishing at the given temperature for the
original ensemble (top left) and after the removal of the
photon degrees of freedom (top right).

Notice that in all configurations the zero modes are
neither completely preserved nor completely destroyed
when the photon degrees of freedom are suppressed. All
we can say here is that the number of zero modes is a less
robust feature provided only the monopole degrees of free-
dom are kept. The number of zero modes in the equilibrium
configurations, Nequil, and in the corresponding no-photon

configurations, Nnophot, are strongly correlated. From the

scatter plot of both numbers a regression formula, Nequil ¼
0:15ð25Þ þ 0:77ð10ÞNnophot, can be extracted. This finding

might be difficult to reconcile with the notion of Abelian
dominance of the topological charge [34,35]. Strict
Abelian dominance of the latter would imply that after
the removal of the regular ‘‘photon’’ part of the Abelian
projected gauge field no topological charge should be left
at all. These considerations were referring, however, to
cooled configurations and the ground state whereas we
consider here unsmeared configurations at nonzero
temperature.

IV. SMEARING OF CONFIGURATIONS VOID OF
MONOPOLES OR VORTICES

We can describe the interrelation between monopoles
and P-vortices by the effect of removing one type of
infrared degrees of freedom on the density of the other.
We should emphasize again that the density alone does not
decide about the confining property of the ensemble [21].

Here we are asking whether smearing is able to reveal
that a lattice ensemble is corrupted in an essential way by
the removal of monopoles or vortices. In the confinement
phase ‘‘corrupted’’ means that it is unable to confine. We
answer this question affirmatively without reference to the
string tension showing that the density of complementary
objects and the topological susceptibility disappear under
smearing. We have seen already that the effect of vortex or
monopole removal on the chirally perfect Dirac spectrum
shows up without smearing. This does not change after-
wards under the influence of smearing.

A. Vortices removed

Let us now consider the effect of removing P-vortices
from the configurations performing the link operation
(A11) on the monopole content and on the topological
charge. At this step, the monopole density �mon is approxi-
mately doubled to �mona

3 ¼ 0:0233ð3Þ. The abundant
monopole lines form clusters that still contain a percolating
component, but the non-Abelian string tension vanishes as
it should [14]. Also the monopole string tension vanishes
[21] in agreement with expectations. The unphysical (in-
ert) character of magnetic monopoles in the configurations
modified by vortex removal was thoroughly discussed in
[21]. In essence, the monopole clusters were found to be
decomposable into small monopole loops, such that the
magnetic currents are screened at large distances.
The effect of vortex removal is presented by dotted lines

in Fig. 4(a) for the monopole density, in Fig. 4(b) for the
vortex density, and in Fig. 5 for the topological
susceptibility.
The monopole density is initially even enhanced com-

pared to the unmodified ensemble before it is quickly
wiped out by smearing. In contrast to this, the monopole
density in the unmodified ensemble is only slowly reduced
by smearing (only 1 order of magnitude within five steps).
This effect of smearing reflects mainly the elimination of
ultraviolet monopole objects. These are small monopole
loops that are either appended to large loops or separately
existing. The extended infrared monopole clusters survive
with ultraviolet loops stripped off. This can be called
‘‘smoothing of monopoles.’’
The effect of vortex removal on the vortex density is

demonstrated by a dotted line in Fig. 4(b). The vortex
density reappears after one smearing step at a very low
level before it is finally rapidly wiped out by smearing. In
contrast to this, the vortex density in the unmodified en-
semble is slowly reduced by smearing (only by a factor of 3
within five steps). This effect of smearing reflects mainly
the straightening of the vortex surface due to elimination of
ultraviolet objects (these are isolated bubbles and decora-
tions added to extended surfaces) whereas large infrared
objects survive.
In Fig. 5 the effect of vortex removal on the topological

susceptibility as determined by the gluonic topological
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density is also shown by a dotted line as a function of the
smearing steps. More precisely, the susceptibility is quan-
tified by the average of the topological charge squared
hQ2

gluonici. In contrast to the original ensemble, where the

topological susceptibility slowly approaches some final
value from below, in the ensemble without vortices the
(gluonic) topological susceptibility decays to zero within
only five smearing steps.

For the gluonic topological charge density the topologi-
cal susceptibility is known to receive additive and multi-
plicative renormalization [36]. Already few smearing steps
show that the gluonic topological susceptibility becomes
rapidly readjusted to zero in the modified ensemble without
vortices for which the index of the overlap Dirac operator
gives Qoverlap ¼ 0 right from the beginning (before smear-

ing starts). For this case the dotted curve in Fig. 5 resem-

bles the additive renormalization constant of hQ2
gluonici as a

function of the number of smearing steps.1

B. Monopoles removed

Next, let us describe what effect the removal of Abelian
monopoles has on the P-vortex content in DMCG. The
basic ensemble of configurations has been put into the
MAG with the help of the simulated annealing method.
The procedure of monopole removal is explained in
Eqs. (A7)–(A10) in the Appendix.
We have put these lattice fields into DMCG and viewed

the corresponding P-vortex content. The P-vortex plaquette
density �vorta

2 ¼ 0:0231ð4Þ of the original ensemble, i.e.,
the total area of vortex plaquettes relative to the total
number of plaquettes in the lattice, is reduced to �0

vorta
2 ¼

0:0084ð4Þ in the modified ensemble without monopoles.
This amounts roughly to one third of the original density.
In the confinement phase, the contribution of the remain-

ing center vortices to the quark-antiquark potential van-
ishes in the modified ensemble [21]. Here, the unphysical
character of these leftover vortices is further elucidated by
the smearing procedure as shown by the dashed line in
Fig. 4(b). The vortex density decays but not more than by
an order of magnitude.
If configurations modified by monopole removal are

gauge-fixed again to MAG and Abelian projected, the
number of monopole links that are then found is about 1
order of magnitude smaller than the number of monopoles
defined for the original ensemble. The density of these
artificial monopoles decreases extremely fast, by more
than 2 orders of magnitude per smearing step, as shown
by the dashed curve in Fig. 4(a).
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FIG. 5 (color online). The average of the gluonic topological
charge squared, hQ2

gluonici, depending on the number of smearing

steps for the original equilibrium ensemble of 100 configurations
(solid line) and for the modified ensembles differing by the
removal of P-vortices (dotted line), the removal of monopoles
(dashed line), and the removal of photon degrees of freedom
(dash-dotted line). The horizontal solid line above (with the
statistical error bar) shows hQ2

overlapi for the unmodified equi-

librium ensemble of 50 configurations (red in color online).
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FIG. 4 (color online). The monopole density (a) and the vortex density (b) depending on the number of smearing steps for the
original equilibrium ensemble of 100 configurations (solid lines) and for the modified ensembles differing by the removal of P-vortices
(dotted lines) and the removal of monopoles (dashed lines).

1The actual additive renormalization constant of the ‘‘field-
theoretic topological density’’ should of course be measured on
the subsample of Qoverlap ¼ 0 original Monte Carlo
configurations.
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The effect of monopole removal on the topological
susceptibility is much more pronounced. In Fig. 5 the
dashed curve demonstrates that the gluonic estimator
Q2

gluonic, which is immediately reduced before smearing,

drops to zero within the first few smearing steps. The
gluonic estimator is more strongly suppressed by a factor
of 2 to 10 compared to the ensemble where P-vortices are
removed. As we know, the fermionic topological charge is
always Qoverlap ¼ 0 as soon as monopoles have been

removed.
For comparison we show in this figure also hQ2

overlapi
obtained for the (unsmeared) equilibrium ensemble from
the index of the overlap Dirac operator, which we have
found [24] to be stable under smearing. The value of
hQ2

overlapi ¼ 7:3� 1:5 is presented as the horizontal line.

The gluonic estimator hQ2
gluonici for the original ensemble

continues to grow with smearing (not shown in Fig. 5
beyond Nsmear ¼ 5). The same tendency to rise towards
the final, nonvanishing gluonic estimator hQ2

gluonici we ob-
serve for the sample of photon-removed configurations.
The fermionic value, hQ2

overlapi ¼ 5:3� 1:25, is not yet

reached.

V. CONCLUSIONS

In this paper, in order to clarify the role of certain SUð2Þ
gauge field excitations for the topological and chiral prop-
erties of the quenched ensemble of lattice fields, we have
reconsidered the properties of the configurations at the
deconfinement temperature T ¼ Tdec after removing two
typical nonperturbative degrees of freedom. The conden-
sation of the corresponding gauge field fluctuations,
Abelian monopoles and center vortices (more precisely,
P-vortices), is popularly held responsible for quark con-
finement at lower temperature. For our purpose we have
applied special techniques of removal in order to study the
effect on the complementary type of fluctuations and on the
buildup of a topological charge and for the existence of a
quark condensate. We confirm that for overlap quarks and
also at the deconfinement temperature the suppression of
each of these nonperturbative degrees of freedom leads to a
loss of the complementary type of fluctuations, of topo-
logical charge, and chiral quark condensate. This effect is
less pronounced for the loss of P-vortex density in the
result of monopole suppression which might mean that
the vortices, ceasing to percolate spatially at the deconfin-
ing temperature, become also decorrelated from the mono-
poles in the sense that they can exist also without
monopoles. The converse is not true. The strength of this
correlation is made visible by applying smearing.

Concerning the topological charge of a configuration we
have the choice between an (improved) gluonic definition
of Qgluonic and the index of the overlap Dirac operator.

While the fermionic topological charge Qoverlap is imme-

diately destroyed by removing monopoles or vortices, the

gluonic topological susceptibility, in the absence of a true
topological charge representing the additive renormaliza-
tion for the topological susceptibility, rapidly drops to zero
within a few smearing steps. For the unmodified ensemble,
the actual topological charge Qoverlap (equal to plus or

minus the number of zero modes) is insensitive with re-
spect to smearing [24] even for more smearing steps than
considered in this paper. This smearing usually makes
visible extended topological background excitations, as,
for example, calorons or BPS monopoles (dyons). These
are suppressed as soon as Abelian monopoles or P-vortices
are removed from the configurations such that no smearing
can make them reappearing.
Finally we stress that, without any exception, quark

condensation is impossible without monopoles and P-
vortices. This is seen by inspecting the spectra of the
overlap Dirac operator. While differing in details, a gap
is opened if monopoles or vortices are removed. No gap is
opening and almost all zero modes are preserved if only the
photon degrees of freedom are eliminated from the Abelian
projection.
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APPENDIX

For self-contained readability of this paper we give the
standard definitions for SUð2Þ lattice gauge theory which
we have used in the studies described in the text. We
perform our analyses in the Direct Maximal Center
Gauges. The DMCG in SUð2Þ lattice gauge theory is
defined by the maximization of the functional

FDMCG
U ðgÞ ¼ X

x;�

ðTrgUx;�Þ2; (A1)

with respect to gauge transformations g 2 SUð2Þ. Ux;� ¼
fUjk

x;�g (j, k ¼ 1, 2) is the lattice gauge field and gUx;� ¼
gyðxÞUx;�gðxþ �̂Þ the gauge-transformed one.

Maximization of (A1) fixes the gauge up to Zð2Þ gauge
transformations, and the corresponding projected Zð2Þ
gauge field is defined as

Zx;� ¼ signðTrgUx;�Þ: (A2)

After this identification is made, one can make use of the
remaining Zð2Þ gauge freedom in order to maximize the
Zð2Þ gauge functional

FZð2Þ
Z ðzÞ ¼ Xz

x;�

Zx;� (A3)
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with respect to gauge transformations zðxÞ 2 Zð2Þ,
zZx;� ¼ z�ðxÞZx;�zðxþ �̂Þ. This is the Zð2Þ equivalent of
the Landau gauge. In distinction to Ref. [14], this final step
is automatically understood here before the vortex removal
operation (to be defined below) is done. The Zð2Þ gauge
variables are used to form Zð2Þ plaquettes. The P-vortex
surfaces are actually formed by plaquettes dual to the
negative plaquettes.

The Maximally Abelian Gauge is fixed by maximizing
the functional

FMAG
U ðgÞ ¼ X

x;�

TrðgUx;��3ðgUx;�Þy�3Þ; (A4)

with respect to gauge transformations g 2 SUð2Þ. The
maximization fixes the gauge up to g 2 Uð1Þ. Therefore,
the following projection to an Uð1Þ gauge field through the
phase of the diagonal elements of the links, �x;� ¼
argðgU11

x;�Þ, is subject to a remaining Uð1Þ gauge freedom.

The non-Abelian link field is split according to Ux;� ¼
ux;�Vx;� in an Abelian (diagonal) part ux;� ¼
diagfexpði�x;�Þ; expð�i�x;�Þg and a coset part Vx;� 2
SUð2Þ=Uð1Þ, the latter representing nondiagonal gluons.

In order to fix the MAG and the DMCG we have created
10 randomly gauge transformed copies of the original
gauge field configuration and applied the simulated anneal-
ing algorithm [7] to find the optimal non-Abelian gauge
transformation g.

We have used the standard DeGrand-Toussaint defini-
tion [37] of monopole currents defined by the phase �x;� of

ux;�. The part of the Abelian gauge field originating from

the monopoles is

�mon
x;� ¼ �2�

X
x0
Dðx� x0Þ@0	mx0;	�: (A5)

Here DðxÞ is the inverse lattice Laplacian, and @0� is the

lattice backward derivative. The Dirac sheet variable,
mx;�	, is defined by the integer part (modulo 2�) of the

plaquette angle �x;�	, whereas the reduced plaquette angle
��x;�	 2 ð��;�� is the fractional part: �x;�	 ¼ 2�mx;�	 þ
��x;�	. The photon part is

�photx;� ¼ �x;� � �mon
x;� : (A6)

The Abelian gauge field without monopole degrees of
freedom is defined as [13]

umonopole removed
x;� ¼ ðumon

x;� Þyux;�; (A7)

where umon
x;� ¼ diagfexpði�mon

x;� Þ; expð�i�mon
x;� Þg.

Correspondingly, the Abelian gauge field without the pho-
ton degrees of freedom is simply the monopole part

u
photon removed
x;� ¼ umon

x;� : (A8)

Upon multiplication with the coset field Vx;�, this holds

also for the non-Abelian links without monopoles

U
monopole removed
x;� ¼ ðumon

x;� ÞyUx;� (A9)

and without photons

U
photon removed
x;� ¼ ðuphotx;� ÞyUx;�: (A10)

Analogously the non-Abelian gauge fields without P-
vortices are defined as in Ref. [14]:

Uvortex removed
x;� ¼ Zx;�Ux;�; (A11)

where Zx;� is given by (A2).

Smearing is defined as an iterative field transformation
with one step

Uðnþ1Þ
x;� ¼ P

�
ð1� 
ÞUðnÞ

x;� þ 


6

X
	;	��

ðUðnÞ
x;	U

ðnÞ
xþ	̂;�U

ðnÞy
xþ�̂;	

þUðnÞy
x�	̂;	U

ðnÞ
x�	̂;�U

ðnÞ
x�	̂þ�̂;	Þ

�
(A12)

where P denotes the projection to SUð2Þ. This procedure
has been used here to demonstrate the unphysical nature of
monopoles, vortices, and gluonic topological charge ap-
parently left over after the configurations have been modi-
fied by monopole/vortex removal. In the equilibrium
ensemble, in contrast, these quantities are stable (up to
changing renormalization) with respect to smearing, and
the fermionic topological charge does not change at all. In
this paper the smearing parameter has been set equal to

 ¼ 0:5.
The gluonic definition of the topological charge density

is based on the 3-loopOða4Þ improved field strength tensor
[38]

F�	ðxÞ ¼
�
1

4

X
clover

�
3

2
Cð1Þ
�	ðxÞ � 3

20
Cð2Þ
�	ðxÞ

þ 1

90
Cð3Þ
�	ðxÞ

��
traceless

; (A13)

where the ‘‘clover’’ average is taken over the four untraced,

oriented Wilson loops CðRÞðxÞ of size R� R in the �	
plane that are touching each other in site x where they
begin and end. The gluonic topological charge is then

Qgluonic ¼ 1

16�2

X
x

X
�	��

"�	�� TrðF�	ðxÞF��ðxÞÞ: (A14)
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