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In QCD with adjoint fermions, the deconfining transition takes place at a lower temperature than the
chiral transition. We study the two transitions by use of the Polyakov loop, the monopole order parameter,
and the chiral condensate. The deconfining transition is first order, the chiral is a crossover. The order
parameters for confinement are not affected by the chiral transition. We conclude that the degrees of
freedom relevant to confinement are different from those describing chiral symmetry.
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I. INTRODUCTION

Deconfinement and chiral symmetry restoration are two
important features of QCD. Despite the fact that these two
phenomena are in principle independent of each other,
finite temperature lattice simulations indicate that they
occur at the same temperature within errors [1], making
it hard to disentangle them. In particular, it is not clear yet
what is the interplay between the degrees of freedom
relevant for the two transitions.

Several proposals exist in the literature for the confine-
ment dynamics, most of which are based on the presence of
topological excitations in the theory. A possible mecha-
nism for confinement is dual superconductivity of the QCD
vacuum, which manifests itself as condensation of mag-
netic charges [2]. In order to investigate this property of the
vacuum, one constructs an operator which carries magnetic
charge and determines its vacuum expectation value, which
is expected to be different from zero in the confined phase
and strictly zero in the deconfined symmetric phase [3–7].
Contrary to what happens for the Polyakov loop, the sym-
metry described by this order parameter is not spoiled by
the presence of dynamical quarks. It can therefore be used
as a good order parameter for confinement also in full
QCD. It has been shown indeed [6,7] that in QCD with
fermions in the fundamental representation dual supercon-
ductivity disappears at the same temperature where the
chiral-deconfinement phase transition takes place.

While there is much evidence that monopole condensa-
tion is strictly related to the dynamics of color confine-
ment, a still unsolved issue concerns the relation between
dual superconductivity and the dynamics of chiral symme-
try breaking. As already pointed out, the coincidence of
deconfinement and chiral restoration makes this problem
difficult in ordinary QCD. A system where deconfining and
chiral transitions are distinct could provide the framework
to investigate this issue. One such system is QCD with
quarks in the adjoint representation of SU�3� (aQCD), in
which the two transitions seemingly take place at different

temperatures [8]. Furthermore, the coupling to the adjoint
quarks does not explicitly break the Z�3� center symmetry
of the action, and therefore the two transitions can be
characterized by two order parameters, namely, the
Polyakov loop and the chiral condensate.

The authors of Ref. [8] performed lattice simulations of
aQCD with two flavors of staggered quarks, and found two
distinct phase transitions, with �dec <�chiral. They ob-
served a strong first order deconfinement transition and a
continuous chiral transition. They also checked that the
Polyakov loop, which is sensitive to deconfinement, is not
significantly affected by the chiral transition. The nature of
the chiral transition in Nf � 2 aQCD has been further
investigated in [9], where the authors made an extensive
analysis with the aim of determining the order of the chiral
transition. They found that the behavior of the magnetic
equation of state was consistent with the presence of a
second order chiral transition in the zero quark mass limit
(see also [10]). For the purpose of this work, however, it is
sufficient to know that a chiral transition exists and is
separated from the deconfinement one.

The structure of the paper is the following. In Sec. II we
briefly review the basics of aQCD and of the order parame-
ter for monopole condensation. In Sec. III we report the
results of our study of the deconfinement transition both by
use of the magnetic order parameter and of the Polyakov
loop. We make a summary and draw conclusions in
Sec. IV.

II. ADJOINT QCD AND MAGNETIC ORDER
PARAMETER

A. aQCD

Quarks in the adjoint representation of SU�3� have 8
color degrees of freedom and can be described by 3� 3
Hermitian traceless matrices:

 Q�x� � Qa�x��a; (1)

where �a are the Gell-Mann’s matrices. In order to write
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the fermionic part of the action for this model, the 8-
dimensional U�8� representation of the gauge links (which
is real) must be used:

 Uab
�8� �

1
2 Tr��aU�3��bU

y
�3��: (2)

The full action is therefore given by

 S � �SG�U�3�� �
X
x;y

�Q�x�aMab�U�8��x;yQ�y�b; (3)

where SG is the usual SU�3� gauge action with links in the
3-dimensional representation and M is the staggered fer-
mions matrix. The Polyakov loop is defined as in the pure
gauge case:

 L�3� �
1

3L3
s

���������
X
~x

Tr
YLt
x0�1

�U�3��0�x0; ~x�
��������
�
; (4)

where Ls and Lt are the spatial and temporal sizes of the
lattice, respectively, and the trace is over color indexes.
This quantity is an order parameter for the spontaneous
breaking of the center symmetry which is not broken by
adjoint fermions [see Eq. (2)]. A well-known result [11]
relates L�3� to the free energy of an isolated static quark in
the fundamental representation

 L�3� / e
	F=T (5)

in a gluonic bath at temperature T. In the center symmetric
phase, where L�3� � 0, the free energy is infinite, thus
realizing confinement; L�3� can therefore be used as an
order parameter for the deconfinement transition.

B. Monopole condensation

The vacuum expectation value of a magnetically
charged operator, h�i, was proposed in Refs. [3–6] as an
order parameter for the deconfinement transition. The op-
erator detects condensation of magnetic charges, i.e. Higgs
breaking of the magnetic charge symmetry. The procedure
involves a gauge fixing, the so-called Abelian projection
[12]. However, the particular choice of the gauge is ines-
sential as shown by numerical simulations [5] and by
theoretical arguments [13]. The explicit form of the vev
of the magnetic charged operator is given by

 h�i �
1

Z

Z
�dU�e	~S �

~Z
Z
: (6)

~S is obtained from the original action by the insertion of a
monopole field in the temporal plaquettes of a given time
slice [3]. The measurement of a ratio of partition functions
is a difficult numerical task and so, to better cope with
fluctuations, one calculates the quantity

 � �
@
@�

lnh�i � hSGiS 	 h~SGi~S; (7)

where SG is the ordinary gauge part of the action. Clearly,

two simulations have to be run for each value of �, with
and without the monopole insertion. The drop of the order
parameter at the transition corresponds to a peak of	�. In
the vicinity of the critical temperature a scaling ansatz for
the order parameter

 h�i ’ L
	��=�
s f�L1=�

s ��c 	 ��� (8)

(�� is the critical exponent associated to the order parame-
ter) implies

 � ’ L1=�
s f��L

1=�
s ��c 	 ���; (9)

where � is the critical index of the correlation length and f,
f� are universal scaling functions. In the case of a weak
first order transition, the critical exponent � is equal to 1=3,
i.e. the 	� peak is expected to scale with the spatial
volume:

 �=L3
s ’ f��L3

s��c 	 ���: (10)

III. SIMULATIONS AND RESULTS

We simulated two flavors of adjoint staggered fermions
using the exact RHMC (rational hybrid Monte Carlo)
algorithm [14] for the simulations with the monopole in-
sertion and the � algorithm [15] for the other simulations.
Trajectories had a length of NMD�t � 0:5, and typical
integration steps �t � 0:02, 0.005 depending on the mass
(see below). The acceptance rate was above 80% on aver-
age. Inversions of the fermionic matrix were performed
using the conjugate gradient algorithm. We have run simu-
lations mostly with two different lattice sizes, L3

s � Lt �
123 � 4, 163 � 4, and bare quark masses amq � 0:01,
0.04. We have evaluated the average plaquette, the �
parameter, the Polyakov loop, and the chiral condensate
for several values of � in the range (3.0, 8.0) (smallest �s
are not shown in graphs). In order to simulate the action ~S,
C
 boundary conditions have been implemented [16]. Our
code has been run on the APEmille machine in Pisa and the
apeNEXT facility in Rome.

A. Results

The thermodynamical properties of the Polyakov loop
were the easiest to study. We used this observable as a
reference to investigate the confinement-deconfinement
phase transition by means of the � parameter. The
Polyakov loop shows the typical behavior of a sharp first
order transition (see Fig. 1). The pseudocritical value of �
for the smallest mass was estimated, by inspection of the
data, to be at � � 5:25 (independently of the volume)
where L�3� shows a clear discontinuity. This result is in
agreement with [8], where a smaller volume 83 � 4 and the
same bare quark mass were simulated. We shall use this
pseudocritical � as an estimate for �dec in our finite size
scaling analysis.
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For the magnetic order parameter, we find the expected
peak at values of�which coincide within errors with those
at which the Polyakov loop has its discontinuity. The �
parameter is expected to approach zero independently of
the volume as �! 0; it should also diverge with Ls in the
deconfined region [17]. We found a good qualitative agree-
ment of our data with the expectations in both limits (see
Figs. 2–4). Around the transition finite size scaling analy-
sis shows that � has the scaling properties of a first order
transition for both values of the quark mass (Figs. 3 and 5).
In particular, the height of the peak is proportional to L3

s
within errors as expected from Eq. (10).

We also looked for possible effects of the chiral tran-
sition on the magnetic order parameter. The first step to
address this issue was to locate the transition by means of
the natural order parameter, the chiral condensate h �  i.
This parameter and its susceptibility (Fig. 6) were found
both consistent with a chiral transition in the region around
�chiral � 5:8. An unambiguous peak in the susceptibility of

the chiral condensate is visible only for the lightest mass,
am � 0:01. Comparison of results at different volumes
shows that the chiral transition, at this value of the fermi-
onic mass, is compatible with a crossover. These results are
in agreement with those already contained in [8,9]. The �
parameter does not show any significant change at � ’
�chiral (Fig. 2), the same happens for the Polyakov loop.
Furthermore, the analysis of [9] shows that a bare quark
mass of am � 0:01 is close enough to the scaling region of
the chiral transition. It is therefore safe to conclude that the
� parameter is not affected by the chiral transition, i.e. that
different d.o.f. dominate at the two transitions.

IV. SUMMARY AND CONCLUSIONS

We have studied deconfinement and the chiral transition
in lattice QCD with two flavors in the adjoint
representation.
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FIG. 3 (color online). Scaling of the � parameter, am � 0:01,
Lt � 4. �c � 5:25, estimated from the Polyakov loop at Ls �
16.
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FIG. 2 (color online). The � parameter, with am � 0:01, Lt �
4, for two different spatial volumes.
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FIG. 4. Behavior of the � observable varying the linear dimen-
sion of the lattice at fixed � � 8.
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FIG. 1. The Polyakov loop, with am � 0:01 and 163 � 4
lattice.
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Deconfinement is detected as a sharp jump at the critical
temperature �c of the Polyakov loop (Fig. 1). It is also seen
as a sharp peak of the susceptibility � related to magnetic
charge condensation. The location of the jump and of the
peak coincide within errors. Both parameters obey the
scaling of a first order phase transition.

The chiral order parameter h �  i has a drop at the
deconfining transition, corresponding to a peak in its sus-
ceptibility (Fig. 6) but does not vanish above it. h �  i drops
to zero at a higher temperature where its susceptibility �
has a broad peak (chiral transition). The scaling of � is
compatible with a crossover. Neither the Polyakov line nor
the magnetic order parameter show any change at the chiral
transition.

From these observations we can conclude that:
(1) the magnetic order parameter detects deconfinement

on the same footing as the Polyakov loop. This again
corroborates the mechanism of confinement by dual
superconductivity of the vacuum, as in the case of
pure gauge [2,3].

(2) The degrees of freedom relevant to deconfinement
are different from those relevant to chiral transition.
The detectors of deconfinement (L�3� and �) are
insensitive to the chiral transition, and h �  i is non-
zero above the deconfinement transition.

The last conclusion above can be relevant to the study of
ordinary QCD with Nf � 2 in the fundamental represen-
tation [18]. There the two transitions for some reason occur
at the same �c and the interplay of the two different kinds
of degrees of freedom could be at the origin of the diffi-
culties in determining the order of the transition. The
analysis based only on chiral degrees of freedom [19]
might prove to be inadequate.
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