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Even highly improved variants of lattice QCD with staggered fermions show significant violations of
taste symmetry at currently accessible lattice spacings. In addition, the “‘rooting trick’ is used in order to
simulate with the correct number of light sea quarks, and this makes the lattice theory nonlocal, even
though there is good reason to believe that the continuum limit is in the correct universality class. In order
to understand scaling violations, it is thus necessary to extend the construction of the Symanzik effective
theory to include rooted staggered fermions. We show how this can be done, starting from a generalization
of the renormalization-group approach to rooted staggered fermions recently developed by one of us. We
then explain how the chiral effective theory follows from the Symanzik action, and show that it leads to
“rooted”” staggered chiral perturbation theory as the correct chiral theory for QCD with rooted staggered
fermions. We thus establish a direct link between the renormalization-group based arguments for the
correctness of the continuum limit and the success of rooted staggered chiral perturbation theory in fitting
numerical results obtained with the rooting trick. In order to develop our argument, we need to assume the
existence of a standard partially-quenched chiral effective theory for any local partially-quenched theory.

Other technical, but standard, assumptions are also required.
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I. INTRODUCTION

On a hypercubic lattice in four dimensions, the contin-
uum limit of lattice QCD with staggered fermions [1]
contains four “tastes’ of mass-degenerate quarks per stag-
gered fermion field [2—5]." Hence, if we introduce a sepa-
rate staggered fermion field for each physical light-quark
flavor (up, down, and strange), the continuum limit consists
of QCD containing four up, four down, and four strange
quarks.

A simple solution to this problem is to adjust for the
excessive multiplicity by taking the fourth root of the
fermion determinant for each staggered fermion field [6].
Heuristically, if the staggered determinant factorizes into
four identical determinants in the continuum limit, one for
each taste, taking the fourth root corrects for the taste
multiplicity. The desired theory, QCD with one up, down,
and strange quark each is then obtained in the continuum
limit. Since the staggered determinant is positive for any
real, nonzero bare quark mass m, and the continuum deter-
minant is (formally) positive for positive quark mass, the
positive fourth root should be chosen.” The continuum
quark mass is proportional to |m|, which undergoes only
a multiplicative renormalization, because staggered fermi-
ons have one exact chiral symmetry.

This procedure, the ““fourth-root trick,” raises a number
of questions [9-11]. The fourth root of a determinant
cannot in general be written as a Grassmann integral with

"We assume the usual choice of only a single-site bare mass
term.

“For the case of an odd number of quarks with negative quark
mass, see Refs. [7,8].
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a local action. Therefore, the first question is whether the
theory defined by the fourth-root trick is local and unitary.

In Ref. [12] we showed that, as might be expected, the
fourth-root staggered theory is not local at nonzero lattice
spacing a. Continuing correlation functions defined in the
Euclidean theory to Minkowski space will lead to viola-
tions of unitarity at a # 0, on a distance scale set by the
lightest particles in the theory, the Goldstone bosons. For
examples of this, see Ref. [13], as well as Sec. 6 of
Ref. [14], which we will revisit later in this paper.

The origin of these diseases can be traced back to the
taste-symmetry-breaking part of the staggered Dirac op-
erator. This taste-breaking part corresponds to a
dimension-five irrelevant operator. Thus, in the local, un-
rooted staggered theory, all taste-symmetry-breaking ef-
fects are expected to vanish in the continuum limit, where
exact U(4) taste symmetry will be restored for each of the
four up, four down, and four strange quarks present in that
theory.

The leading power-law scaling of irrelevant operators is
characteristic of any local and renormalizable theory, such
as, in particular, the unrooted staggered theory. This brings
us to the second question: Does the same scaling persist in
the fourth-root theory? Two related considerations make it
natural to address this question via a renormalization-
group (RG) approach. To begin with, the RG framework
allows us to define what we mean by the continuum limit.
This is done by performing n + 1 blocking steps® on the
original lattice theory, with its fine spacing a; = a, each

*See Sec. III for an explanation of the convention a,/a ;=
2n*+1[15].
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time increasing the lattice spacing by a factor of 2, to arrive
at an RG-blocked theory formulated on a lattice with a
coarse spacing a, = 2"*1a + Keeping a,. fixed and small in
physical units, a, < Aglp, while sending n — oo (and
thus ay — 0), one obtains a coarse-lattice theory describ-
ing the continuum physics. An RG framework is also
natural because the restoration of taste symmetry is only
expected to occur on distance scales much larger than the
original lattice cutoff a;. RG blocking removes the short-
distance fluctuations while modifying the action of the
remaining degrees of freedom by local terms only. When
we increase the number of blocking steps n, the blocked
theory becomes more taste symmetric, and we eventually
recover exact taste symmetry in the continuum limit n —
0,

Using this RG framework, it was argued in Ref. [15] that
the continuum limit of QCD with rooted staggered fermi-
ons is a local theory that belongs to the correct universality
class. There are strong arguments that the fourth-root
theory, while nonlocal, is nevertheless renormalizable
[10,16,17], and this is the fundamental reason behind the
validity of its continuum limit. The detailed reasoning is
based on a number of technical assumptions, all of which
are very similar to the assumptions needed to establish the
nature of the continuum limit for the unrooted staggered
theory. Further analytic and numerical work aimed at con-
firming the technical assumptions of Ref. [15] would add
direct and strong evidence for the validity of the fourth-root
trick. For full details, we refer to Ref. [15]; for shorter,
more intuitive accounts, we refer to Refs. [10,11]. We
stress that one key element—the anticipated scaling of
the taste-breaking effects—has been corroborated by ex-
tensive numerical studies [18-21].

Assuming that the rooted staggered theory has the
correct continuum limit, this leaves us with a third
question. While the anticipated scaling of taste-breaking
effects is observed, these effects are clearly not negligible
at present [13,18—21]. It is therefore imperative to take
lattice artifacts into account in the effective continuum
field theories (EFTs) such as the Symanzik effective theory
(SET) or chiral perturbation theory (ChPT). The latter
provides a central tool for analyzing the numerical data
and performing the chiral and continuum extrapolations
in the light-quark sector. In the case of rooted staggered
fermions, we thus need to construct EFTs that take the
discretization effects into account, including those that
correspond to the nonlocal behavior of the theory at
a # 0. The construction of such EFTs is the subject of
this paper.

For the pseudoscalar Goldstone-boson physics, a candi-
date EFT already exists; it is provided by staggered ChPT
[22] with the replica rule (rfSChPT), or “rooted staggered
ChPT” [23]. (Extensions to higher order [24], and to
heavy-light meson [25] and baryon [26] rSChPT were
recently given.) An argument for the validity of rSChPT
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was presented in Ref. [14], and reviewed in Refs. [10,11].
The key feature of Ref. [14] is that the argument takes
place completely within the context of chiral effective
theories, and the replica rule is justified only in that con-
text. Here we will need to introduce a somewhat different
version of the replica rule, which will be justified in
addition at the level of the fundamental lattice theory, but
which will ultimately give the same results in the chiral
theory. A detailed comparison of the two approaches will
be made in Sec. V C.

The overall goal in the current paper is to extend the
standard procedure for the construction of ChPT for a local
lattice theory to QCD with rooted staggered fermions. The
standard procedure consists of two steps. The SET [27] is
constructed first. This can be done order-by-order in per-
turbation theory, but it is generally assumed that the SET is
valid nonperturbatively as well. We will assume through-
out that this includes partially-quenched theories [16]. In
particular, we will assume that locality suffices, and that
unitarity (which may be lost in partially-quenched theo-
ries) is not necessary. Once the correct form of the SET has
been established, its symmetries can be used to construct
ChPT. Since the SET organizes the low-energy effective
theory as a systematic expansion in the lattice spacing, one
automatically obtains the chiral theory as an expansion in
the lattice spacing as well.

Establishing that EFTs can be constructed following the
usual rules for QCD with rooted staggered fermions thus
constitutes a fundamental step in understanding the effects
of rooting at nonvanishing lattice spacing. The main thrust
of this paper is the construction of the SET for the rooted
theory; obtaining the corresponding ChPT is then straight-
forward, and we show that it is indeed given by rSChPT.
We emphasize that our construction applies to all com-
monly used versions of staggered fermions: standard (un-
improved) staggered [1], Asqtad [28], HYP [29], Fat7bar
[30], HISQ [31], etc. The only requirement is that the
actions have the usual staggered symmetries. The size of
the discretization effects is of course different with differ-
ent versions of staggered fermions, but their form (and
appearance at each order in ay) is the same.

It is also important to note that the effective theories we
ultimately construct are those for the relevant rooted stag-
gered theory on the original (fine) lattice. The RG frame-
work is used only as a tool in the derivation of these
effective theories. Nevertheless, it is an indispensable
tool: the conclusions of Ref. [15] have to be valid in order
for our construction of the EFTs to make any sense. We
will assume this to be the case.

The difficulty in constructing EFTs for the rooted
theory is the following. Consider for simplicity a staggered
theory with a common power, denoted n,, of the fermion
determinant for each staggered flavor in the theory. As
long as n, is a positive integer the lattice theory is local,
and the construction of EFTs proceeds as usual. In order
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to arrive at the fourth-root theory,4 however, we must set
n, = 1/4. Our task is to ensure that a replica continuation
may be performed: a well-defined procedure must be de-
vised to reach the value n, = 1/4 at the level of an EFT,
and the procedure must be consistent with the n, depen-
dence of the underlying lattice theory.

In a diagrammatic EFT calculation, the dependence on
the number of (sea) quarks arises in two ways. First, there
is explicit dependence arising through loop diagrams. In
addition, the coupling constants of the EFT (the Symanzik
coefficients in the case of the SET, and the low-energy
constants in the case of ChPT) depend in an unknown way
on the underlying lattice theory, including, in particular, on
the number of replicas n,. It is the latter dependence that
makes our task nontrivial. In principle, one may envisage
two basic obstructions to the replica continuation of the
coupling constants in the EFT. Mathematically, a unique
analytic continuation off the positive integers (which in the
case at hand is where the theory is local) does not exist.
Also, it could be that the replica continuation we have in
mind will encounter a singularity precisely at the desired
point n, = 1/4.

The dependence of the underlying lattice theory on the
number of replicas n, is both perturbative and nonpertur-
bative; this means that proving that no obstacle to the
replica continuation is present would be tantamount to
solving the theory nonperturbatively. The key observation
that makes our task nevertheless tractable is that, after a
large number n of RG-blocking steps, the taste-symmetry-
breaking effects are very small: the unrooted staggered
theory with integer n, is very close to a U(4) taste-invariant
theory. The rooted theory, with n, = 1/4, is then also very
close to a local lattice theory, for which the standard
construction of EFTs is valid. Indeed, the ‘“‘reweighted”
taste-invariant theories introduced in Ref. [15] are local
whenever n, is a multiple of 1/4. The proximity of these
local theories makes it possible to construct the SET and,
later, ChPT, for the rooted theory.

We will reach the SET for the rooted theory starting
from the SET for the corresponding reweighted, taste-
invariant theory. The flavors of the taste-invariant theory
will always be kept in one-to-one correspondence with
those of the continuum-limit theory. In the taste-invariant
theory the dependence of the Symanzik coefficients on the
physical quarks is nonperturbative, and unknown, as usual.
This does not pose any difficulty, because the number of
physical flavors is never varied.

During the intermediate steps of the derivation, the
parameter n, will take on a related, but different technical
meaning. The precise definitions will be given and ex-
plained in Sec. IIl below. As already mentioned above,

“The discussion generalizes easily to the isospin limit m, =
my = my, where one takes the square root of a single staggered
flavor with (bare) mass m,.
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we first approximate the staggered theory by a local, taste-
invariant theory that belongs to the correct universality
class. The (rooted) staggered theory will then be reached
from the taste-invariant theory by “‘turning on” smoothly
the taste-breaking effects. The dependence on n, of the
lattice theory will come only from the taste-breaking ef-
fects, which are nonlocal (for noninteger #,.) but small. The
difference between corresponding taste-invariant and stag-
gered theories is of order the fine-lattice spacing a, of the
original (unblocked) lattice. This will allow us to show that
all the lattice correlation functions are polynomials in n, to
any fixed order in the expansion in a;. The degree of the n,
polynomial is less than the order of the a; expansion. The
n, dependence of the Symanzik coefficients can then be
determined unambiguously. It follows that the replica con-
tinuation is nowhere singular in the complex n, plane, to
the given order in a;. Finally, after performing the replica
continuation, the parameter n, resumes its original role as
the power of the staggered determinant in the lattice theory.
The further transition to ChPT is essentially a repeat of the
same reasoning. As will become clear later on, we do have
to assume that a chiral effective theory can be constructed
for any local, but partially-quenched, theory. This was
already emphasized in Refs. [10,14].

The outline of this paper is as follows. In Sec. I we
consider the symmetries of staggered fermions in some
detail. We derive the form in which shift symmetry [4] is
realized in the SET, and thus in any other EFT derived from
the SET. A quick overview of the most important observa-
tions of that section is given at its beginning, and any
reader not interested in the details can skip the remainder
of the section.

In Sec. III we come to the main part of this paper, the
construction of the SET for QCD with rooted staggered
fermions. We generalize the staggered theory to a class of
partially-quenched theories in which it is possible to imple-
ment the program outlined above. In Sec. IV we discuss the
SET to quadratic order in the lattice spacing in more detail,
in order to illustrate the general construction. In Sec. V we
make the transition to the chiral effective theory, and
demonstrate that it is indeed given by rSChPT. As an
example, we work out in rSChPT the leading-order con-
tribution to the connected scalar two-point function, fol-
lowing the calculation in Ref. [14]. We then compare the
present derivation of rSChPT to that of Ref. [14], using the
respective discussions of the scalar two-point function to
make the comparison concrete. The final section contains
our conclusions. A brief account of this work was pre-
sented at Lattice 2007 [32].

II. SYMMETRIES OF THE SYMANZIK
EFFECTIVE ACTION FOR STAGGERED
FERMIONS

Here we discuss the symmetries of unrooted staggered
fermions that are most relevant for this paper, and the way
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they appear at the level of the SET. We begin with an
overview of the main results of this section. In the follow-
ing subsections we will then give a more detailed discus-
sion.

(1) The staggered fermion action is invariant under shift
symmetry, which, in the continuum limit, enlarges
to the product of SU(4) taste-symmetry and trans-
lation symmetry. At the level of the SET, the taste
part of shift symmetry takes the form of the 32-
element group I'y generated by a set of four-
dimensional Dirac gamma matrices ¢, with

{0 € =28,,, wv €1{1,2,34} (2.1

This result was derived to order a2 in Ref. [22]. Here
we give a general argument that makes it clear that
the result is true to all orders in a. On the continuum
quark fields ¢ used in the SET, the generating ele-
ments of I'y can be chosen to act according to

q— £&u9 qg—Gé,. (2.2)

Here the field gg; has a Dirac spin index B and an
SU(4) taste index b, with the matrices £, acting on
the latter.

(2) On the lattice, a taste-basis field ¢ carrying the same
indices as the continuum quark field ¢ is related to
the one-component field y by a unitary transforma-
tion [5,33]

y=0x  ¢=xoh (23)

The field ¢ lives on a coarse lattice whose spacing is
twice that of the original staggered action. The
ultralocal, unitary matrix (@ maps the one-
component variables y on the 16 sites of each
even hypercube to the 16 components of ¢ on the
single corresponding coarse-lattice site. The trans-
formation Q is required to be gauge covariant, and
its choice is not unique. As a result hypercubic
rotational symmetry is somewhat complicated in
the taste basis.> Of course, since the one-component
and taste bases are related by a unitarity transforma-
tion, the physical consequences of all staggered
symmetries are preserved.

A somewhat different taste-basis operator, that we
will refer to as the ““RG-taste-basis” Dirac operator
[15,34], is defined by a Gaussian smearing of the
unitary transformation (2.3). The resulting inverse
Dirac operator satisfies

_ 1 _
Dtaslte = E + QDstangTy (2-4)

where Dg,, is the Dirac operator in the one-
component formulation, and « is a parameter of

For a detailed discussion of rotational symmetry in this
framework, see Ref. [15].

074505-4

3)

“

order 1/a. Even though the theories described by
Dy and Dy, are no longer related by a simple,
unitary basis transformation, they are physically
completely equivalent, because the propagators dif-
fer only by a contact term. The advantage of the
Gaussian-smeared transformation is that discarding
the taste-breaking part of D, does not introduce
any fermion doublers [12,34]. Because the stag-
gered theory and the taste-invariant theory have a
similar fermion content, one can interpolate
smoothly between them. This will prove useful for
the derivation of the SET.

In the one-component formulation, shift symmetry
is a unitary transformation on the fields y and y [cf.
Eq. (2.11) in the next subsection]. Since Q is unitary,
the same is also true for the fields ¢ and ¢, and from
this it follows that the theory in the RG-taste-basis is
also invariant under shift symmetry.

Because of staggered symmetries, discretization er-
rors for theories with staggered fermions start at
order a? [35]. This is not obvious if one considers
staggered fermions in the taste basis of Refs. [5,33],
or in the modified form used in the RG analysis of
Refs. [15,34], where taste-breaking terms occur in
the action starting at order a. In this case, shift
symmetry connects the leading, taste-invariant
term in the lattice action with the order a taste-
breaking term, i.e., their relative strength is fixed.
There exists a local field redefinition that brings the
taste-basis lattice action into a form where the taste
violations are explicitly of order a?, and shift sym-
metry is realized as in Eq. (2.2), again up to order a>
terms [36]. More generally, the momentum-space
basis used in the derivation of Eq. (2.2) can be
related to the taste basis by a nonlocal field redefi-
nition. Because the construction of the SET pro-
ceeds order-by-order in a, the field redefinition in
effect becomes local. Therefore, the SETs con-
structed in the taste basis and in the staggered (or
momentum-space) basis are always related by a
local field redefinition.

Staggered fermions have an exact chiral symmetry
when m = 0, often referred to as U(1), symmetry,
taking the form [2]

x(x) = e x(x), X(x) = e x(x),

E(X) — (_ l)x' +x2+x3+x4_

(2.5)

For m = 0, this implies that

2
{Dtaste’ Ys ® é:S} = EDlaste('YS ® gS)Dtaste’ (26)

where 5 acts on the spin index, and é5 = £1£,&3€,
acts on the taste index [12,34]. In other words, D .
is a Ginsparg—Wilson operator [37] with respect to
U(1), symmetry.
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Before we proceed, we return to the relation of our
analysis and that of Ref. [22]. The SET at order a®> was
determined in Ref. [22] by enumerating the allowed
dimension-6 lattice operators consistent with the lattice
symmetries, including shift symmetry. It was then shown
that shift symmetry is represented on the corresponding
continuum operators as a I’y symmetry. A more direct
method of determining the SET, which we follow here, is
to enumerate continuum operators. This leads to the result
of point 1, that shift symmetry always implies a taste I'y
symmetry of the SET.

In the subsections following below, we will discuss some
of these observations in more detail. These subsections are
not needed for the construction of the SET for rooted
staggered fermions, which can be found in Sec. III.

A. Diagrammatic argument

Our first argument for claim 1 above is essentially
perturbative, and assumes that we are working in the
momentum-space representation of the one-component
basis. This result may be considered a corollary of
Ref. [4]. To keep it self-contained, a summary of relevant
facts from Ref. [4] has been included in the discussion
below.

We will consider diagrams with n external fermion and r
external gauge-field lines, corresponding to an operator
which appears at a certain order in the SET. On the lattice,
because of the phase factors which appear in the staggered
action, momentum is conserved modulo 77 (in this section
we work in lattice units), and any such diagram will have
an overall delta function for momentum conservation of
the form

opy+...+p,+ ki +.. .+ k +1I), 2.7

where II is a vector with components O or 7. The delta
function is the periodic delta function with period 27r. The
(lattice) quark and antiquark momenta are p;,, i = 1,..., n
and the gluon momenta k;, j =1,...,r.

Because we are interested in an operator in the SET, we
may take all physical external momenta small. Fermion
doubling then implies that on every quark line we need to
split the momenta as

Di=q;t my, (2.8)

in which g; lives in the reduced Brillouin zone ( — 7/2 <

giy = 7/2), and m, = 7A;, with
A; €1(0,0,0,0),(1,0,0,0),..., (1, 1,1, D}.  (2.9)

We now take all physical momenta ¢; and k; small—so
small that their sum has no components as large as = .
The delta function in Eq. (2.7) thus factorizes into

8(g+...+q, +k +...+k)

X 8(ma, + ...+ m + IN). (2.10)
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Now consider what happens to this diagram under a shift
x(x) = £, () x(x + @),
X(x) = x(x + @) g, (x),
U,(x) = U, (x + @),

gﬂ(x) = (_l)x#+1+...+x4 — eirr;#vc’

@2.11)

where the last equality defines 77, . In momentum space
(with x(x) = [T _d*p/@2m)*e'P*x(p)), this takes the
form

xX(pi) = X(qi + ) — 9T gy + 7p, + 7).

(2.12)

Applying a shift in the w direction to all external legs of
our diagram, and noting that the jth external gluon line is
multiplied by a factor e/*)« under a shift, we obtain the
total factor

i(g+...tq, Tk +..+k
el((il qnTKy r)p.’

(2.13)

which, by virtue of the first delta function in Eq. (2.10), is
equal to one. Therefore, we may omit these (small-
momentum) phase factors in the shift (2.12). We conclude
that the diagram is invariant under the modified symmetry

i=1,...,n

(2.14)

x(g; + my) = e x(q; + Ty + 7).

which does not act on the gluon fields. The transformation
(2.14) generates a representation of the group I'y acting on
the quark fields. Indeed, applying the transformation first in
the w direction, and then in the v direction, one obtains
(dropping the index i)

i(”A*”;M)Vei(wA)

wx(q + 7y + mp, + o).
(2.15)

Xg+my)—e

For u = v, we have (W{#)/L = 0 [cf. Eq. (2.11)], and thus
Eq. (2.15) reduces to the identity. For u # v,

Gx+v) =)= e Tah = 41,

{u(x+v) =

M >,
—£,(x) = & Tad = —1, p<v,
(2.16)

implying that shifts anticommute, just like the generators
of I'y. We may make contact with Eq. (2.2) by introducing

dalq) = x(g + my). (2.17)

The transformation Eq. (2.14) can now be written as

dalg) — Z(EM)AB(bB(Q): (2.18)
B

for some 16 X 16 matrices =, satisfying the Dirac algebra
(B Bt =26,,. (2.19)

Finally, we can perform a basis transformation such that
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=] w = 1®¢,, and transform back to position space to
obtain Eq. (2.2).

Our argument shows that the diagram is invariant under
the symmetry (2.2) if it is invariant under shift symmetry
(2.12). The group I'y may thus be used to restrict the form
of the SET in accordance with the shift symmetry of the
underlying lattice theory. This is a considerable simplifi-
cation, because the group I'y does not mix operators of
different dimensions, i.e., of different orders in the
Symanzik expansion.

The same reasoning goes through in a theory in which
the staggered fermion fields carry a flavor index € =
l,...,ns one simply labels the fields x, and Y, in
Eq. (2.11) with the extra index €. Since the gauge fields
also transform under shift symmetry, the same shift sym-
metry acts on all staggered fields simultaneously. It thus
follows that the discrete symmetry I'4 acts in the same way
on all staggered fields y,, and does not enlarge to the group
(T [23].

As an aside, we note that the invariance of the diagram
under shift symmetry has implications for the second delta
function in Eq. (2.10). Naively, it would seem to follow that
IT just has to be equal to the sum over all 74, but in
general this is not sufficient. The reason is that the vertex
can contain explicit periodic functions of the external
momenta, which leads to additional sign factors under a
shift. This is best illustrated with an example. Consider a
lattice vertex of the form

25(‘]1 + g, + k)O(my + m + 1)
AB

X cos(qy + k+ my), x(q2 + mp)x(q1 + mA)A,(K),
(2.20)
in which we split p; = g, + 74, p» = g, + 75, and take

g1 and k to be small. Performing a shift on the y and Y
fields results in (dropping a factor 8(q; + g, + k))

D 8(my + g + M)cos(qy + k + y),e/ 7" 7o
AB

X x(gy + 7 + 7y )x(qy + 7ma + 7 )A,(K)
= Z6(7TA + a7 + Il)cos(q, + k+ m4),
AB

« ei(v@)yeinﬂy(% + mp)x(q, + m4)A,(k), (2.21)

where we used that (W{M)’u = Oand that 27, = O mod 2.
The vertex is thus invariant if IT,, + (7T§#)V = Omod 2.
An example of such a II is 7, ., which is defined by the
phase factors which appear in the staggered action

—DETeteL(222)

7,(x) = et = (

B. Group-theoretical argument

There is a very simple group-theoretical way to derive
the same result. Let S, be the shift in the u direction. All
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elements of the shift-symmetry group can be generated
from the basic four shifts, and it is thus sufficient to
consider only the §,,. In any irreducible representation of
the group, §,, looks like
S, —eunE,, (2.23)

with —7/2 < g, = /2 the physical momentum in lattice
units, and the matrices =, generate a representation of I'y
[38]. All irreducible representations are either ‘“bosonic,”
if each B » 1s mapped onto *1 (sixteen choices), or “fer-
mionic,” if the Z . are chosen to satisfy the Dirac algebra
(2.19). Any field appearing in an EFT for the staggered
theory (such as the SET or ChPT) transforms in some
representation of § u under a shift (i.e., with some choice
of g, and E ).

Now we use that any continuum EFT is also invariant
under continuum translations, which, on a continuum field
& with momentum ¢, act as

D(q) — €17D(q), (2.24)

for a translation over a displacement r. We may thus
choose r such that g - r = —q,,, follow S, by this trans-
lation, and again obtain a symmetry of the EFT. This
symmetry is precisely the one generated by the ws 1€
a representation of I'4.

C. Taste basis

The arguments in the previous subsections made use of
the momentum basis of the one-component formalism. The
Feynman rules for the staggered theory in the one-
component basis [4] were (assumed to have been) used
in the derivation of the SET. Also, the group-theoretical
argument works naturally on the momentum basis, since
that is where irreducible representations of the staggered
symmetry group live [38]. Alternatively, one could have
started from the taste basis. The SET derived from the taste
basis will not look the same as that derived from the one-
component formalism; but the two SETs should be physi-
cally equivalent. Since the one-component and taste bases
are related by a (nonlocal) unitary transformation in mo-
mentum space [5], one expects that the SETs derived from
them, too, will be related by a field redefinition. Moreover,
to any finite order in a, the SET-level field redefinition
should be local, because the same is true for the unitary
transformation between the two bases, when expanded to
the corresponding finite order in a.

We illustrate this in the free massless theory, working to
order p? in the Symanzik expansion. On the taste basis,
shift symmetry takes on the form [5,36]

Pp(y) = (€, + vsyués(y)
+ (€u — Vsyu €)Yy + Q).

The field ¢, introduced in Eq. (2.3), is in this case given

(2.25)
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explicitly by

1
‘/’Bb(Y) = WZ('}’A)/}hX(zy + A), (2.26)
A

where y, = v A y?z V3 yﬁ“, and A runs over the set (2.9).

The normalization factor in Eq. (2.26) differs from that in
Ref. [5] because we take ¢/ to be in lattice units of the
coarser lattice; whereas Ref. [5] works in physical units. In
momentum space, Eq. (2.25) looks like

p(p) — ePu/2(£, cos(p, /2) — iysy,Essin(p, /2)p(p)

= (&, = 3 y5y,bsp, O Jip). @27
The factor e'”«/2 corresponds to the factor e’ in
Eq. (2.12), because the lattice spacings differ by a factor
of two. Dropping the factor ¢?x/2 on the same grounds as
in Sec. IT A, it is easily verified that the transformation
(2.27) becomes a generating element of I', and that it is a
symmetry of the order-a SET in the taste representation,

™ d4p - . 1
Stree = %f_wml//(l’)<l’yﬂpﬂ + E?’sfsfﬂpi

+ @(p3))¢(p). (2.28)

This may also be written as

Siee = 3 [ 55 (w017, 0]

d4
= 2m)*

+ S LB Ys PR P sy, )T+ @<p3>),
(2.29)

where we consider the field g, as a 4 X 4 matrix.
In momentum space, the transformation relating the
one-component and taste representations is [5,36,39]

1 )
p(p) = WZ(_I)A'B’)’A(%(C])@”"A,
e (2.30)
7, — 1 AB, T 7 —iq-A
y(p) = 21—1/22(_1) 7A¢B(Q)e 4,
AB

where again A and B take values in the set (2.9), and where
g = p/2. The field ¢(g) was defined in Eq. (2.17). The
transformation (2.30) is indeed nonlocal, but its expansion
to any finite order in a is local. For instance, upon expand-
ing e*A=1=%ig-A+ O(¢g?), and starting from
Eq. (2.29), this field redefinition brings the action (2.28)
into the form

Sfree = . AB[ (2 )4 ¢A(Q)(1(F )ABQ,U.

+0(@*)d5(q), (2.31)
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where the I, matrices form a 16-dimensional representa-
tion of the Dirac algebra and commute with the taste
matrices E, defined in Eq. (2.18). Note that Eq. (2.31) is
expressed in units of the fine-lattice spacing.

Let us also briefly consider the RG-taste representation
defined by Eq. (2.4) in the massless free theory. To order p?
the action is given by [12]

s[&

1
o) w(p)(tmpﬂ +— p,L

1
3 vsEstur + O pp). 23
This action is invariant under U(1), symmetry in
“Ginsparg—Wilson—Liischer’ (GWL) [37,40] form. In the
free theory, this symmetry looks like (again to order a)

2
Si(p) = 7555(1 - ;Zimp# + @(p2)>¢(p), 033
o .

(P) l//(P)sts

In this case, we may first carry out a field redefinition

¥(p) — (1 + é%imm)tﬂ(p),

(2.34)
#(p) — ¥(p),

followed by (2.30), to bring the action into a form without
terms of order a. Note that Eq. (2.34) is nothing but the
free-field, order-a form of the field redefinition

y— (1 —-D/a) 'y

with here D = Dy, Which transforms the GWL form of
U(1), symmetry into a standard ys&5 symmetry, see, e.g.,
Ref. [41].

As a final note, we observe that to this order in a, field
redefinitions can be carried out such that the resulting
action is invariant under the full U(4) taste symmetry.
This turns out to be true to all orders in a in the free theory
[4], but not in the interacting theory.

(2.35)

III. DERIVATION OF THE SYMANZIK EFFECTIVE
ACTION

We begin by considering a theory with n, replicas of one
staggered fermion with bare mass m, in the RG taste basis.
For now, n, will be a positive integer. We perform n + 1
RG-blocking steps, labeled k = 0, 1, ..., n, following the
blocking procedure of Ref. [15]. The special k = O step is
used to carry out the transition from the one-component to
the taste basis, cf. Eq. (2.4). In this step the number of
fermion degrees of freedom is not thinned out; in each
subsequent step they are thinned out by a factor 2* = 16.
The partition function for this theory can be written as
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Z(nr) = fDIU l_[ DV(k)Bn (nr’ ,u: {V(k)})Detnr(DtaSle,n)'
k=0

(3.1

The notation here is as follows: The gauge field on the
original lattice, with spacing ay, is denoted by ‘U. The
spacing of the kth blocked lattice is a; = 2"“af, and the
gauge field on that lattice is V*¥). The spacing of the final,
coarse lattice is a, = 2""1a ¢ The Boltzmann weight for
the collection of gauge fields, original and blocked, is
B, (n,; U, {V®}). It is composed of three parts: the origi-
nal gauge action, the gauge-field blocking kernels,® and a
short-distance contribution to the effective gauge-field ac-
tion, n,6S.¢, coming from integrating out the fermions on
all lattices except the last one, where

e = [TDet(G ). (3.2)
k=0

The operators Dy and G !
- - 01— k
Dtastek Ay L+ Q( )Dtas]te,k—lQ( )T’
Gl; = Dtaste,kfl + akQ(k)TQ(k), k= 1, R (R
3.3)

The blocking parameter «;, is of order 1/a,. The blocking
kernel at the kth step, Q¥ = QW (V& 1) gauge cova-
riantly averages the fermion fields over 2* hypercubes on
the (k — 1)st lattice. For the k = 0 step, Dyyge.0 = Dyaste 15
defined in Eq. (24), and Gj' = Dy, + 2900100,
where ay = @ and Q© = Q are those introduced in
Eq. (2.4). Recall that the special k = 0 blocking kernel is
unitary; all other blocking kernels are not.

For small momenta, QW Q® =~ 1, and with a;, ~ 1/a,
it thus follows that the eigenvalues of G; ! are at least of
order 1/a;, making 8S.s a short-distance contribution to
the effective gauge action.” While this can be proved in the
free case [34], in the interacting case this is an assumption
that is already necessary for the conventional RG picture to
work in local, renormalizable theories. The nature of this
assumption is discussed in detail in Ref. [15]; here we will
assume it to be correct. It follows that S, remains local
when we take 1, to be any real number.®

The fermionic contribution to long-distance physics
then resides entirely in the n,th power of the determinant
of Dy, in Eq. (3.1). The problems with locality of the
rooted theory originate with taking n, — 1/4 in this power.
Our task will be to perform a faithful replica continuation

are recursively given by
k=1...,n

SWe do not integrate over any of the gauge fields; this can be
postponed to the end. The explicit expression for

(n,, U, {V®}) is given in Ref. [15].

"Much smaller eigenvalues are allowed, as long as the corre-
sponding eigenmodes are localized on a distance of at most order
A, Such modes would not affect the long-distance physics.

8We keep n, in the range where the gauge coupling is
asymptotically free.
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at the level of the SET. As explained in the introduction,
this is not straightforward. Calculations in the effective
theories, the SET or ChPT, lead to explicit dependence
on n, (for instance, through loops). But there is also im-
plicit dependence through the couplings that appear in the
effective theory, which is in general nonperturbative, and
not known.

Our strategy will be to first approximate the fourth-root
theory by a local (“reweighted’”) theory. The fermions of
this theory do not carry a taste degree of freedom; they are
taste singlets. The multiplicity of taste-singlet fermions, n,
will always be chosen to match the fermion spectrum of the
target continuum theory. Therefore we will never have to
perform any “replica continuation’ in ng; rather, n, will
always be kept a positive integer. In our construction, the
unknown dependence of the couplings in the effective
theory on the fermions will be due to the taste-singlet
fermions only.

The fourth-root theory will be reached from the taste-
singlet theory by “turning on” the taste-breaking effects
that introduce the nonlocal behavior. This is where a
replica continuation away from the integers will be needed.
Because of the smallness of the taste-breaking effects, the
replica continuation will be under control. Indeed, we will
show that to any order in ay, the dependence of the taste-
breaking effects on n, is polynomial, with a degree less
than the order in the a; expansion.

We start by splitting Dy, ,, into a taste-singlet part and a
taste-breaking part with vanishing trace in taste space,

Dtaste,n = Dinv,n + Anr
Dinv,n = Dinv,n ® 1’

— 1
Dinv, n = 4 trt.\' (Dtaste,n)J

3.4)

where tr,; denotes the trace in taste space, and 1 is the taste
identity matrix. Following Ref. [15] we assume that, in the
coarse-lattice theory, A,, scales like
laA, =2,
c
This estimate is valid modulo logarithmic corrections to
the leading power-law scaling. For extensive discussions of
this scaling assumption, we refer to Ref. [15] (see also
Refs. [10,11]). Here we only observe that, in any theory
with integer n,., this assumption is needed to establish that
unrooted staggered fermions have the usually assumed
continuum limit. However, by exploiting the proximity of
the local reweighted theory after a large number n of
blocking steps, it was argued that the scaling (3.5) is also
valid in theories with fractional n,. In this paper, we will
assume this to be the case.
Using this split, we generalize the determinant in
Eq. 3.1) to

(3.5)

Det"- (Dinv,n + tAn)

Det" (Dtaste,n) - Det"r (D )
inv,n

Det"s (Dinv,n)

,  (3.6a)
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while also replacing
B ,(n; UAVYY — B,(n,/4; U VY.

The generalized theory reduces to Eq. (3.1) if we set n, =
4n, and t = 1. This generalization has two important
properties. First, if n, = 4n, and n, assumes physically
interesting values, i.e., multiples of 1/4, then ng is an
integer. Second, when n is large enough, Di;inA,, is small

enough (in an ensemble-average sense) that we may ex-
pand

Det" (Dipy,, + tA,)
Detnr(Dinv,n)

(3.6b)

= exp[n,Trlog(l + D! A,)]

2 (1)
¢

= exp[ —n,Tr(
=1

X tf(Dgi,nAn)f)}

The parameter ¢ interpolates between the taste-invariant
operator Dy, , at t = 0 and the (blocked) staggered opera-
tor at ¢+ = 1. In addition, 7 is a book-keeping device. The
power of ¢ is, evidently, the same as the power of D! A,
As we explain in detail in Sec. III B below, for the con-

struction of the effective theories we may use the bound

(3.7)

= -

-1
” D; An - 2n+1

mv,n

€, (3.8)
(The ~ sign has a meaning similar to that in Eq. (3.5).) We
conclude that the ¢ expansion is an expansion in powers of
ay for the taste-breaking effects.

For ¢ = 0, the determinant ratio (3.7) collapses to one.
The taste-invariant theory at ¢ = 0 is thus local for any
integer n,, and independent of n,. The staggered theory is
reached by expanding as in Eq. (3.7), eventually setting t =
1. The rooted staggered theory is obtained by setting n, to a
quarter-integer value. When we construct the SET to any
finite order in a, the maximal power of 7 will be limited by
that order.” By Eq. (3.7), the maximal power of n, is
bounded by the power of ¢. (Because of taste tracelessness

of A, the maximal power of n, is in fact strictly less than
|

Z.(t,n, nys H, H) = / DUJ] @V(kmn(%; u {V(k)}) X Det" (Din, )
k=0

X exp((Diny,, + 1A,)7" ® 1, )1 + 7
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the power of ¢.) The maximal power of n, is thus (strictly)
less than the order in a;. Therefore, at fixed n; and to any
finite order in ay, the dependence of any correlation func-
tion on n,, and thus of the SET that reproduces it, will be
polynomial. This implies that, at the level of the SET, the
replica continuation in n, to quarter-integer values will be
well-defined, resulting in the ‘“‘staggered SET with the
replica rule.” What this means is the following: We start
with integer n,. The effective action is then given in terms
of a set of Symanzik coefficients which are unknown
functions of ng, but depend polynomially on n, (we may
already set + = 1). With this action, one calculates corre-
lation functions which again depend polynomially on n,
(to any finite order in a), with n, dependence coming from
the Symanzik coefficients and from loops. Finally, one sets
n, = n,/4, and the resulting correlation function is pre-
cisely that of the rooted staggered theory. The following
subsections contain a more detailed argument on how this
works.

We comment in passing that, for + = 1, we may also
interpolate between the taste-singlet local theory at n, = 0,
and the (rooted) staggered theory at n, = n,/4 by varying
n, instead of ¢t. While the two ways of moving from the
taste-singlet to the staggered theory are mathematically
equivalent, we find the argument more transparent if the
transition is done by varying ¢.

A. Generalized theory

In order to define the SET we first need a complete
definition of the generalized staggered theory, coupled to
sources in order to generate all correlation functions.
Returning to integer n,, the theory defined by Eq. (3.6)
contains n, taste-singlet fermions with Dirac operator
Dinv,n, n, generalized staggered fermions with Dirac op-
erator Dy, , + tA,, and 4n, ghosts with Dirac operator
Dy Introducing sources H = (7, m, #) and H =
(7, , i) for the taste-singlet, generalized staggered, and
ghost fields, respectively, we define the partition function
of the generalized theory as

Detn'(Dinv,n + tAn)
Det""(D inv, n)

exp[ Dy, X 1) 7]

Dl:l\lf,n ® Inr) ’f]]

n o ¢ 1\
= ]D’U l_[ DV(")Bn(%; U, {V(k)}> X Det" (Djyy. ) exp[—n,Tr(Z D te(DinVl’nA,l)eﬂ
k=0 =

¢

X exp[A(Dy), X I,)H + 7D} ® 1, )n + 7(D;}, ® 1, )7]

x exp[ﬁ<z(—1)M€(Dm{nA”){*Dm{n ® 1,,,)77}
(=1

(3.9)

Note that ay dependence which does not involve taste-symmetry breaking may result from other sources besides the determinant

ratio (3.7).
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Here I stands for the identity matrix, with dimensions as
indicated by the subscript. This is a theory with two lattice
parameters, a. and a;. Alternatively, we may trade a for
the small parameter €, of Eq. (3.8). In the second expres-
sion we give the explicit expansions in the book-keeping
parameter ¢. As explained above, for fixed n, correlation
functions expanded to some finite power in a; are poly-
nomial in n,. For t=1, n, =n,/4, and h =9 =5 =
71 = 0, Eq. (3.9) is precisely the theory of n, degenerate,
fourth-rooted staggered fermions.

The generalized theory has a vectorlike U(n,l4n,) X
U(n,) graded symmetry; U(ng|4n,) acts on the taste-singlet
and ghost fields, and U(n,) on the generalized staggered
field. For 1 = 0 the symmetry enlarges to U(n, + 4n,|4n,).
The discrete symmetries include hypercubic rotations and
axis reversal [4]. In the staggered sector, for r = 1 this is
augmented by shift symmetry, and (softly broken) U(1),
symmetry in GWL form for each flavor. The vector and
axial staggered symmetries expand to a U(n,), X U(n,),
chiral symmetry group [23]. There is no chiral symmetry in
the taste-singlet and ghost sectors, because the GWL ver-
sion of U(1), symmetry mixes the taste-invariant and non-
invarli(a)mt parts of the blocked staggered Dirac operator
[12].

We are now ready to discuss the SET for the generalized
theory. As long as n, is a positive integer, the lattice theory
is partially quenched but local, and we will assume that an
SET for this theory exists in Euclidean space.'" The effec-
tive theory can be written in terms of continuum fields ¥ =
(4, g, ) and ¥ = (g, g, §) for the taste-singlet, generalized
staggered, and ghost fields, respectively, as well as a con-
tinuum gluon field A,. As explained above, its parameters
(the couplings multiplying each operator in the Symanzik
expansion) are polynomials in n, if we work to a finite
order in as; while their dependence on 7, is unknown. Only
the n; dependence survives in the continuum limit, where
the determinant ratio (3.7) collapses to one.'?

For general ¢, n,, and n,, the fundamental cutoff is the
lattice spacing of the generalized theory, a.. The SET is the
effective theory for quarks and gluons with momenta much
smaller than 1/a.. However, the lattice theory contains an
additional small parameter, €, = a;/a,, cf. Eq. (3.8). It
will be useful for our purposes to think of the Symanzik
expansion as an expansion in ay = €,da., with Symanzik
coefficients that depend on a,.'” The effective theory can

"%We remind the reader that Dy, and A, in Eq. (3.9) are
defined in the RG taste basis, cf. Eq. (2.4), and not in the standard
taste basis of Refs. [5,33].

't is sufficient to consider the SET in Euclidean space, since
we will postpone the continuation to Minkowski space until after
the continuum limit has been taken [11].

2We observe that at nonzero a, but ap — 0, i.e., in the limit
n — oo, the lattice action is a perfect action.

PIn the following subsection, we will argue that no negative
powers of a; can appear.
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be divided into three different sectors, corresponding to
three different types of operators that can occur. The
(generalized) staggered sector consists of operators made
out of staggered fields ¢ and g only. Likewise, the taste-
singlet—ghost sector consists of operators made out of the
“auxiliary” fields ¥ = (g, ) and ¥ = (3, §) only. Finally
there is the mixed sector, where each operator is made out
of both staggered and auxiliary fields. (Of course, all
operators may contain gluon fields.)

In order to establish the validity of rSChPT in Sec. V, we
will not need to know the explicit form of the SET in full
generality. In fact, we need only consider the staggered
sector of the SET. Disregarding the auxiliary and mixed
sectors, the resulting SET, defined in terms of the quark
fields ¢ and g and the gluon fields, is invariant under all
symmetries of the generalized staggered operator Dy, , +
tA,. For =0 this includes taste-replica symmetry
U(4n,), while for ¢ = 1 this includes the smaller group
I'y, as well as softly broken U(1), symmetry.

For the remainder of this subsection we set ¢t = 1, and
thus Diyy., + A, = Dy, reduces to the RG-blocked op-
erator of Eq. (3.1). Symmetries that act on the space-time
coordinates often take a complicated form under RG
blocking. In particular, shift symmetry is realized in a
complicated way. First, the RG blocking leading to
Egs. (3.1) and (3.9) was started in the RG taste basis
defined in Eq. (2.4), and shift symmetry is thus realized
as a gauge-covariant form of Eq. (2.25). Second, the tran-
sition to the RG taste basis was followed by n additional
RG-blocking steps.

The physical consequences of any exact lattice symme-
try of the underlying staggered theory, nevertheless, cannot
be lost by RG blocking. The reason is the existence of a
pull-back mapping of every coarse-lattice operator to a
fine-lattice operator [15]. For n, = n,/4, where the taste-
singlet and ghost determinants drop out, this mapping gives
rise to exact equality of corresponding observables. In
other words, the coarse-lattice observables are a subset of
the original fine-lattice staggered observables.

The pull-back mapping extends to n, # n,/4. Consider
the expectation value of a product of coarse-lattice stag-
gered fermion (and gauge) fields. By undoing the RG-
blocking Gaussian transformations of the fermions, this
can be rewritten as an expectation value of a corresponding
product of fine-lattice staggered fields (that depends in
addition on the original and blocked gauge fields).
Because the Boltzmann weight of the generalized theory
contains the taste-singlet and ghost determinants, expecta-
tion values will not be the same as in the original staggered
theory. But since the fine-lattice symmetries are un-
changed, pulled-back coarse-lattice observables will still
transform under all the staggered symmetries. Together
with other observables constructed from the fine-lattice
staggered fields, they must fall into representations of all
these symmetries. This implies that the physical conse-
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quences of the full set of staggered symmetries remain
intact.

The t = 1 staggered-sector SET must therefore be in-
variant under all the symmetries listed in Sec. II. If we
derive the SET using the taste basis some of these symme-
tries will take a complicated form. In particular, shift
symmetry will mix different orders in a = a;. But other
continuum fields can always be chosen by suitable field
redefinitions such that shift symmetry resumes the simple
form of Eq. (2.2) at the level of the SET. Moreover, a SET-
level field redefinition will also eliminate any a, depen-
dence of the SET that originates from the matching to the
coarse-lattice interpolating fields."* The only remaining
dependence of the staggered-sector SET on a, originates
at this stage from the presence of the taste-singlet and ghost
determinants in the underlying theory (3.9).

Recall now that the group generated by the four elemen-
tary shifts S, contains translations by 2a,. At the level of
the SET shift symmetry enlarges to the direct product of
the group I'y and the continuous translation group. In the
continuum limit @, — 0 the discrete group I enlarges to
the full taste/replica symmetry group SU(4n,) (with T’y
embedded such that it acts identically on all n, replicas).

The conclusion of the above arguments is that, for r = 1
and for any positive integer values of n; and n,, the
generalized staggered sector of the SET assumes exactly
the same structure, as an expansion in the fine-lattice
spacing ay, as the standard staggered SET for n, staggered
fields. To order aj%, this SET is derived in Ref. [22] (for

n, = 1) and Ref. [23] (for arbitrary n,), and is written
down explicitly in Ref. [24]. However, the Symanzik co-
efficients of the staggered-sector SET of the generalized
theory are not the same functions of the parameters of the
underlying theory as in the ordinary staggered SET. In the
generalized theory, the Symanzik coefficients depend on r;
and a., parameters not present in the ordinary staggered
theory. Dependence on n; arises because of contributions
from taste-singlet loops. In addition, the n, dependence (at
fixed ny) of the Symanzik coefficients is different from that
of the ordinary staggered SET, because of contributions
from ghost loops. Indeed, the reason why the auxiliary
sector was introduced in the first place, is that—unlike
the original staggered theory—the SET of the generalized
theory depends polynomially on n, to any order in ay, as
long as ny is held fixed.

We are now ready to make contact with the rooted
theory. In order to reach the SET of the rooted theory we
hold n; fixed and choose t = 1. For any ¢, we may perform

“Via the pull-back, the coarse-lattice operators may be re-
garded as a particular set of interpolating fields on the fine lattice
as well. The freedom in making field redefinitions at the level of
the SET thus parallels the freedom, discussed in Appendix B of
Ref. [10], to choose different sets of interpolating fields on the
fine lattice.
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the replica continuation n, — n,/4 in any correlation func-
tion at any given order in the loop expansion.'” Indeed,
because the Symanzik coefficients are polynomials in n, to
any desired order in ay, this continuation from integer
values of n, is well-defined. Now, recall that the taste-
singlet and ghost sectors of the generalized theory (3.9)
cancel (for vanishing sources) when we set n, = n;/4. As
explained above, this finally eliminates all the remaining
dependence of the staggered-sector SET on the coarse
spacing a,, leaving only the dependence on the fine spac-
ing ay. We have thus succeeded in constructing the replica-
continued SET for the original blocked theory, Eq. (3.1),
for any quarter-integer value of n,, and to the desired order
inag.

Putting everything together, we have shown that the
familiar staggered SET for integer n,, derived to order a%

in Refs. [22,23], and written down explicitly and extended
to order a‘} in Ref. [24], can be used to compute any
correlation function of interest to the desired order in ay.
The result should then be replica-continued to quarter-
integer values of n,. This continuation provides the correct
prescription for calculating any correlation function in the
rooted theory from the staggered SET. Of course, in prac-
tice we will not know the precise coefficients of powers of
n, in the Symanzik coefficients; indeed in practical situ-
ations the Symanzik coefficients must be treated as un-
known numbers, to be fitted from numerical data.
However, it suffices for our argument to know that the
dependence is polynomial. When we continue in n,, we
then need only continue the explicit n, dependence coming
from loops, giving a result as usual in terms of unknown
Symanzik coefficients.

B. Power counting

A cornerstone in the argument of the previous section is
the expansion in Eq. (3.9), which is convergent if the norm
of Di.} A, is small enough. In this subsection, we consider
this condition in more detail. There are two issues to be
considered: the effect of insertions of A, as well as the size
of the full object in which we expand, D;,! A,.

In general, the SET for a lattice theory with lattice
spacing a is constructed by matching correlation functions
in an expansion in ap, with p << 1/a a generic momentum,
to the underlying lattice theory. To make the matching
possible in perturbation theory, one should also take p >
Aqcp- The Symanzik coefficients are extracted by comput-
ing suitable one-particle irreducible correlation functions
in the lattice theory, taking all the (nonexceptional) exter-
nal momenta to be of order p [27]. For the part coming
from the fermions, this amounts to expanding D;,! around
D)., namely, to an expansion in Dz} (D — Deon)

SFor further discussion of the replica continuation, see
Sec. IIIC.
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where D, is the Dirac operator for the continuum-limit
theory, and Dy, is the Dirac operator of the lattice theory.
Because Dy, — Doy 1S an irrelevant operator, we expect
|| Djat = Deont |= ap?. Also, on dimensional grounds,
| DL Il ~1/p. Putting it together we conclude that
| Dol (Dt — Deont) | ~ap is the relevant estimate for
the construction of the SET. Observe that this argument
is insensitive to the long-distance physics, because the
effective infrared cutoff on the loop momenta is p, and
by assumption p > Agcp. In particular, the estimates are
independent of the quark masses.

In the above argument we have implicitly assumed that
the momentum flowing through a particular (sub-)diagram
is of order p. This need not be true for subdiagrams with a
non-negative degree of divergence, where all ultraviolet
momenta may contribute significantly to the loop integrals.
In general, counterterms will need to be added in order to
absorb contributions from such diagrams; in a renormaliz-
able theory there are only a finite number of counterterms
that need to be adjusted. Symmetries may exclude (some
of) these counterterms.

Let us now study how these general considerations enter
the construction of the SET for the generalized theory
(3.9). Our starting point will be the r = 0 taste-singlet
theory. This theory is local, because n; is integer. In order
to reach the generalized staggered theory from the taste-
singlet theory, we have to expand the propagator (Dy,,,, +
tA,)~" around D} . and eventually set 7 = 1. The object
in which we are expanding is thus D! A, Since A, is an
irrelevant operator [cf. Eq. (3.5)], repeating the above
general arguments leads to the estimate || D;W',nAn I
~ayp, if the momentum flowing through the diagram is
of order p.

As noted above, we must separately consider subdia-
grams with a non-negative degree of divergence. The con-
tributions of such subdiagrams depend crucially on the
number of blocking steps n, as we now explain.

Consider first what happens for kK = n = 0, namely, when
we have performed only the first special RG step that takes
the fermions from the one-component to the taste basis. We
then have a, = 2a;. When we extract the Symanzik co-
efficients from a lattice calculation, the loop momenta live
on the coarse lattice. But since the coarse and fine-lattice
spacings differ only by a factor of 2, the loop momentum
can go as high as p ~ 1/ay. In the divergent subdiagrams
we thus have [[D;! A, |l ~1. Indeed, for a,=2ay, the
generalized staggered theory will develop O(1/a,)=
O(1/ay;) mass terms, since shift symmetry and U(1),
symmetry (for any t# 1) are broken at the (common)
lattice scale.'®

The situation is qualitatively different after a large num-
ber n of RG steps has been performed. Because the lattice

'The breaking of shift symmetry is qualitatively the same as in
the theory studied in Ref. [42].

PHYSICAL REVIEW D 77, 074505 (2008)

calculation is performed on the coarse lattice,'” the maxi-
mal momentum that can flow through any subdiagram is
now of order 1/a,, and one arrives at the estimate (3.5) for
the magnitude of insertions of A,. The estimate
I Di;éynA,, [ ~ayp still holds, but, what has changed is
that now the maximal value that p can reach is 1/a, <
1/ay. The conclusion is that, for extracting the Symanzik
coefficients, the appropriate estimate is just that of
Eq. (3.9),

| Dy

vl = as/a. (3.10)
This estimate is valid in the taste-singlet, + = 0 theory, on
the same grounds as for any other local theory, and we will
thus assume that it is valid nonperturbatively as well. This
is all we need, because the staggered theory is constructed
as an expansion in Di;‘},nAn around the taste-singlet theory.
We end this subsections with three comments. First, it

should be noted that, in Ref. [15], the bound
| Dy

v 1= ay/(ma?) (3.11)
was used, with m the renormalized quark mass after n RG
steps. Clearly, the bound (3.11) is far weaker than (3.10),
and it implies that the chiral (m — 0) limit can be taken
only after the continuum (a; — 0) limit. In Ref. [15], this
was necessary in order to place a uniform bound on the
difference between any taste-singlet correlation function
and the corresponding rooted correlation function on any
(including the most infrared) scale, thereby establishing
the existence of the (correct) continuum limit for the rooted
theory. In contrast, assuming that the scaling (3.5) holds,
the bound (3.11) is much too generous for the derivation of
the SET for the generalized theory (3.9), as we have seen
above. In particular, it follows that this SET is well-defined
in the chiral limit, as is the chiral effective theory that can
be derived from the SET. The requirement that the chiral
limit for staggered fermions be taken after the continuum
limit [8,43—46] is then reproduced by calculations within
staggered ChPT [45]. Note that, while Ref. [45] finds many
standard quantities for which the limits commute in
SChPT, other quantities for which the limits do not com-
mute are also discussed.

Our second comment is that the original staggered the-
ory has no power divergences, because of shift and U(1),
symmetry. This is therefore also true for the n-times
blocked staggered theory (3.1), and for the corresponding
SET. Moreover, for large n, the SET for the generalized
theory (3.9) at arbitrary values for ¢ € [0, 1) is related to
the SET at + = 1 by a convergent expansion in #, equiv-
alently in €, = ay/a,. The implication is that, for all 7, the
SET for the generalized theory (3.9) has no power diver-

7See Ref. [15] for a detailed discussion on how the coarse-
lattice diagrammatic calculation is related to a calculation in the
underlying fine-lattice staggered theory.
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gences in 1/ay, but only in 1/a,. Examples of this are
given in Sec. IV below.

Finally, we remark that the framework introduced here
resolves a concern, discussed in Ref. [10], about the re-
normalizability of the rooted staggered theory. The con-
cern is the following: the complete notion of
renormalizability requires not only that (infinite) counter-
terms can be chosen to make amplitudes finite, but also that
the finite parts of counterterms can be chosen to bring the
theory into a given scheme. While we know that the
staggered theory is renormalizable for integer n,, for non-
integer n, this notion of renormalizability requires that the
finite parts of counterterms, as well as the infinite parts, are
polynomial in n, to any finite order in perturbation theory.
In Ref. [10], the condition on the finite parts was intro-
duced as an additional assumption, albeit a plausible one.
Here, such a separate assumption is unnecessary. Under the
assumptions of the RG approach [15], the taste-singlet
(reweighted) theory, defined by setting + = 0 in Eq. (3.9),
is a local theory of n, fermions, that moreover becomes a
perfect-action lattice theory in the limit a; — 0, for any
fixed a.. Thus one expects its renormalizability to follow
straightforwardly by standard arguments. The rooted stag-
gered theory is then reached by expanding in ¢, and setting
t=1 and n, = n,/4. Because of the bound (3.10), the
expansion in ¢ just brings in positive powers of a;, and
all finite (and infinite) parts of the counterterms are un-
affected for any n,. Thus the rooted staggered theory is
renormalizable if the taste-singlet theory is. In addition, the
two theories have the same counterterms.

C. Partial quenching

Unlike other lattice discretizations of QCD, the contin-
uum limit of the rooted staggered theory is, inherently, a
partially-quenched theory [10,14,16,46]. This remains true
when we consider the staggered sector of our generalized
lattice theory (3.9) all by itself. Let us work out the ex-
ample of a target theory with n,; degenerate quarks. Our
starting point is the generalized lattice theory with the
same n,, and with # = 1. In order to obtain the set of all
correlation functions of the physical n-flavor theory in the
continuum limit, we need to let the combination of replica
and taste indices of the external lines assume precisely rn;
distinct values. This can, for example, be accomplished by
fixing the taste index of the external legs to a single value
(for example, 1), and letting the replica indices take on n;
values (for example 1,2, ..., ny). Alternatively, we could
use all four taste indices and only [n,/4] replica indices,
where the square brackets denote rounding up to the next
integer. (In this case, unless n,/4 is already an integer, not
all taste indices will be used in conjunction with each
replica index.) Many other similar choices, as well as other
types of embeddings for certain classes of physical corre-
lation functions [8,14], are also possible. Prior to the
replica continuation, the lattice theory is local. The source
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term in Eq. (3.9) must accommodate all the degrees of
freedom, as specified above, that will be used in physical
correlation functions. Therefore, we must consider only
theories where n,, the (still integer) number of staggered
replicas, is not smaller than [n,/4].

When we perform the replica continuation we set the
power of the staggered and ghost determinants in Eq. (3.9)
to n, = ny/4. Since we have already set = 1, if we turn
off all sources, the partition function of the generalized
theory reduces to the rooted partition function, in its RG-
blocked dress (3.1). During the replica continuation of any
correlation function, by definition we hold fixed all indices
of the external legs, including in particular the replica (and
taste) indices. This means that the number of replicas in the
source term of Eq. (3.9) must stay equal to or larger than
[n,/4]. The mismatch created between the power of the
staggered (or ghost) determinant and the multiplicity of the
corresponding external sources means that the staggered
sector has in itself been partially-quenched unless n; is a
multiple of 4.

After the replica continuation, the correlation functions
of the EFT reproduce those of the rooted lattice theory to
the same order in a;. We stress again that the replica
continuation at the level of the EFT is well-defined be-
cause, as we have shown, to any order in a ’ the
n,-dependence in the underlying lattice theory (3.9) as-
sumes the form of a finite-degree polynomial.

In our above example, be it before or after the replica
continuation, the replica X taste multiplicity of the stag-
gered fields used to generated physical correlation func-
tions is equal to or larger than 4[n,/4], which is to be
compared with the n, physical flavors of the target theory.
As aresult, the total number of available valence degrees of
freedom will in general exceed the physical number, and,
when we finally take the continuum limit, the physical
correlation functions will form a proper subset of the set
of all (partially-quenched) correlation functions.'® This
conclusion is in fact valid for any target theory. The only
exception is a target theory in which the multiplicity of
every mass-degenerate quark species is divisible by four, in
which case the theory may be obtained in the continuum
limit of an unrooted staggered theory.

Another conclusion is that the partially-quenched repre-
sentation obtained in the continuum limit is not unique.
The only restriction is that the set of all partially-quenched
correlation functions must be large enough to accommo-
date all the physical correlation functions of the target
continuum theory. With the minimal choice of replicas
on the external lines, [n,/4], the vector replica X taste
symmetries are represented as a U(4[n,/4]|4[n,/4] — n,)
graded group on the continuum-limit correlation functions.
Had we initially allowed for n’ > [n,/4] values of the

'8Correlation functions lying outside of the physical subset may
exhibit various types of pathological behavior [16,46].
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replica index on the external legs, all the physical correla-
tion functions of the target theory would still be reproduced
once we performed the replica continuation (followed by
the continuum limit). But there would be more ways of
embedding a given physical correlation function in the
space of all correlation functions. Correspondingly, the
replica X taste symmetries would be represented as an
U(4n'|4n’ — n,) graded group. The arbitrariness in picking
arange n' = [n,/4] for the external-legs replica index thus
entails the existence of infinitely many partially-quenched
representations in the continuum limit, all of which share
the same physical subspace.

In the rooted theory, closed (‘“‘sea-quark’) fermion loops
as well as (‘““valence-quark’) fermion lines attached to
external legs both originate from the same staggered fields.
Therefore the sea and valence masses are equal, and there
is no clear-cut distinction between the sea and valence
sectors. This is a necessary condition for the emergence
of a unitary, physical subspace in the continuum limit.

In practice, it is often useful to explore unitarity-
violating correlation functions in which the valence-quark
mass is allowed to vary away from the sea-quark mass.
This situation is what is usually referred to as partial
quenching. As we have just explained, the continuum limit
of the rooted theory is automatically a partially-quenched
theory, albeit with equal sea and valence masses. If it is
desired to study different sea and valence masses, it is
straightforward to add a (generalized-)staggered valence
sector to the generating functional (3.9), by simply insert-
ing a factor

exp[ 7, (D}, + ,A4,)7 1, )7, ] (3.12)

into the integrand. The superscript v on Dy indicates
that a different quark mass may have been chosen in the
valence sector. For ¢, = 1 the valence sector has all stag-
gered symmetries. Again, for a; small enough, an expan-
sion can be set up in t,,, just as before.

In Eq. (3.12), n,, and %, are sources for any desired
number n, of valence (generalized) staggered fields. To
avoid confusion we stress that, even if the valence-sector
source term (3.12) has been added to the generating func-
tional (3.9), we cannot dispose of the original source terms.
The reason is that, if we want to consider the SET for both
sea and valence quarks, we need sources for both in order
to match the complete set of partially-quenched correlation
functions between the lattice and the effective theory. With
the valence sector (3.12) in place, the replica X taste
symmetries form an U(4n' + 4n,|4n’ + 4n, — n,) graded
group in the continuum limit. (Of course, these symmetries
will be softly broken by unequal sea and valence masses.)
As before, n' is the number of distinct values of the replica
index that we have allowed for the staggered fields with
sea-quark mass on the external legs.

In summary, we have seen that partial quenching occurs
at three distinct levels. The generalized theory (3.9) is
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partially quenched to begin with, because, to keep the
taste-breaking effects under control, we had to introduce
a taste-singlet sector and a taste-invariant ghost sector.
During the replica continuation, the staggered sector
undergoes a second-stage partial quenching, created by
the mismatch between the power of the determinant and
the multiplicity of the sources. Last, if we are interested in
different valence and sea masses, we need to introduce a
“conventional” valence sector, cf. Eq. (3.12).

IV. EXAMPLES

It is instructive to consider some aspects of the SET to
second order in a 1 in more detail.'® The SET can be written
as an expansion in ay, ¢, and n,, and thus takes the general
form

_ oo i j—1 o _
SV, V¥, Asayp, t,n,) = Z Z Z(af)lt](nr)ksi,j,k(\pr v, A).
=0 7=0 k=0

.1

Here we already took into account that each power of ¢ has
to come with at least one power of a, and that each power
of n, has to be lower than the power of ¢ (it cannot be equal
because tr;(A,) = 0). Equation (4.1) is manifestly poly-
nomial in 7, to any fixed, finite order in a;. Here we allow
all types of quarks (taste-singlet, generalized staggered,
and ghost) to appear on the external legs. The staggered
sector is obtained by setting § = § =g =g = 0. The
coefficients in §; ; , depend on both a. and n; in all sectors.
Because of this, one cannot in general conclude that terms
linear in a, have to be multiplied by dimension-five op-
erators, etc. As already explained in Sec. Il A, for r = 1
we may assume that a correlation function calculated in the
SET does not depend on a, if we set n, = n,/4 after the
calculation. In this section, we will consider 7, integer.

Because of the way the RG-blocked theory is con-
structed, for general ¢ the preferred basis for (the general-
ized staggered sector of) the SET is the RG-taste basis.
Using this basis while restricting ourselves to the (gener-
alized) staggered sector, and to i = 2, the expansion (4.1)
takes the explicit form

S9%(q, g, Asay, t,n,) = So00(q, @ A) + ag[S100(q, 3, A)
+1S110(q, G A)]
+ a3[S200(q, 4, A)
+18510(9, G A)
+125520(q, G, A)

+n,1285,,1(q, 3, A)] 4.2)

In this section we return to the theory defined by Eq. (3.9).
The inclusion of valence quarks with a mass unequal to that of
the sea quarks, as described in Sec. III C, is straightforward.
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The n,-dependent term (the last term) is at this order the
only one coming from the expansion of the determinant
ratio in Eq. (3.9). The other ¢-dependent terms come from
the expansion of the staggered source term in that equation.
We note that S, is taste invariant, because of taste
invariance of the ¢ = 0 theory. Furthermore, S, is taste
invariant too, because the factor of n,> originates from the
determinant ratio in Eq. (3.9), which does not affect the
symmetry structure of the SET. The taste structure of the
SET is determined by the external legs, which correspond
to the source terms in Eq. (3.9). Since the two allowed
insertions of A, have been “used up” by the determinant
ratio, only the taste-invariant part of the source term con-
tributes to 55 1.

If we set t = 1 then, as discussed in Sec. IIT A, there
exists a field redefinition that brings S94¢ to the familiar
form of Ref. [22] for n, = 1, or to the form of Refs. [23,24]
for n, > 1. In particular, the redefinition removes the terms
linear in a;. The Symanzik coefficients are equal to those
of Refs. [22—-24] if one also chooses n, = 4n,, a multiple
of four. For general n; and n,, the staggered SET is that of
Refs. [23,24], but the coefficients are different functions of
nr'zo This form of $9'4 js the one needed for the construc-
tion of rSChPT [23], which we will discuss in Sec. V.

The taste-invariant operator Dy,, , has no chiral symme-
try, even when the chiral limit is taken in the underlying
staggered theory, and we would thus naively expect a
linearly divergent mass term of the form gq/a,.
However, for large n, the taste-invariant theory is close to
the theory with ¢+ = 1 in the sense explained in Sec. III B. In
order to deviate from the + = 1 staggered theory, at least
one power of ay, coming from an insertion of A,, is
needed. Equivalently, the 1/a. linear divergence has to
be multiplied by at least one factor of €, = as/a.. In
fact, even a mass term with magnitude ~€,/a, = as/a?
cannot occur. To see this, note that we may write
— D_—l

inv,n

= D1

-1 -1
Dglen = Dyt A,D} 4+ ...

mnv,n (4'3)
This shows that the order a, difference between the 1 = 0
and ¢ = 1 theories has to break taste, and therefore a taste-
singlet difference has to be of order aj%. Singlet mass terms
can thus only occur in §,,, and S,,,, with opposite
coefficients such that they cancel at t = 1.

Next, let us consider nonsinglet mass terms, i.e., terms of
the form gKq/a. with some (momentum-independent)
kernel K for which tr,;(K) = 0. At order a; a nonsinglet
mass term can only be part of S, ; o, because S o is taste
invariant. However, staggered symmetries at t = 1 forbid
such terms in S | o, thus excluding this possibility. At order
a}%, a nonsinglet mass term can only appear in 1S, +

1 particular, the Symanzik coefficients of all taste-breaking
four-fermion operators in the (O(a%) SET are independent of n,
and depend only on n.

PHYSICAL REVIEW D 77, 074505 (2008)

2S5, because S, and S, are taste invariant. Let us
assume that a bilinear GK¢q appears with coefficient ¢ in
S5 1.0, and with coefficient ¢, in S, , . Staggered symme-
tries then imply that t¢; + t?c, = Oat¢ = 1, and thus ¢; +
¢, = 0. Any nonsinglet mass term at order ajz, is therefore
proportional to #(r — 1). Simply put, there has to be a factor
t in order to break taste symmetry, and a factor r — 1 to
break staggered symmetries, which include I'y and U(1),.

In order to exclude various contributions to the non-
singlet mass terms in the above argument, we used the
fact that mass terms cannot be introduced or removed by
field redefinitions. As we now explain, the same is not true
for operators of dimension five or higher: they cannot be
excluded by arguments based on field redefinitions. With
the taste basis of Eq. (4.2), we know from Eq. (2.28) that
taste nonsinglet Wilson-like dimension-five operators will
already appear in S, . Of course, being nonsinglet, such
terms will have to vanish at ¢+ = 0. In addition, because of
staggered symmetries, a local field redefinition can be
found removing such terms at ¢t = 1. However, this same
field redefinition applied to the SET at r # 1 will, in
general, introduce taste-breaking terms at t = 0. So, all
we can conclude is that before the field redefinition such
terms are proportional to ¢, while after the field redefinition
they are proportional to t — 1. We cannot conclude that
they are proportional to #(z — 1). In the case of the mass
terms discussed above, stronger conclusions are possible,
because dimension-three terms cannot be removed by a
field redefinition.

V. STAGGERED CHIRAL PERTURBATION
THEORY

In this section, we will discuss the transition from the
SET to staggered ChPT, or SChPT. For integer n, and n; =
4n, the derivation was first given in Ref. [22] (for n, = 1)
and Ref. [23] (for n, > 1), and we refer to those papers for
details on the explicit construction of the SChPT chiral
Lagrangian. Here we will focus on the continuation to n, =
ny/4, with n as always a positive integer.

A. Transition to staggered chiral perturbation theory

In the previous sections we explained how the appro-
priate SET for a rooted staggered theory can be con-
structed. Holding n, fixed, the Symanzik coefficients are
polynomials in n,, and thus have no singularities at quarter-
integer values of n,. The rooted staggered SET is obtained
as a replica rule: calculate correlation functions to a given
order in ay, then set n, = n/4. For the next step—the
transition to ChPT—we must again retain both n, and n,
as independent variables. In ChPT, as for the SET, the
replica continuation in n, will be well-defined at fixed ng,
and SChPT with the replica rule, namely, rSChPT, will be
recovered after the continuation to n, = n,/4.

When we calculate correlation functions using the SET
for the generalized theory (3.9), dependence on n, occurs
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in two ways: through the polynomial dependence of the
Symanzik coefficients, and through fermion loops. Once
we have calculated a certain correlation function to some
order in ay and to a given order in the loop expansion, the
dependence on n, is thus explicitly known. Technically,
this dependence will not be a polynomial, because only the
inverse quark propagators, and not the quark propagators
themselves, depend polynomially on n,. However, each
quark propagator can be reexpanded around that of the t =
0 theory in terms of ay, and thus n,, just as in the under-
lying lattice theory [Eq. (3.9)].

This sets the stage for the derivation of the appropriate
chiral theory for QCD with rooted staggered fermions. The
continuum chiral theory is an effective theory for low-
energy scales where only Goldstone bosons can appear
on the external lines. It can be organized as an expansion
in p/A,, where A, ~ 1 GeV is the chiral scale separating
other hadrons from the Goldstone bosons [47]. The chiral
effective theory can be generalized to include discretiza-
tion errors, in an expansion in @ = ay. The chiral effective
theory is to be constructed by matching its correlation
functions to those of the underlying theory in a double
expansion in p/A v and asp. In practice, the low-energy
constants (LECs) of the chiral theory cannot be calculated
by analytic methods, and are determined by fitting experi-
mental or numerical data.

For positive integer n,; and n,, the underlying lattice
theory is local, as is the SET, and the transition to the
chiral theory is more or less standard [22,23,48,49].2! In
addition, the estimate (3.10) is still expected to hold, even
though it cannot be checked in perturbation theory, because
in this case the correct degrees of freedom for p < A, are
no longer quarks and gluons. Using the expansion (3.9) justJ

Z(s) =

_ [DUTTi-y DVWB,(%)Det" (Dyyge,, + 5 ® D)Dets~41)(Dy, , + 5)
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as in Sec. I11, this implies that the LECs of the chiral theory
again have to be polynomials in #n,. Finally, setting r = 1
and performing the continuation to n, = n,/4 we recover
the replica-continued SChPT, or rfSChPT, of Refs. [14,23].

We assume here that the contributions of ghosts and
taste-singlet quarks in the sea will cancel to all orders in
the partially-quenched ChPT once we put n, = n,/4. All
differences between the current rSChPT and the standard
rSChPT [14,23] (which does not have the taste-singlet and
ghost sectors) will then disappear in the limit n, = n,/4, as
long as we choose not to put ghosts and taste-singlet quarks
on the external lines. Since the ghost and taste-singlet
Dirac operators and masses are identical, this cancellation
is trivial at the QCD level, but not completely trivial
beyond one loop at the chiral level.”” We believe, though,
that the cancellation is almost certainly true order-by-order
in SChPT, and that it will probably be possible to construct
a “‘quark flow” proof of this. This completes our argument
that rSChPT is the correct chiral theory for QCD with
rooted staggered fermions.

B. Example

It is instructive to see how our approach works in a
concrete example. We will reconsider the leading-order
contribution in rSChPT to the connected scalar two-point
function, previously described in detail in Sec. 6 of
Ref. [14]. Adding a scalar source s(x) to the generating
functional, this two-point function is defined as the con-
nected part of the second derivative with respect to this
source (setting s =0 after taking the derivatives).
Adapting it to our generalized theory, Eq. (27) of
Ref. [14] takes the form>

where we only indicated the n, dependence of B, explic-
itly, cf. Eq. (3.9). Here we have chosen ¢ = 1, but have not
yet set n, = n,/4. It is important to keep n, integral at this
stage in order to develop the chiral theory; keeping n, #
ng/4 also allows us to highlight the different ways in which
n, and n, appear.

In Eq. (5.1), we are starting from the fact that correlation
functions generated in the rooted staggered theory by the
taste-singlet meson source s(x) ® 1 are identical, in the
continuum limit, to the desired correlations generated by
s(x) in the target QCD theory. (See Eq. (12) of Ref. [8].)
Note, however, that we have coupled s(x) not only to the

2! Again, the only element of this transition that is not abso-
lutely standard is the assumption that all steps can be carried out
for partially-quenched theories, since the generalized theory
(3.9) is partially quenched.

f Du nZ:O DV(k) Bn (%)Det”r(Dtaste,n)Det(n574nr)(Dinv,n)

) (5.1

[staggered quarks but also to the ghost and taste-singlet
quarks. This keeps the expansion in n, under control
because the staggered and ghost contributions differ only
by the small taste-violating term A,. Requiring that the
taste-singlet and ghost quarks cancel at n, = n /4 then
implies that s(x) also couples to the taste-singlet quarks.
Even without a replica continuation, the lattice theory
defined by Eq. (5.1) is, as we discussed already above, a
partially-quenched theory with n, staggered fermions, ng
taste-singlet fermions, and 4n, taste-singlet ghosts. It dif-
fers from Eq. (3.9) in the way it is coupled to sources. Of
course, the correlation functions that are generated by

22We thank S. Sharpe [50] for emphasizing this point to us.
2The connection with the method and notation of Ref. [14] is
explained in Sec. VC.
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taking derivatives with respect to s(x) can also be gener-
ated by taking joint derivatives with respect to H(x) and
H(x) (with one each for each space-time point). Regardless
of which type of source is used, the dynamics are that of the
sea-quark loops, and are controlled by the determinants in
Eq. (3.9). Since in this subsection we are only interested in
the scalar two-point function, the formulation with the
source s(x) is simpler. Note that here we need the complete
effective theory, including taste-singlet and mixed sectors,
because the source s(x) couples to all quarks.

At leading order in ChPT, the scalar two-point function
consists of a sum over one-loop diagrams, with pseudo-
scalar mesons on the loop (cf. Fig. 2 of Ref. [14]). Since
s(x) couples to all bilinears, staggered, taste-singlet, and
ghost, all types of pseudoscalar mesons contribute to these
diagrams, including fermionic mesons made out of quarks
and ghosts, and mesons made only out of ghosts. Because
the taste-singlet quarks and ghost have the same Dirac
operator D~inv’n, the result for the scalar two-point function
that we will give below is that of a theory with n, — 4n,
taste-singlet quarks, irrespective of the value (and, in par-
ticular, sign) of n; — 4n,. In the interest of brevity, there-
fore, the discussion below will simply assume that we are
dealing with a theory with a positive number n, — 4n, of
taste-singlet quarks (as well as n, staggered quarks).

In Ref. [14] it was shown that, as expected, in the one-
flavor theory (for which ny, = 4n, = 1) only the non-
Goldstone, heavy pseudoscalar taste-singlet state (the
“n’’) contributes to this two-point function in the contin-
uum limit, despite the presence of 15 additional light pions
in the underlying staggered theory. That this has to happen
follows from the general discussion given in Ref. [8]. Here
we will not repeat the details of the calculation given in
Ref. [14], but only keep track of how the results change in
the generalized setup of the present paper, and see how n,
and n, appear in the final result. With Ref. [14], we keep
the singlet pseudoscalar state in the calculation for peda-
gogical reasons.

There are now three kinds of pions, those made out of
staggered quarks, those made out of taste-singlet quarks,
and ‘“‘mixed pions,” made out of staggered and taste-
singlet quarks. The leading-order masses of the pseudo-
scalars in the staggered sector are given by

M2E =2um + a%AE, 5.2)

where B €{I,£,,if, &, (u>v), i€, & &} labels the
taste of each of the 16 staggered pseudoscalars (for each
replica), and the Az are four LECs>* representing the taste
splittings; m is the quark mass. Then there are pions made

24A§5 =0 because this taste corresponds to the exact
Goldstone bosons.
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out of only taste-singlet quarks, with mass®

M% =2um + a]%A,X. (5.3)
Finally, there are mixed pseudoscalars made out of one
taste-singlet and one staggered quark. The mass of the
latter can be parametrized, to leading order, as [51]

M2

mix 21“m + a%Amixr (54)
with, in general, A;x # A,,. The fact that the mass of the
mixed mesons does not depend on their staggered taste
follows, as in Ref. [51], from shift symmetry, which forbids
taste-violating staggered bilinears, and therefore forbids
taste-violating four-quark operators with one staggered
and one taste-singlet bilinear. Note that all the above
masses (in particular, M;) are the pseudoscalar masses
before including the effect of the anomaly.

The LECs u, A=, A, and A ;, have unknown depen-
dence on n, but do not depend on n,.. For w this is obvious,
because it is a continuum LEC, and the continuum theory
does not depend on n,. at all, but only on n,. (Recall that, in
the continuum limit, the determinants ratio (3.7) goes to
one.) Because Az represents an order aj% effect, it can,
according to our general arguments, be at most linear in n,..
In practice, it is independent of n,, because symmetry-
breaking terms of order a]% in the SET do not originate from

the determinant ratio but only from the source term in
Eq. (3.9) [cf. the discussion below Eq. (4.2)]; similar argu-
ments apply for A, and A . At higher order there will be
n,-dependent corrections to Egs. (5.2) through (5.4) com-
ing from insertions of the operator S, in Eq. (4.2). The
taste-singlet and mixed mesons also contribute to our
scalar two-point function as long as n, # n,/4.

Of course, the singlet pseudoscalar (the “n’”) will not
be a Goldstone boson. It will pick up a mass that does not
vanish in the chiral and continuum limits. In the continuum
limit, the n’ mass is given by

m2
M2, =2um + n,—2, (5.5)
n 3
where m} is the double-hairpin parameter (cf. Ref. [23]).

Again, since the continuum limit does not depend on .,
the parameter m% does not depend on n,.2 Away from the
continuum limit, mixing takes place in the neutral meson
sector because of different scaling violations in M? and
M?,. This mixing leads to the appearance of pseudoscalar

The operator D}nv‘n has no chiral symmetry, and the taste-
singlet quark mass is additively renormalized by an amount of
order a}% (see Sec. IV). The quantity A,, represents the effect of
this renormalization on the meson mass. In the case of the mixed
pseudoscalar mass, Eq. (5.4), such renormalization is absorbed in
A ix» which must be present in any case.

2IgThere are in general corrections of order a%, as well as
momentum-dependent contributions, to this parameter, but
they do not invalidate our conclusions. Following Ref. [14],
other hairpin contributions of order a]% will be ignored as well.
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mesons with masses M. given by

1 m2
M: = §<n?° + M} + M,
2\2 2
+ \/<ns ?) - 2(n, — 8n,)%a§A + a;‘cA2>,

a?A =M? - ML = a%(AI — A (5.6)

In the continuum limit, A = 0 and M? = M2, = 2um, so
the expression for M2 simplifies to Eq. (5.5).

In order to give the expression for the scalar two-point
function, we define single-particle propagators

A = B, ts, mix,

Dy(p) = (5.7

p*+ My
J

4
Glg) = p? f (;ZWI;

2
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and hairpin “double poles”

X(p) = : e
WP M (P + ME) pP ot M
1 P>+ Mj
. _ , 5.8)
ts,ts(p) (pz + M%)(pz + M%.) p2 + M%S (
1

Xl,ts(p) = th,l(p) =

(p* + M2)(p* + M%)

For A = 0, all hairpin double poles become equal, and
D;(p) = Dy(p). )

The result for the Fourier transform G(p) of the scalar
two-point function is

{2n$ZDa(p)Ds(p +q) + 16n,(n; = 4n,)Dyyix(p)Dinix(p + q) + 2(ng = 4n,)*D;(p)Ds(p + q)

2

- SHr%(Dz(p)Xz,z(p +q) + Di(p + @)X, ,(p)) — 2(n, — 4nr)%(Dm(p)X,s,m(p +q) + Dy(p + @) X5,5(p)

m2\2
+ <?0> [32n%XI,I(p)XI,I(p + Q) + z(ns - 4nr)2th,ts(p)th,ts(p + Q) + 16nr(ns - 4nr)X1,ts(p)XI,rs(p + Q)]}

The explicit factors m3/3 can be eliminated from this
expression by using the relation
2

LRV RNy VER S /3

3 s
As discussed above, if we expand out the masses M% in
powers of aj%, the n, dependence of Eq. (5.9) is polynomial.
The n, dependence is not polynomial because the LECs .,
Az, A, and A ;, depend on 7, implicitly in an unknown
way.

Let us compare the result (5.9) to a similar calculation,

done in the taste-singlet theory obtained by replacing
Dyasee.n With Dy, in Eq. (5.1). To order aj%, this corre-

sponds to setting M7 = M?

(5.10)

2. = M?%. The expression for
M? [cf. Eq. (5.6)] again simplifies to Eq. (5.5), except that
2um is replaced with M2, because M7 may still include

discretization errors. Instead of Eq. (5.9) we now arrive at

i d*p 1 1
Glg) — 22 2
@ =20 [ R0 =0

1 1 }
_I_
2 2 2 7
p* + Mn,’m (p+q)F+ Mn,,m
2

m
M2, =M% +n 0.

2 3 (5.11)

As expected, this result is n,-independent. The first term on
the right-hand side is recognized as the anticipated contri-
bution of the n? — 1 degenerate Goldstone pions of a
theory with n; (mass-degenerate) flavors.

(5.9

Replacing D, With D;,, , means that the product of
determinants in the denominator of Eq. (5.1) collapses to
Det"s (Djyy, ), with a similar simplification in the numera-
tor. Our calculation thus explicitly demonstrates how we
may consider the rooted staggered theory as a local taste-
singlet theory with small, nonlocal corrections of order a%,
which, to any fixed order in a, are polynomial in n,.”” Our
example also illustrates how the nonlocality of the rooted
staggered theory manifests itself in the low-energy EFT:
while Eq. (5.11) satisfies unitarity, Eq. (5.9), at a; # 0,
does not. This is most easily seen by noting the presence of
the minus signs multiplying various terms in Eq. (5.9), in
what should be (in a unitary theory) a positive definite
correlation function.

C. Comparison with Ref. [14]

The present work may be compared with the comple-
mentary argument for the validity of rSChPT given in
Ref. [14]. That argument starts from ChPT for a rooted
theory with four degenerate flavors of staggered fermions,
which thus describes four mass-degenerate quark species.
The underlying lattice theory is local, trivially, because it

*’By making use of the general sources in Eq. (3.9) this
conclusion applies to any physical correlation function of inter-
est. A by-product is that the generalized theory (3.9) provides a
alternative framework to that discussed in Appendix B of
Ref. [10] for solving the “‘valence rooting” problem.
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contains the fourth power of the fourth-rooted staggered
determinant. Staying entirely within the ChPT framework,
Ref. [14] then treats the nondegenerate case by perturbing
in the quark masses. An assumption of the analyticity of
the expansion around positive quark mass is required at this
point. In addition, the replica rule (called the “replica
trick” in Ref. [14]) needs to be introduced because the
theory becomes nonlocal as one moves away from the
degenerate limit. Finally, one of the four masses can be
made so large that the corresponding quark decouples from
the chiral effective theory (at which point it can be thought
of as the charm quark). Using an assumption about the
details of decoupling, one arrives at rSChPT for three light
quarks. The decoupling assumption leaves a small poten-
tial loophole in the argument of Ref. [14]. While the three-
flavor chiral theory goes over, in the continuum limit, to the
standard three-flavor chiral theory of QCD, it is not guar-
anteed that the LECs have the same numerical values as in
QCD. (In the initial four-flavor case, the correctness of the
LECs is guaranteed, however.)

Here, we have started instead from the fundamental
lattice theory (in RG-blocked form) and have shown how
rSChPT may be derived from it, via the SET. The replica
rule is given definite meaning in the fundamental theory, so
its appearance in the EFTs is completely natural. In con-
trast, the replica rule in Ref. [14] has, by construction,
meaning only at the chiral level. It is for that reason that
a distinction was made in Ref. [14] between the power of
the staggered determinant at the QCD level, which was
called R, and the number of replicas introduced at the
chiral level, n,. Here, because the replica rule is justified
at the QCD level, we need to make no such distinction. We
do however need to introduce the number of flavors of the
taste-singlet quarks, n,, which affects LECs in a nonper-
turbative (and hence unknown) way, in order that the n,
dependence be completely controlled (indeed, polyno-
mial). Thus Ref. [14] and the current work represent two
different generalizations of the staggered theory. In the
limit R = n, = n,/4, the two generalizations agree.
Since this is the limit we need to take at the end of any
rSChPT calculation, it is clear that the two versions of
rSChPT give the same results.”®

Another advantage of the present approach is that it
allows us to dispense with the assumptions about decou-
pling and about the analyticity of the mass expansion. This
means that the current argument closes the loophole men-
tioned above. The continuum low-energy constants are
automatically those of QCD with the correct number of
flavors.

On the other hand, the current argument, based as it is on
Ref. [15], inherits the assumptions of that work. The key

ZWe again are assuming that the contributions of ghosts and
taste-singlet quarks in the sea cancel to all orders in partially-
quenched ChPT once there are the same number of ghosts and
taste-singlet quarks, i.e., once n, = n,/4.
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assumptions have already been mentioned in the
Introduction and explained in Sec. III. They are that:

(i) The effective action 0S¢, generated by integrating
out fermions on finer lattices, is local.

(i) The perturbative scaling laws apply, implying that
the dimension-five taste-breaking operator A, goes
to zero like a; (times logarithms) in the continuum
limit. This in turn is based on the highly plausible
assumption that the theory is renormalizable to all
orders in perturbation theory for any n,.

The assumption of taste-symmetry restoration is needed
in Ref. [14] too, but only for integer n,, where the scaling
argument is completely standard. The argument of
Ref. [14] works entirely within the chiral theory, and the
resulting rSChPT then implies the symmetry restoration (in
the chiral sector) for the rooted case. We also note that,
in the RG framework, there is an alternative route to
establish the validity of the continuum limit while relying
only on the scaling of A, in the taste-singlet (reweighted)
theory [11]. Since the latter theory is local by the first
assumption, the validity of the scaling assumption needed
for the RG treatment is very plausible. We remind the
reader that there is considerable numerical evidence for
the continuum restoration of taste symmetry in the rooted
case [13,18-21].

Both the present arguments and those of Ref. [14] rely
heavily on the validity of the standard partially-quenched
chiral theory [16] for describing partially-quenched funda-
mental theories that are local. We also need to assume here
that the SET exists for partially-quenched theories, as long
as the lattice theory is local.

The calculation of the scalar two-point function, pre-
sented in Sec. VB, may now be compared to the corre-
sponding calculation in Sec. 6 of Ref. [14]. Note that
Ref. [14] considers only the one-flavor case as an example,
so to make the connection, we must put n, = 1. The result
here, Eq. (5.9), then corresponds directly to Eq. (41) of
Ref. [14]. We can in fact make the connection at the quark
flow level: The first two lines of Eq. (5.9) correspond to
Figs. 3(a) and 3(d) of Ref. [14], the next two lines corre-
spond to Figs. 3(b) and (c), and the last two lines corre-
spond to Fig. 3(e). It is straightforward to check that, if we
set n, = ny/4=1/4 in Eq. (5.9), and R =n, = 1/4 in
Eq. (41) of Ref. [14], the results are identical.

VI. CONCLUSION

In this paper we presented a theoretical argument that
rSChPT [23] is the correct chiral theory for QCD with
rooted staggered fermions. Much evidence in favor of this
claim already existed, both on the theoretical side [14], as
well as on the numerical side [13,18—20]. Here we showed
that it is possible to extend the usual construction of the
Symanzik effective theory and chiral perturbation theory,
to the rooted staggered case. Our arguments apply equally
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well to any staggered quark action that has the usual
staggered symmetries, for example, standard (unimproved)
staggered [1], Asqtad [28], HYP [29], Fat7bar [30], or
HISQ [31] quarks. The version of staggered quarks used
will not effect the form of the discretization effects sum-
marized by the effective theory, but does effect the size of
these effects, which is reflected in the size of the LECs.

The effective theories are first constructed for a taste-
singlet local theory with ng physical fermion flavors [the
t = 0 theory of Eq. (3.9)]. The rooted, nonlocal staggered
theory is then reconstructed as an expansion in the lattice
spacing of the underlying staggered theory (i.e., as), by
moving smoothly from # = 0 to ¢t = 1. In this framework,
the dependence on 7, is polynomial to any finite order in a,
and to any finite order in the loop expansion.?’ The effec-
tive theories, however, are in the first instance only known
at integer values of n,, where they are fairly standard. The
polynomial dependence on 7, allows us to make the replica
continuation of any correlation function, computed order-
by-order in the effective theory for integer n,, to n, =
n,/4. Once the value n, = n,/4 is reached, the correct
correlation functions of the underlying rooted lattice theory
are recovered.

The ability to extend standard techniques for the deri-
vation of the SET and ChPT to rooted staggered fermions
does not preclude various sicknesses in the rooted theory at
nonzero ay. Indeed, in Ref. [12] we argued that the rooted
theory is nonlocal at nonzero a £ due to the taste-breaking
induced splittings in hadron taste multiplets. It is essential
that the replica-continued SET and SChPT reproduce the
nonlocal behavior. This happens because loop corrections
calculated in these theories have to be continued to a non-
integer number of staggered replicas as well, and the
replica-continued amplitudes cannot be reproduced from
any local Lagrangian. An explicit example of this was
worked out in Sec. 6 of Ref. [14]; we revisited this example
in Sec. VB in our generalized framework.

It is important to list the assumptions that underlie our
arguments. The most important assumption is that QCD
with rooted staggered fermions has the desired continuum
limit. This conclusion, in turn, is based on a number of
technical and testable assumptions, as explained in detail in
Ref. [15] (see also Refs. [10,11]). If this conclusion were to
turn out to be incorrect, that would also invalidate the
analysis presented here. Turning this around, we consider
the success of fitting high-precision numerical results with
rSChPT as direct evidence that the conclusion of Ref. [15]
is, in fact, valid.

In order to keep the replica continuation under control,
in Eq. (3.9) we temporarily treated the number of dynami-
cal quarks in the theory (n,) and the power of the staggered
determinant (n,) as independent. Because 4n, ghosts are

*For the SET, the relevant loop expansion is the one in fermion
loops; for ChPT it is the chiral loop expansion.
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needed, we also have to assume that the construction of the
SET and ChPT goes through in the standard way for
partially-quenched (but local) theories. This second as-
sumption is very common in applications of EFTs to lattice
QCD. However, one should keep in mind that, while
partially-quenched ChPT [16] is by now standard, its
foundations are not as firm as for ordinary, unquenched
ChPT. See Ref. [52] for a discussion of this point.

A third assumption is the technical observation that
Dglé,nAn has to scale as ayp, with p the momentum scale
at which a correlation function in the effective theory is
matched to the underlying theory. An exception is short-
distance contributions coming from subdiagrams with a
non-negative degree of divergence in which D;“l,,nA” can
become as large as a;/a, at most. The end result, the
estimate (3.10), is crucial for establishing that the
n,-dependence of the generalized theory (3.9) is polyno-
mial, to any finite order in a f.30 Again, we consider this
assumption as noncontroversial, because it underlies the
standard derivation of EFTs for local lattice theories, and
because it is used only in the ¢ = 0 theory, which is local by
our first assumption. The weaker, quark-mass dependent
bound on D;} ,A, used in Ref. [15] is not needed for the
derivation of the effective theories, and both the SET and
the chiral theory are valid in the chiral limit. We emphasize
here that the physically sensible approach for any stag-
gered theory (rooted or not) is to avoid the region m <<
aJZCA%CD, where lattice artifacts may dominate [8,44,45].

In the actual construction of a SET or a chiral theory, use
is made of the symmetries of the underlying theory.
Particularly important symmetries for staggered fermions
are U(1), chiral symmetry and shift symmetry, and we
discussed in detail how these are realized at the level of the
SET. Generalizing a result previously derived to order a2f in

Ref. [22], we showed that for the SET, shift symmetry
enlarges to the direct product of the continuum translation
group and the finite discrete group I'4. Since this observa-
tion holds for the SET, it also holds for any EFT derived
from the SET. Finally, we note that our arguments also
apply to the cases of rSChPT with baryons or heavy-light
mesons.
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