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Effective field theory for the anisotropic Wilson lattice action
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We construct the effective field theory appropriate for describing the low-energy behavior of anisotropic
Wilson lattice actions and the O(a) improved variant thereof. We then apply this effective field theory to
the hadron spectrum and dispersion relations, focussing on the corrections due to the anisotropy. We point
out an important feature of anisotropic lattices regarding the Aoki regime; for a given set of fermion
masses and spatial lattice spacing, if an isotropic action is in the QCD-phase, this does not guarantee that
the anisotropic action is outside the Aoki regime. This may be important in the tuning of bare parameters
for anisotropic lattices using domain-wall and overlap fermions as well as Wilson and O(a)-improved

Wilson fermions.
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I. INTRODUCTION

Lattice QCD calculations are necessarily performed
with a finite lattice spacing, at a finite spatial extent and
presently, with unphysically large quark masses. Thus, in
order to obtain continuum, infinite volume results at the
physical quark masses, multiple extrapolations are re-
quired. At large pion masses, naive (usually polynomial)
extrapolations of results obtained with different quark
masses and lattice spacings are performed. However, for
results computed with quark masses in the chiral regime
(corresponding to pion masses on the order of 400 MeV or
lower), a generalization of chiral perturbation theory,
which includes lattice-spacing effects, can provide the
analytic form of the dependence of many observables
with the lattice spacing and quark mass [1-6]. These
formulae typically involve low-energy constants (LECs)
parametrizing the physics of the QCD scale (and shorter)
whose values are unknown. These LECs and correspond-
ing operators (as well as quantum loop contributions)
associated with the lattice spacing represent unphysical
lattice artifacts, which must be removed from the correla-
tion functions to obtain results in the continuum. The
remaining LECs, which survive the continuum limit, rep-
resent the short-distance QCD physics of interest. One can
view the role of the lattice calculations as determining the
value of these physical constants, which when combined
with the quantum loops, completely describe the low-
energy dynamics of QCD.

The energy of a system can be obtained from the long
time behavior of Euclidean correlation functions. In prac-
tice, baryonic observables (specially those connected to
excited or multibaryon states) suffer from a signal-to-noise
degradation at large times [7,8] while at short times, con-
tamination from the many excited states masks the infor-
mation about the low lying states. This naturally leads to
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the use of anisotropic lattice actions [10,11], in which the
lattice spacing in time is taken to be a, = a,/&, providing a
better resolution of the excited states. Anisotropic lattices
have been used extensively in the study of heavy quarks
and quarkonia [12,13], glueballs [14,15], excited state
baryon spectroscopy [16] as well as QCD thermodynamics
[17-20]. It is also anticipated that anisotropic lattices may
aid in the study of nucleon-nucleon [21,22] and hyperon-
nucleon [23] interactions on the lattice. For heavy systems
made of light quarks, such as nucleon-nucleon systems, the
rapid degradation of the signal-to-noise ratio of the corre-
lation functions is particularly problematic in identifying
the ground state. Thus, when the excited state contamina-
tion has finally died away, there are very few time slices
left before the noise dominates the correlation functions,
leaving only a very narrow window in time to study these
systems. With the use of anisotropic actions, one may gain
more useful information allowing an earlier identification
of the ground-state plateau.

In addition to the many dynamical lattice QCD calcu-
lations utilizing anisotropic lattices, for example [24,25],
there is currently a large scale production of new dynami-
cal anisotropic Wilson gauge configurations underway
[26]. It is therefore the aim of this work to construct the
low-energy effective theory which encodes these new an-
isotropic effects, so that they might be studied and system-
atically removed from the information extracted from the
correlation functions generated with these lattices. We
begin by constructing the Symanzik action [27,28] for
both the Wilson [29] and O(a) improved Wilson [30]
actions in Sec. II. Then in Sec. III, we construct the chiral
Lagrangians [31-33] relevant for these anisotropic lattices
for both mesons and baryons, focussing on the new effects
arising from the anisotropy. We also provide extrapolation
formulae for these hadrons with their modified dispersion
relations. In Sec. IIT A 1, we highlight an important feature
of anisotropic actions; for a fixed spatial lattice spacing and
bare fermion mass, if the isotropic action is in the QCD
phase, this does not guarantee the anisotropic action is
outside the Aoki phase [34]. We then conclude in Sec. IV.
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II. ANISOTROPIC WILSON LATTICE ACTION

The starting point for our discussion is the anisotropic
lattice action and its symmetries, from which we will
construct the continuum effective Symanzik action
[27,28], which will then allow us to construct the low-
energy effective field theory (EFT) describing the hadronic
interactions including the dominant lattice-spacing arti-
facts [2]. For the isotropic Wilson (and O(a) improved
[30] Wilson) action, this program has been carried out to
O(a?) for the mesons [2—4] and baryons [5,6]. This work
is a generalization of the previous work, extending the low-
energy Wilson EFT to include the dominant lattice artifacts
associated with the anisotropy.

The O(a)-improved anisotropic lattice action, in terms
of dimensionless fields, is given by [35,36]

§¢ = 5t + 85, (1)

Sf—,BZ
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Here, & is the bare anisotropy, P;; and P,; are space-space
and space-time plaquettes of the gauge links U. The bare
(dimensionless) quark mass is a,m, W,(U) and W;(U) are
Wilson lattice derivatives, and v is a parameter which must
be tuned to correct the “speed of light” (following the
convention of setting », = 1). The fields ¥,;(U) and Fij(U)
are lattice equivalents of the gauge field-strength tensor in
the space-time and space-space directions. § 1§ is the unim-
proved Wilson action, and 55 is the anisotropic general-
ization of the Sheikholeslami-Wohlert term. The
coefficients, ¢, and c,, appearing in Sg are needed for
O(a) improvement of the anisotropic Wilson lattice action
[30]. At the classical level, they have been determined to be
(36]

where ¢ = a,/a, is the renormalized anisotropy.' The
choice of using ¢ as opposed to &, is conventional and
the difference amounts to a slightly different value of ».
Here, we have explicitly set the Wilson r-parameters to
r, = 1 and ry, = 1. It is worth noting that even with differ-
ent choices of these parameters, there are specific values of
¢, and ¢, which classically remove the leading O(a) an-

'These parameters can also be tadpole improved with no more
effort than in the isotropic action [36,37].
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isotropy errors [38]. This will become clear in the next
section.

This anisotropic lattice theory retains all the symmetries
of the Wilson action, except for the hypercubic invariance,
and thus respects parity, time reversal, translational invari-
ance, charge conjugation, and cubic invariance. In addi-
tion, for suitably tuned bare fermion masses, a,my, the
theory has an approximate chiral symmetry, SU(N), ®
SU(Ny)g, which spontaneously breaks to the vector
subgroup.”

A. Anisotropic Symanzik action

We begin by constructing the Symanzik Lagrangian for
the unimproved anisotropic Wilson Slg lattice action. This
will allow us to set our conventions and introduce a new
basis of improvement terms which is advantageous to
studying the new lattice artifacts which are remnants of
the anisotropy. In terms of dimensionful fields, the aniso-
tropic Symanzik action is given by

sgym ] d4x£Sym,

& _ ré@ £(5) 2 é(6)
Esym £Sym + a, £sym + a; ﬁsym,

&)

where we have conventionally chosen to use the spatial
lattice spacing as our Symanzik expansion parameter. In
terms of the dimensionful fermion fields

1 _ 1 -
a; a;

the anisotropic Lagrangian is given through O(a) by

£Sym =aqlp+ mq]q + a,qé,oF,; + Erza-ijFij]LI-

i<
(7

We have assumed that the parameter » has been tuned in
such a way as to make the breaking of O(4) symmetry to
vanish in the continuum limit. Otherwise, the quark kinetic
term would separate into two terms, with an additional free
parameter appearing in Eq. (7). To clearly identify the new
lattice-spacing effects associated with the anisotropy, it is
useful to work with the basis,

¢, _
? qo—/.wF,u,vq

Er)qo-tiFtiqr (8)

£gym Q[m + mq]q + aS
+ a,(¢, —

from which we recognize the first O(a) term as the
Sheikholeslami-Wohlert [30] term which survives the iso-
tropic limit, cgw = ¢,/2. The second O(a) term ng =

2As mentioned in the Introduction, in Sec. IIIA 1, we will
discuss Aoki phases on anisotropic lattices which are not for-
bidden even if the equivalent isotropic action is not in the Aoki
regime.
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(¢, — ¢,), is an artifact of the anisotropy and the focus of
this work.” We can classify the effects from this operator
and subsequent anisotropy operators at higher orders into
two categories: those which contribute to physical quanti-
ties in a fashion similar to the lattice-spacing artifacts
already present, and those which introduce new hypercubic
breaking effects. The first type of effect will be difficult to
distinguish from the already present lattice-spacing arti-
facts which survive the isotropic limit.* The second cate-
gory of effects are unique to anisotropic actions, and
therefore more readily identifiable from correlation
functions.

A useful manner to quantify these new anisotropic ef-
fects is to recognize that the anisotropy introduces a direc-
tion into the theory, which we can denote with the four-
vector

u, = (1,0). ©)

This allows us to rewrite the anisotropic Lagrangian in a
manner amenable to spurion analysis

Ly, =qp+mq
+ asé[CSWO-MVF,u,V + ng”iuio'MAFv)\]CI- (10)
We then promote both a,cqw and ascgwuiui to spurion

fields, transforming under chiral transformations in such a
way as to conserve chiral symmetry,

agesw — Llagesw)RY,

1D
(ascsw)t — Rlagesw)TLT,
agchyubius — Liaychyubub)RT, a2

(ascgwuiu,g,)f — R(ascgwuf;u,f,)TLT.

By constraining a,cgyw and ascgwuiui and their Hermitian
conjugates to be proportional to the flavor identity, they
both explicitly break the SU(Ny); ® SU(Ny)g chiral sym-
metry down to the vector subgroup, just as the quark mass
term. In addition, we promote ascgwuiug to transform
under hypercubic transformations, so as to conserve hyper-
cubic symmetry,

ayciyubul — ascgwuiuf’;AﬂpAw. (13)

3 As mentioned above, if the choice ¢, = ¢, is made, then the
leading O(a) anisotropic discretization errors can be removed
even if the action is not O(a) improved. In practice however, it is
simple to perform the tadpole-improved classical O(a) improve-
ment, in which case these leading anisotropy errors are auto-
matically removed. Furthermore, due to the complexity of the
O(a®) action, there is no simple choice of the Wilson
r-parameters which will remove the anisotropic discretization
errors at this order without a full O(a?) improvement.

*Assuming a given set of lattice calculations are close to the
continuum limit, and that a range of anisotropies is employed,
one can disentangle the lattice artifacts associated with the new
anisotropic operator from those which survive the isotropic limit.
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By constraining uf; = (1, 0), this spurion explicitly breaks
the hypercubic symmetry of the action down to the cubic
subgroup.

It is worth noting that, in fact, at O(a), the anisotropic
Symanzik action retains an accidental O(3) symmetry in
the spatial directions. Close to the continuum, isotropic
lattice actions retain an accidental Euclidean O(4)
(Lorentz) symmetry as the operators required to break
this symmetry are of higher dimension and thus become
irrelevant in the continuum limit [27,28]. This phenomena
is observed in the isotropic limit where the O(4) symmetry
is broken by the operator azc}yMD uwDuD,q. For unim-
proved anisotropic Wilson fermions, the breaking of the
hypercubic to cubic symmetry [which can be viewed as the
breaking of the accidental O(4) to the accidental O(3)
symmetry] occurs one order lower in the lattice spacing,
at O(a), and therefore this will likely be a larger lattice
artifact than the O(4) breaking of the isotropic action. For
example, for unimproved anisotropic actions, the various
hadrons will have different @(a) corrections to their dis-
persion relations even at vanishing three momentum, as
will be explicitly demonstrated in Sec. III. We now perform
a similar analysis for the @(a?) Symanzik action.

1. O(a®) Symanzik Lagrangian

In Ref. [4], the complete set of O(a?) operators in the
isotropic Symanzik action for Wilson fermions was enum-
erated, including the quark bilinears and four-quark opera-
tors. From an EFT point of view, it is useful to classify
these operators in three categories: those operators which
do not break any of the continuum (approximate) symme-
tries, those which explicitly break chiral symmetry, and
those which break Lorentz symmetry. Most of the O(a?)
operators belong to the first category. Because of their
nature, they are the most difficult to determine and ulti-
mately lead to a polynomial dependence in the lattice
spacing of all correlation functions computed on the lattice
(which can be parametrized as a polynomial dependence in
a of all the coefficients of the chiral Lagrangian). The
second set of operators, those which explicitly break chiral
symmetry, can be usefully parameterized within an EFT
framework as is commonly done with chiral Lagrangians
extended to include lattice-spacing artifacts [2—6]. The last
set of operators, which break Lorentz symmetry, can also
be usefully studied in an EFT framework. In the meson
Lagrangian, these effects are expected to be small as they
do not appear until O(p*a?) [4], while in the heavy baryon
Lagrangian, these effects appear at O(a?) [6]. To distin-
guish these Lorentz breaking terms from the general
lattice-spacing artifacts appearing at O(a?), one must study
the dispersion relations of the hadrons, and not merely their
ground states. This is also generally true of all the aniso-
tropic lattice artifacts which we now address.

In the construction of the anisotropic action, it is also
beneficial to categorize the operators into several catego-
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ries along the lines of those in the isotropic action men-
tioned above. We do not show all of the new operators, as
their explicit form will not be needed, but instead provide a
representative set of the new anisotropic operators which
illustrate the new lattice-spacing artifacts. In the first cate-
gory, we begin with operators which in the isotropic limit
do not break any of the continuum symmetries. Using the
notation of Ref. [4], and using a superscript-¢ to denote the
new operators due to the anisotropy, we find, for example,

0F — {0Y,¢0$} = (gD, PD,.q, gD, PD,q},

0'9 = {0'9, €0\ = {7 ,.9) @Y 9, (@v:9)(Gy. 9}
(14)

In the second category, operators which explicitly break
chiral symmetry, we find

0 10 0l
={(q04,9(q0 4,9, (G0,9)(Go,9)}, (15)

from which we observe that there is an operator which both
breaks chiral and hypercubic symmetry. The last category
of operators stems from the Lorentz breaking operator in
the isotropic limit,

0 — 10, €0} = {gy,D,D,D ,.q, Gy:D:D:D:q},
(16)

from which we note that there is only one operator which
breaks the accidental O(3) symmetry down to the cubic

group, 505‘6), and therefore the dominant O(3) breaking
artifacts in principle can be completely removed from the
theory by studying the dispersion relation of only one
hadron, for example, the pion. Each of these new operators
can be written in their spuriously hypercubic-invariant
form by making use of the anisotropic vector we intro-
duced in Eq. (9),

50(36) = uiuiqDﬂﬁqu,
6 — _
0 = upus(3v,9)(37,9),
£ (6) — ¢ &= = an
013 = upu(§o 0 9)(Go,\q),
6 _ s5¢ s§¢& s5¢ ¢

0 =6 02000050V wDyD Dy,

and similarly for the rest of the dimension-6 anisotropic

operators, ¢ 0(1628 and ¢ 0(161)718. In this equation, we have
defined

S5 =8, — ubus. (18)

Most of these operators do not break chiral symmetry, and
therefore are present for chirally symmetric fermions such
as domain-wall [39-41] and overlap [42—44] fermions.
We now proceed to construct the anisotropic chiral
Lagrangian.

PHYSICAL REVIEW D 77, 074501 (2008)
III. ANISOTROPIC CHIRAL LAGRANGIAN

Now that we have the complete set of Symanzik opera-
tors through O(a?) relevant to the anisotropic Wilson
action and the O(a) improved version thereof, we can
construct the equivalent operators in the chiral
Lagrangian which encode these new anisotropic artifacts.
We begin with the meson Lagrangian and then move to the
heavy baryon Lagrangian.

A. Meson chiral Lagrangian

We construct the chiral Lagrangian using a spurion
analysis of the quark level Lagrangian given in Eqgs. (10)
and (17). We generally assume a power counting

my ~ al?, (19)

but work to the leading order necessary to parametrize the
dominant artifacts from the anisotropy. At LO, the meson
Lagrangian is given by’

ré =

2
e S tr(a 50,50 — - tu(m,BET + 3, B)1)

-7 tr(aSWE* + 3(a,W))

2
_ % (@, WEST + 3(a,Wé), (20)

By taking functional derivatives with respect to the spurion
fields in both the quark level and chiral level actions, one
can show [45]

B — 1im K99

m—0 f2 D

and similarly the new dimension-full chiral symmetry
breaking parameters are defined as

g VF 14
W = Tim co (47, o 2 (22)
q
Go F..
Y & lim ng <q0'”2 th>
my—0 f
G9uFng)
= hmocgwuﬂ us M;z vA (23)

This anisotropic Lagrangian, Eq. (20), has one more op-
erator than in the isotropic limit [2,3], which is simply a
reflection that there are now two distinct O(a) operators in
the Symanzik action. However, for a fixed anisotropy, & =
ag/a,, these two O(a) operators are indistinguishable and
can be combined into one. Inserting the tree-level values of
the coefficients in the Symanzik action [36], one finds

>We remind the reader we are working in Euclidean space-
time. We are using the convention f ~ 132 MeV.
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W x Csw — V, (24)

1
WE o by, = §<ﬁ - v), (25)
a

N

where the speed-of-light parameter v is determined in the
tuning of the anisotropic action. The first clear signal of the

|
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anisotropy begins at the next order, @(ap?) for the unim-
proved action and O(a?p?) for the improved action. We
first discuss the unimproved case.

The next set of operators are only present for the unim-
proved action. In the isotropic limit, it was shown there are
five additional operators at this order [3]

Ly om =2Wytr(0, %9, 31 tr(a, WET + S(a,W)T) + 2Wistr(9, 30, ST [a,WET + 5 (a,W)T])
+ 4Wgtr(m,BET + S (m,B)") tr(a W + Z(a,W)T) + 4W;tr(m ,BIT — S(m,B)") tr(a, WET — S (a,W)T)

+ 4Wytr(m BETa,WET + 3(m,B)T (e, W)T).

For the anisotropic action, there are an additional five
operators similar to the above five with the replacement
of LECs Wy_g — Wf_g and a simultaneous replacement of
the condensate W — W¢. These five new operators, as
with the O(a) operators, are indistinguishable from those
in Eq. (26) at a fixed anisotropy. There are two additional
operators at this order, however, which introduce new
effects associated with the anisotropy,

L8 =Wr(0,30, 3 (b ula,WEST + 3 (a, W)
+ WE(9, 20, S ubublaWEST + 3 (a,W)T]).
27)

When the anisotropic vectors are set to their constant value,
(ui)T = (1,0), one sees that these operators lead to a
modification of the pion (meson) dispersion relation,

(26)

a,W

(E2 + pz,)<1 W )
asW a,W¢ - a,Wé
—»(E3T+p37)<1+W 7 + we 7 >+E%,Wf 7
(28)

where
W = 32(N W, + Ws), Wé = 32(N,W, + We),
Wé = 16(N,WE + W5), (29)

and N is the number of fermion flavors. With the O(a)
improved anisotropic action, these effects all vanish and
the leading lattice artifacts begin at @(a?). The chiral
Lagrangian at this next order in the isotropic limit was
determined in Ref. [4] for which there were three new
operators. In the anisotropic theory, there are an additional
six operators, but just as with the @(a) Lagrangian, the
three new anisotropic operators can not be distinguished
from those which survive the isotropic limit unless mul-
tiple values of the anisotropy are used. The Lagrangian at
this order is

L8 o= —aWilaWu(S + SHP = 4WELa,WE (S + SHP — aWia,Wir(S — SHP — 4W5[a,We (S - SHP

AW (a,WR (S + STSH) — 4WE (@ WER a(SS + STS ) — 4WE (0, W)(a,Wo)[u(S + SHP
— AW (a,W)(a,Wé)[tr(S — SH)P — 4W§(a,W)(a,Wé) (33 + ST3T), (30)

The last three operators in this Lagrangian vanish for an O(a)-improved action as they are directly proportional to the
product of the two O(a) terms in the Symanzik Lagrangian, Eq. (10). The other six operators in this Lagrangian receive
contributions both from products of the @(a) Symanzik operators as well as from terms in the O(a*) Symanzik
Lagrangian.® Therefore they are still present for an O(a)-improved action but the numerical values of their LECs,
W¢_g and Wg_g, will be different in the improved case.

At O(a?p?), there are nine new operators, three of which survive the isotropic limit, and three of which explicitly break
the accidental O(4) symmetry down to O(3),

®For conventional reasons [4] we have normalized these operators to the square of the condensates appearing at @(a), but one should
not confuse this to mean that these operators vanish for the O(a)-improved action.
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Lf;az[ﬂ = 0,(a,W)?tr(9,%9,31) + 02(a,W)* r(0,, %9, ZN) tr(3 + =) + 03(a,W)* (3,30, ZT[3 + 21])
+ 05(a,Wé)2 (9,30, 31) + 05(a, W) (6,30, 3N te(S + 31) + 05(a, W) (9,39, ST + 31])
+ 05 (a,Wé)2ubus 1,20, 31) + 05(a,Wéubub (9, 39,3 (S + 3F)

+ Qg(a Wf)zu,_buytr(a 30,313 + 21)).

The first operator in each set of three with coefficients Q,
Qg, and Q ; are modifications of the LO kinetic operator,
while the remaining operators additionally break chiral
symmetry. The first operator in Eq. (31) is an example of
the operators mentioned before which do not break any of
the (approximate) lattice symmetries, and are therefore
amount to polynomial renormalizations of the continuum
LECs. In this example, we see with the replacement

f2 = f* +80,(a, Wy, (32)

the entire effects from this O(a” p?) operator are renormal-
ized away to all orders in the EFT. In the anlsotroplc
theory, this also works for the operator with LEC Ql, as
this operator does not explicitly break O(4) symmetry. This
provides a further example of effects which arise because
of the anisotropy but contribute to the low-energy dynam-
ics in an isotropic fashion. The operators with explicit
anisotropic vectors will modify the dispersion relation as
in Eq. (28) but at O(a?). For the O(a)-improved action,
these operators will provide the dominant modification to
the pseudo-Goldstone dispersion relations.

The last set of operators we wish to address for the
meson Lagrangian are those which explicitly break the
accidental O(3) symmetry down to the cubic group.
There are two operators in the meson chiral Lagrangian
but they stem from only one quark level operator at O(a?)
and therefore all the LO O(3) breaking effects for all
hadrons can be removed with the inclusion and tuning of

one new operator in the action, ¢ 0516) from Eq. (17). The
O(3) breaking operators in the meson chiral Lagrangian
are

£§

G o = CilaWERS:  685,65,60, r(9,20,31)

X (0,59, 5) + C5(a,WE)?5S, 85,855
X(0,,29,279,29,X1). (33)

1. Aoki regime

Aoki first pointed out the possibility that at finite lattice
spacing, lattice actions can undergo spontaneous symmetry
breaking of flavor and parity in certain regions of phase
space [34]. In Ref. [2], Sharpe and Singleton addressed this
possibility within an EFT framework by extending the
meson chiral Lagrangian to include lattice-spacing contri-
butions. We begin by summarizing the discussion of
Sharpe and Singleton which will allow us to highlight the
new effects that arise from the anisotropy. For clarity of

3D

[
discussion, we consider the unimproved two-flavor theory
in the isospin limit. Following the notation of Ref. [2], the
nonkinetic part of the chiral potential can be written

V= _% (S + 3 + %[tr(i +3DF (34

where ¢; and ¢, are functions of the quark mass m, and the
lattice spacing a,

~ A4< L aA) y
(35)
~ A4<AZ +mga + a2A2>

The *...” denote higher order terms in the quark mass and
lattice spacing, and we are ignoring dimensionless num-
bers of O(1). Assuming a power counting m, ~ aA?, the
contributions to the vacuum from the ¢, term are sup-
pressed compared to the ¢, term, and the vacuum is in
the continuum phase with the chiral condensate aligned
with unity. The Aoki phase can occur when there is a fine-
tuning of the quark mass and lattice-spacing contributions
to ¢; such that the overall size of ¢; becomes comparable to
c,. Parameterizing the X-field as

S=A+ir B, (36)

with the constraint A> + B? = 1, the potential, Eq. (34)
becomes

V= —cA+ A% (37)

If the minimum of the potential occurs for —1 <A, <1,
then the vacuum

20 =(2)=Ag + it By, (38)

develops a nonzero value of B, spontaneously breaking
both parity and the remnant vector-chiral symmetry,
SU(Q2)y — U(1) [2], giving rise to one massive pseudo-
Goldstone pion and two massless Goldstone pions. If the
minimum of the potential occurs for A,;, = —1or A, =
1 then the vacuum lies along (or opposite) the identitiy,
|Ag] = 1, |Bg| = 0 with the same symmetry breaking pat-
tern as QCD.

For unimproved Wilson fermions in the isotropic limit,
the leading contributions to c; are

= fA(m,B + a,W). (39)

In the anisotropic theory, there is an additional contribution
to the LO potential, such that
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¢ — cf = ¢, + ffa,W¢ = f2(m,B + a,W + a,W¥?).
(40)

If the two terms which contribute to W o« 2{(go,;F,;q +
go;;F;;q) are of opposite sign, then W¢ o« (g0, F,;q) may
be the dominant lattice-spacing contribution to c;.
Therefore, the anisotropic theory may be in the Aoki
regime even when the isotropic limit of the theory (with
the same ay) is not, and vice versa. This same discussion
holds for O(a)-improved actions as well but with a differ-
ent power counting.

This analysis carries important consequences for aniso-
tropic actions with domain-wall and overlap fermions as
well. These actions are generally tuned to lie between the
first two-fingers of the Aoki regime in the m, — g plane
[46]. The optimal value of the bare fermion mass, which
provides the least amount of residual chiral symmetry
breaking, may be shifted in the anisotropic theory relative
to the isotropic value, and furthermore the allowed values
of the coupling for which there is a QCD phase may shift as
well.

B. Heavy baryon Lagrangian

We now construct the operators in the baryon
Lagrangian which encode the leading lattice artifacts
from the anisotropy. We use the heavy baryon formalism
[47,48] and explicitly construct the two-flavor theory in the
isospin limit including nucleons, delta resonances, and
pions. The extension of this to include the octet and dec-
uplet baryons is a straight forward exercise. This construc-
tion builds upon previous work in which the heavy baryon
Lagrangian has been extended in the isotropic limit to
include the O(a) [5] and O(a?) [6] lattice artifacts for
various baryon observables.” The Lagrangian is con-
structed as a perturbative expansion about the static limit
of the baryon, treating it as a heavy, static source as with
heavy quark effective theory [55,56]. In building the heavy
baryon chiral Lagrangian it is useful to introduce a new
chiral field,®

o= \/E = exp(?), “4n

which transforms under chiral rotations as

"In those works [5,6], the heavy baryon Lagrangian was
extended explicitly for Wilson fermions and in the latter also
for a mixed action scheme with chirally symmetric valence
fermions. In this work, we explicitly address the anisotropic
effects for these two scenarios. One can also include the aniso-
tropic effects for twisted mass [49] and staggered fermions
[50,51] following the heavy baryon construction in Refs. [52—
54], respectively. However, we are unaware of specific plans to
generate anisotropic twisted mass or staggered fermions so we
do not pursue this here.

8This field is generally denoted as & but to avoid confusion
with the anisotropy parameter, we use o.
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o— LoVt = VoR?t, 42)

with V defined by Eq. (42). One then dresses the baryon
fields with o such that under chiral transformations, the
nucleon and delta fields transform as

N;— VijN Jr Tijk - Vii’ij’ ka’Ti’j/k’r (43)

where N is a two-component flavor field and T is a flavor-
symmetric rank-three tensor, normalized such that

1
Ty, =— AT,

V3
AO, T222 = A_. (44)

Ny =p, N, =n, T111:A++,

1
V3
Both the nucleon and delta are treated as heavy matter
fields and are constrained by the relations

1+9¢

NN e T
where v, is the four-velocity of the baryon which can be
chosen in its rest frame to be v, = (1,0). This has the
effect of projecting onto the particle component of the field
in the rest frame of the baryon. The spin-3/2 fields can be
described with a Rarita-Schwinger field, which in the
heavy baryon formalism gives rise to the constraints

v-T=0, S-T=0, (46)

Ty =

(45)

where S, is a covariant spin vector [47,48]. The simulta-
neous inclusion of the nucleon and delta fields introduces a
new parameter into the Lagrangian, the delta-nucleon mass
splitting in the chiral limit,
A - mT - lemq:O, (47)
which is generally counted as A ~ m, in the chiral power
counting [47,48,57]. Because this mass parameter is a
chiral singlet, it leads to a modification of all the LECs
in the heavy baryon Lagrangian. These particular effects
can be systematically accounted for by treating all LECs as
polynomials in A [58—61]. In the isospin limit, the heavy
baryon Lagrangian, including the leading quark mass
terms, the leading lattice-spacing terms, and the leading
baryon-pion couplings, is given by
Lyry =Nv-DN +a,0xN(v - uéu®-D)N
—20yNNu(M,) +T,[v-D+AIT,
+a,6¢T,(v-utué-D)T,
—20yT, T, (M) +2g,NS- AN
—2gaaT,S+ AT, —20wNNtr(W )

+ gAN[TZjiﬂﬁfM €Ny +hc]— 2U€VNNtr(Wi)

— 25w T,T,0(W,) =255 T,T,u(W5). (48)

In this Lagrangian, the chiral symmetry breaking spurions
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are given by
1
M, = E(a’mg(r +otm,ot),
W, = %(a\v\vfa + otWo), (49)
WE = %(U(Wf)w + otWéa),

the chiral covariant derivative is
(D#N); = 0“N; + VN,
(50)

and the vector and axial fields are, respectively, given by

VM = %(0'8#0'1L + O'TGMO'),
(51)
A

= %(Ua#O'T - a'Jra#a').
Relative to the Wilson extension of the heavy baryon
Lagrangian in the isotropic limit [5,6] there is one addi-
tional mass operator for the nucleon and delta fields. There
are additionally extra derivative operators which give rise
to the leading modification of the dispersion relation for the
baryon fields. As in the meson chiral Lagrangian, Eq. (20),
at fixed anisotropy, these two additional mass operators
(with coefficients 0'%, and 5'%:‘,) can not be distinguished
from their counterparts which survive the isotropic limit
(with coefficients oy and ayy). At this order in the lattice
spacing, @O(a), the baryon-pion couplings, g4, gay, and
gaa» are not modified [5]. This Lagrangian, Eq. (48) gives
rise to the LO and next-to leading order (NLO) mass
corrections to the baryon masses. For example, in Fig. 1
we display the graphs contributing to the nucleon mass at
O(m,), Fig. 1(a), O(a), Fig. 1(b), and O(m3/?), Fig. 1(c)
and 1(d). The expressions for the quark mass dependence
of the nucleon and delta masses can be found for example
in Ref. [60], and the lattice-spacing dependent corrections
to these masses for Wilson fermions in the isotropic limit
can be found in Refs. [5,6].

At O(am,), there are two types of mass corrections:
those from loop graphs from the lattice-spacing dependent

PHYSICAL REVIEW D 77, 074501 (2008)

operators in Eq. (48) and tree-level terms from operators in
the O(am,) Lagrangian. These corrections will be identi-
cal in form to those present in the isotropic limit, but with
different numerical values due to the new anisotropic
operators which do not explicitly break the hypercubic
symmetry. The loop graphs for the nucleon and delta
mass corrections are depicted in Ref. [6] in Figs. 1 and 2,
respectively. In the isospin limit, there are two tree-level
operators for the nucleon and deltas each,

LGN = —nuwNNo(M) (W)
— niw NNt (M) (W)
+ tyw T, T tr(M ) (W)
+ g Tu Tt (M) (WS, (52)

which also function as counterterms for divergences from
the above mentioned loop graphs. As with the mesons, we
must consider the O(a?) effects to see the first explicit
breaking of the anisotropy. Even in the isotropic limit, the
lattice-spacing corrections to the baryons at this order
proved to be quite interesting, with the presence of the first
operators which arise from the O(4) breaking down to the
hypercubic group at this order [6]. There are several ge-
neric O(a?) operators which do not explicitly break the
hypercubic group,

£§2T¢ = —nwwNNtr(W ) tr( W)
— niywNNu(WE) (W¥)
+ tywT T (W) u(W)
+ tow T, Tt WE) te(W¥)
— i wNNte (W) (W¥)
+ W T Tt (W) (WS, (53)

where the last two operators vanish for the O(a) improved
action and the first two survive the isotropic limit. The
O(4) breaking operators appear at this order in the heavy
baryon Lagrangian because in the heavy baryon theory,
there is an additional vector, the four-velocity of the baryon
one can use to construct operators. For the mesons, the only
vector is 9, and so the O(4) breaking operators in the

@ ¢
(a) (b)

FIG. 1 (color online).

© (d)

Diagrams contributing to the nucleon mass at LO [(a) and (b)] and NLO [(c) and (d)]. Figure (a) is an insertion

of the leading quark mass term proportional to . Figure (b) is an insertion of the lattice-spacing terms proportional to oy and o-f,v.
The loop graphs arise from the pion-nucleon and pion-nucleon-delta couplings. These loop graphs generically scale as m3. but also
depend upon A, and away from the continuum limit upon the lattice spacing as well. All vertices in these graphs are from the
Lagrangian in Eq. (48).
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meson Lagrangian do not appear until O(a®p*) [4]. These
heavy baryon O(4) breaking operators are [6]

Lg’i‘?ﬁ = a§n4NUMUMUMUMN + a‘%t4Tpv:va,U«UMUMTP‘

(54

Similar to these, the O(3) breaking operators appear at this
order,

L) = a2ny N85, 84,64,65,N
+ a?tjpgiygi,,gfwgfpr, (55)

However, even though these two sets of operators explic-
itly break the O(4) and O(3) symmetries, respectively, they
do not lead to modifications of the dispersion relations until
higher orders [6], and thus function as mass corrections.
There is a subtlety of the heavy baryon Lagrangian related
to reparametrization invariance [62], which constrains co-
efficients of certain operators in the heavy baryon
Lagrangian. For example, in the continuum limit, the LO
kinetic operator of Eq. (48) is related to a higher dimen-
sional operator in such a way as to provide the correct
dispersion relation,’

2

_ B} _ D%
L =Nv-DN— Nv-DN+N—-N, (56)
M,y

such that the energy of the nonrelativistic nucleon is given
by

2

p

E=My+
N oMy

+... (57)

For the anisotropic theory, this dispersion relation is then
modified by an additional operator. While in the continuum
limit, reparametrization invariance constrains the coeffi-
cient in front of the 1/My operator, the anisotropic action
gives rise to modifications of this relation.

_ _ D?
L=Nv-DN+N—LN
2My

_ _ D? _
— L =Nv- DN+ N—-N + a,0xNv - uéu - DN
2M
N

+ asogpN(ut - D)?N. (58)
The resulting nucleon dispersion relation from this action

°In this equation, D} = D* — (v - D).
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is given by

2
|Y
Ey =My + e Ex(1 + a,0p)

N
p>
= My(1 + a,05) — 2Nsa,(oy + a’ﬁ,) + —
My
+ a,0kp(Exy — My)~. (59)

For the O(a)-improved action, the form of this dispersion
relation stays the same with {a,, a,} — {a?, a2}. Comparing
this dispersion relation to that of the pion, Eq. (28), it is
clear that even if the pion dispersion relation were tuned to
be continuumlike, the nucleon dispersion relation would
still contain lattice-spacing artifacts. This is a simple con-
sequence of the fact that the LECs in the heavy baryon
Lagrangian (both the physical and unphysical) have no
relation to those in the meson chiral Lagrangian.

IV. DISCUSSION

We have developed the effective theory describing
pions, nucleons, and deltas at low energy, including the
finite lattice spacings effects from an anisotropic Wilson
lattice action. In particular, we focussed on the correction
to the dispersion relations caused by the breaking of hyper-
cubic symmetry. The theory considered here is suited for
the anisotropic Wilson lattices currently being generated.
Extensions to a mixed action case [63,64], for example,
with domain-wall or overlap valence fermions and the
Wilson sea fermions, both anisotropic, can be made with
ease as in Refs. [65—-68]. We have also highlighted some
subtlety involving the Aoki phase for anisotropic actions,
which may be of importance in tuning the bare fermion
masses in domain-wall and overlap fermions; for a fixed
bare fermion mass and spatial lattice spacing, if the iso-
tropic action is in the QCD phase, the anisotropic theory
may still be in the Aoki phase. This work will aid in the
continuum extrapolation of correlation functions computed
with anisotropic lattices.
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