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We study the Collins effect in the azimuthal asymmetric distribution of hadrons inside a high energy jet

in the single-transverse polarized proton-proton scattering. From the detailed analysis of one-gluon and

two-gluon exchange diagrams contributions in a particular model, the Collins function is found the same

as that in the semi-inclusive deep inelastic scattering and eþe� annihilations. The eikonal propagators in

these diagrams do not contribute to the phase needed for the Collins-type single-spin asymmetry, and the

universality is derived as a result of the Ward identity. We argue that this conclusion depends on the

momentum flow of the exchanged gluon and the kinematic constraints in the fragmentation process.
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I. INTRODUCTION

Single-transverse-spin asymmetries (SSA) in hadronic
processes have a long history [1,2]. Recent experimental
measurements of SSAs in polarized semi-inclusive lepton-
nucleon deep inelastic scattering (SIDIS) [3,4], in hadronic
collisions [5–7], and in the relevant eþe� annihilation
process [8], have renewed the theoretical interest in SSAs
and in understanding their roles in hadron structure and
quantum chromodynamics (QCD). There are several ap-
proaches to understanding SSAs within the QCD frame-
work [9–11]. Transverse-momentum-dependent (TMD)
parton distributions and fragmentation functions, and their
relevance for semi-inclusive DIS, the Drell-Yan process,
di-hadron production in eþe� annihilations, and the
single-inclusive hadron production at hadron colliders
have been investigated [12–26].

Two important contributions from these TMD parton
distributions and fragmentation functions have been
mostly discussed in the last few years: the Sivers quark
distribution and the Collins fragmentation function. The
Sivers quark distribution [16] represents a distribution of
unpolarized quarks in a transversely polarized nucleon,
through a correlation between the quark’s transverse mo-
mentum and the nucleon polarization vector. The existence
of the Sivers function requires final/initial-state interac-
tions [20] and an interference between different helicity
Fock states of the nucleon [20,27]. The Collins function
represents a correlation between the transverse-spin of the
fragmenting quark and the transverse momentum of the
hadron relative to the ‘‘jet axis’’ in the fragmentation
process. Like the Sivers function, it vanishes when inte-
grated over all transverse momentum.

One of the most nontrivial properties associated with the
Sivers and Collins functions are their universality proper-
ties. Although they both belong to the so-called ‘‘naive-
time-reversal-odd’’ functions, they do have different uni-

versality properties. For the quark Sivers function, because
of the initial/final-state interaction difference, they differ
by signs for the SIDIS and Drell-Yan processes [20,21,28].
This nonuniversality has also been extended to other pro-
cesses, such as the dijet-correlation in hadronic reactions,
where it was found that both initial and final-state inter-
actions contribute to the SSA, and there exists a nontrivial
relation between this and those in the SIDIS and Drell-Yan
processes [29–31].
On the other hand, there have been several studies

showing that the Collins function is universal between
different processes, primarily in the SIDIS and eþe� an-
nihilation [32–35]. In these discussions, the gauge links in
the fragmentation functions do not play a crucial role to
leading to a nonzero Collins function though they are
important to retain the gauge invariance, whereas it has
been well understood that the gauge links in the parton
distributions play very important roles to obtain a nonzero
quark Sivers function.
The Collins effect in the fragmentation process and its

universality has been recently extended to the hadron
production in pp collisions [36], where the azimuthal
distribution of hadrons inside a high energy jet can probe
the Collins fragmentation function and the quark trans-
versity distribution [37] in the single-transverse polarized
nucleon-nucleon scattering. In this paper, we will give the
detailed derivation of these results, and argue that the
universality is general and model independent.
We are interested in the hadron production from the

fragmentation of a transversely polarized quark which
inherits transverse spin from the incident nucleon through
transverse-spin transfer in the hard partonic scattering
processes [38–40]. As shown in Fig. 1, we study the
process,

pðPA; S?Þ þ pðPBÞ ! jetðPJÞ þ X ! HðPhÞ þ X; (1)

where a transversely polarized proton with momentum PA

scatters on another proton with momentum PB and pro-*fyuan@lbl.gov
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duces a jet with momentum PJ (transverse momentum P?
and rapidity y1 in the lab frame). The three momenta of PA,
PB, and PJ form the so-called reaction plane. Inside the
produced jet, the hadrons are distributed around the jet
axes. A particular hadron H will carry certain longitudinal
momentum fraction zh of the jet, and its transverse mo-
mentum PhT relative to the jet axis will define an azimuthal
angle with the reaction plane: �h, shown in Fig. 1. Thus,
the hadron’s momentum is defined as Ph ¼ zhPJ þ PhT .
The relative transverse momentum PhT is orthogonal to the

jet’s momentum PJ: ~PhT � ~PJ ¼ 0. Similarly, we can define
the azimuthal angle of the transverse polarization vector of
the incident polarized proton: �s.

The leading order contribution to the jet production in
pp collision comes from 2 ! 2 subprocesses, where two
jets are produced back-to-back in the transverse plane. For
the reaction process of (1), one of the two jets shall frag-
ment into the final observed hadron. In this paper, we study
the physics in the kinematic region of PhT � P?. The
unpolarized cross section contribution from the partonic
2 ! 2 process ab ! qc where the final-state quark q frag-
ments into final observed hadron H can be written as

d�uu

dy1dy2dP
2
?dzd

2PhT

¼ d�uu

dP :S:

¼ X
b¼q;g

x0fbðx0ÞxfaðxÞDqðzh; PhTÞ

�Huu
ab!qc; (2)

where dP :S: ¼ dy1dy2dP
2
?dzd

2PhT represents the phase

space for this process, y1 and y2 are rapidities for the jet PJ

and the balancing jet, respectively, P? is the jet transverse
momentum, and the final observed hadron’s kinematic
variables zh and PhT are defined above. Here, x and x0
are the momentum fractions carried by the parton ‘‘ a’’
and‘‘ b’’ from the incident hadrons, respectively. In the
above equation, fa and fb are the associated parton dis-
tributions, and Dqðzh; PhTÞ is the TMD quark fragmenta-

tion function. The hard factors Hab!qc are equal to the

partonic differential cross section for the relevant subpro-
cess: Hab!qc ¼ d�̂=dt̂jab!qc. Similarly, the differential

cross section for the transverse-spin-dependent scattering
process can be written as

d�ðS?Þ
dP :S:

¼ X
b¼q;g

x0fbðx0Þx�qTðxÞ�q̂ðzh; PhTÞ

� ���S�?
Mh

�
P�
hT � PB � PhT

PB � PJ

P�
J

�
HCollins

qb!qb; (3)

���? ¼ �����PA�PB�=PA � PB with convention �0123 ¼ 1,

and HCollins
qb!qb is the hard factor for the partonic channel

qb ! qb. Here, �qTðxÞ (also noted by �q, h1q, and �Tq

in the literature) is the quark transversity distribution, and
�q̂ the Collins fragmentation function [17] (also noted as

�D̂ or H?
1 in the literature).

It was argued that the Collins function is universal
between the above process and other processes such as
eþe� annihilation and SIDIS [36]. As an example, we will
demonstrate this universality by calculating the contribu-
tion from one particular partonic channel qq0 ! qq0. The
contributions from all other channels will follow accord-
ingly. This is because the universality derivation is based
on the fact that the eikonal propagators do not contribute to
the phase for the Collins single-spin asymmetry, and we
can sum all the gluon attachments into the gauge link in the
fragmentation function definition by using the Ward iden-
tity. The gauge link derived is process independent, and
thus the Collins fragmentation will be the same for all the
channels. We can further study the Collins asymmetries in
SIDIS and eþe� annihilation processes, and the same
Collins fragmentation function will appear. For conve-
nience, we list the hard factors for this channel,

Huu
qq0!qq0 ¼

�2
s	

ŝ2
N2

c � 1

4N2
c

2ðŝ2 þ û2Þ
�t̂2

;

HCollins
qq0!qq0 ¼

�2
s	

ŝ2
N2

c � 1

4N2
c

4ŝ û

�t̂2
;

(4)

for the unpolarized and single-transverse-spin polarized
cross sections, respectively. Here ŝ, t̂, and û are the usual
partonic Mandelstam variables.
The rest of this paper is organized as follows. In Sec. II,

we calculate the differential cross sections for the unpolar-
ized and single-spin-dependent scattering processes from
qq0 ! qq0 channel contributions and demonstrate the uni-
versality of the Collins function. Especially, we will
present a detailed calculation for one-gluon exchange dia-
grams which are essential for the universality argument.
An extension to two-gluon exchange diagrams is presented
in Sec. III. We summarize our paper in Sec. IV.

II. UNIVERSALITY OF THE COLLINS FUNCTION

We follow the model used in Ref. [17] to calculate the
quark fragmentation into a pion. As shown in Fig. 2(a), a
quark (with momentum k) fragments into a pion (with
momentum Ph) by the vertex from a model described in
[41]. A simple calculation will give the unpolarized quark
fragmentation function [17],

FIG. 1 (color online). Illustration of the kinematics for the
azimuthal distribution of hadrons inside a jet in pp scattering.
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Dqðzh; PhTÞ ¼ g2

16	3

z2h
~P2
hT þ z2hM

2
; (5)

where g is the coupling between the quark and pion, M is
the quark mass.

We can also use this model to calculate pion production
in hadronic process of (1). In Fig. 2(b), we show the
Feynman diagram for the typical partonic channel qq0 !
qq0 contribution, where the initial quarks have momenta
PA and PB, respectively. In the final state, the produced
pion has momentum Ph, and the associated final-state
quark has momentum k0, whereas the balancing jet has
momentum P2. We further introduce a lightlike momen-

tum k̂: k̂2 ¼ 0, which represents the dominant component
of the fragmenting quark’s momentum. It can be parame-
terized as follows:

k̂ ¼ � û

ŝ
PA � t̂

ŝ
PB þ ~P?; (6)

where P? is the transverse momentum for the fragmenting
quark in the lab frame, ŝ, t̂, and û as mentioned above, are
the usual partonic Madelstam variables for this partonic

process: ŝ ¼ 2PA � PB, t̂ ¼ �2PA � k̂, and û ¼ �2PB � k̂.
In our discussions, the jet’s transverse momentum P? (in
the lab frame) is the large momentum scale at the same
order as ŝ, t̂, and û. Of course, the full momentum of the
fragmenting quark P1 ¼ Ph þ k0 is off shell in this dia-
gram. However, its off-shellness is much smaller than P?.
In order to formulate the final-state hadron’s momentum,

we introduce a conjugate lightlike vector n̂: n̂0 ¼ k̂0 and

~̂n ¼ � ~̂k. It is convenient to define this momentum in the
center of mass frame of the two incident momenta PA and
PB. In this frame, we have

n̂ ¼ P2 ¼ � t̂

ŝ
PA � û

ŝ
PB � ~P?; (7)

which happens to be the momentum of the balancing jet.

From above, we have k̂2 ¼ n̂2 ¼ 0 and k̂ � n̂ ¼ ŝ=2. In the
following calculations, we will work in this particular
frame. We emphasize that our results do not depend on
the frame.

With the above two momenta, we can formula the final-
state pion’s momentum as

Ph ¼ zhk̂þ
~P2
hT

2zhk̂ � n̂
n̂þ ~PhT; (8)

where zh ¼ Ph � n̂=k̂ � n̂ is the momentum fraction of the
fragmenting quark carried by the pion in the final state, PhT

is the transverse momentum relative to the fragmenting

quark momentum k̂: PhT � k̂ ¼ 0 and PhT � n̂ ¼ 0. In the
above parameterization, we have neglected the pion mass,
which is not relevant in our calculations. Similarly, we can
formulate the associated final-state quark momentum k0 as

k0 ¼ ð1� zhÞk̂þ
~P2
hT þM2

2ð1� zhÞk̂ � n̂
n̂� ~PhT; (9)

where we have kept the quark mass, because it will be
relevant for the nonzero single-spin asymmetry discussed
below.
With the above decompositions for the relevant mo-

menta, it is straightforward to calculate the Feynman dia-
grams for this process in Fig. 2(b). In the calculations, we
will utilize the power counting method to keep the leading
order contributions and neglect all higher order corrections
of PhT=P? or M=P?. By doing that, we can separate the
short-distance physics (at the scale of P?) from the long-
distance physics (at the scale of PhT and M).
Finally, the cross section contribution from Fig. 2(b) will

be

d�uu

dP :S:
¼ �2

s	

ŝ2
N2

c � 1

4N2
c

2ðŝ2 þ û2Þ
t̂2

g2

16	2

z2h
P2
hT þ z2hM

2
;

(10)

in the limit of PhT � P?. This result is indeed factorized
into the hard factor Huu

qq0!qq0 in Eq. (4) times the fragmen-

tation function in Eq. (5) calculated from Fig. 2(a).
Now, we turn to discuss the SSA in this process. We need

to generate a phase from the scattering amplitudes to have
a nonvanishing SSA. As suggested in [17], the dressed
quark propagator in this model may contribute to such a
phase. Similarly, the vertex correction to the quark-pion
vertex can also contribute a phase [42]. If the phase comes
from the above sources, it is easy to argue the universality
of the Collins function between our process and the
SIDIS=eþe� process, because they are the same. For ex-
ample, as we show in Fig. 3, the dressed quark propagator
associated with the fragmenting quark can contribute to a
nonzero phase [17], which will contribute the same to the
Collins function in all these three processes: eþe� annihi-
lation, SIDIS, and hadron production in pp scattering. This
propagator can be parameterized as iðAP6 1 þ BMÞ=ðP2

1 �
M2Þ [17], where A and B are complex numbers. Following
the above calculations for the unpolarized cross section, we
will find the single-spin-dependent cross section for pro-
cess (1) from Fig. 3(c) can be written as

FIG. 2. Quark fragmentation to pion production (a) and in pp
scattering in a model described in [41] (b).
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d�ðS?Þ
dP :S:

¼ ���S�?

�
P�
hT � PB � PhT

PB � PJ

P�
J

�
�2
s	

ŝ2
N2

c � 1

4N2
c

� 4ŝ û

�t̂2
g2

16	2

z2hð1� zhÞ2M ImðA�BÞ
ðP2

hT þ z2hM
2Þ2 ; (11)

where again we only keep the leading order contribution in
the limit of PhT � P? and M � P?. In the derivation of
the above result, the following identity has been used to
simplify the final expression,

���½ŝP? � S?P�
?P

�
hT þ ðû� t̂ÞPB

� PhTP
�
?S

�
? � t̂ û P�

hTS
�
?� ¼ 0; (12)

which holds in our working frame. The above differential
cross section can be factorized into the Collins function
calculated from the dressed quark propagator from Fig. 3
(d) [17] and the hard factor HCollins

qq0!qq0 from Eq. (4) in this

partonic channel qq0 ! qq0, and this Collins function will
be the same as that in eþe� and SIDIS processes in Figs. 3
(a) and 3(b).

Similarly, the vertex corrections contributions to the
Collins function can be analyzed accordingly, and the
same factorization and universality of the Collins function
will follow.

The main issue of the universality discussion concerns
the extra gluon exchange contribution between the specta-
tor and hard partonic part [32]. For example, in our case,
because the hadron is colorless while the quark is colored,
the remanet in the fragmentation process will be also
colored. Thus the gluon exchanges between the remanet

and the other parts of the scattering amplitudes become
essential. In Fig. 4, we have shown all these interactions,
including the gluon attachments to the incident quarks (a,
c), the final-state balancing quark (d), and the internal
gluon propagator (b). These diagrams are much more
complicated than those discussed in [32] for SIDIS and
eþe� processes, where there is only one diagram contri-
bution in both cases. Therefore, the universality argument
for the Collins function is not straightforward. However,
the dominant contribution to the fragmentation function
comes from the kinematic region where the exchanged
gluon is parallel to the final-state hadron [43]. Otherwise,
their contributions will be power suppressed in the limit of
PhT � P? or belong to a soft factor. For these collinear
gluon interactions, we can use eikonal approximation and
Ward identity to sum them together to form the gauge link
in the definition of the fragmentation function [43].
Meanwhile, we notice that the contributing phases of the

diagrams in Fig. 4 come from the cuts through the internal
propagators in the partonic scattering amplitudes [20,32].
In Fig. 4, we labeled these cut-poles by short bars in the
diagrams. From our calculations, we find that all these
poles come from a cut through the exchanged gluon and
the fragmenting quark in each diagram, and all other con-
tributions either vanish in the leading order contribution or
cancel out each other. For example, in Fig. 4(d), we show
two additional cuts, which contribute, however, opposite to
each other and cancel out completely. To see this cancel-
lation more clearly, we can write down the momentum
integral of the exchange-gluon,

FIG. 4 (color online). Gluon exchange diagrams contributions
to the Collins asymmetry in pp collisions. The short bars indicate
the pole contributions to the phase needed for a nonvanishing
SSA. The additional two cuts in (d) cancel out each other.

FIG. 3. Universality of the Collins function in eþe� (a), deep
inelastic scattering (b), and pp scattering (c), when we have a
dressed quark propagator associated with the fragmenting quark
in these processes. The universal Collins function can be calcu-
lated from the diagram in (d). The blobs in the diagrams
represent the dressed quark propagator in this model.
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Z d4q

ð4	Þ4 MðqÞ 1

ðk0 � qÞ2 �M2 þ i�

1

q2 þ i�

� 1

ðP2 þ qÞ2 þ i�

1

ðP2 � PB þ qÞ2 þ i�

� 1

ðPh þ k0 � qÞ2 �M2 þ i�
; (13)

whereMðqÞ represents the denominators coming from the
scattering amplitude. By power counting analysis, the
dominant contribution to the fragmentation comes from
the kinematic region of q being parallel to the final-state
hadron’s momentum q� Ph. From this fact, we can pa-

rameterize q in terms of k̂ and n̂, and define qþ ¼ q � n̂=k̂ �
n̂ and q� ¼ q � k̂=k̂ � n̂. Thus the integral of momentum q

becomes d4q ¼ k̂ � n̂dqþdq�d2qT , where qT is the trans-

verse momentum relative to the jet momentum k̂. Because

q is parallel to k̂, qþ will be of order 1, whereas q� will be
of order q2T=q

þ. When we perform the integrals of
dqþdq�, we need to take two poles from the above propa-
gators to obtain a nonzero Collins asymmetry. These poles
will form a cut through the Fenyman diagram. Physically,
these cuts represent the kinematic allowed final-state re-
scattering in the diagram.

By examining the behaviors of the propagators in the
above kinematic region, we further notice that the
t-channel gluon propagator 1=ðP2 � PB þ qÞ2 does not
contribute to a pole. This is because this propagator is far

off shell: ðP2 � PBÞ2 ¼ t̂��j ~P?j2. If we take a pole from
this propagator, we have to constrain the momentum of q
being proportional to P2 and PB, whose contribution will
be power suppressed. Thus, we shall calculate the pole
contributions from other propagators. In Fig. 4(d), we show
three possible cuts which are kinematic allowed for this
diagram. Two of them are associated with the propagator
1=ðP2 þ qÞ2. This propagator involves large momentum
P2 and can be simplified by using the eikonal approxima-
tion,

1

ðP2 þ qÞ2 þ i�
� 1

2P2 � k̂
1

qþ þ i�
: (14)

The pole contribution from this propagator is proportional
to �ðqþÞ. With this delta function, the integral over q�
vanishes, because the rest of the poles are in the same half
plane of q�,
Z dq�

2	

1

ðk0 � qÞ2 �M2 þ i�

� 1

ðPh þ k0 � qÞ2 �M2 þ i�
� � �

�
Z dq�

2	

1

2ðk0þ � qþÞq� þ � � � þ i�

� 1

2ðPþ
h þ k0þ � qþÞq� þ � � � þ i�

� � � ¼ 0; (15)

where we have used the fact that k0þ � qþ > 0 and Pþ
h þ

k0þ � qþ > 0. This means that the two cuts associated
with the propagator 1=ðP2 þ qÞ2 cancel out each other.
The above result depends on the momentum flow of q in
this diagram and the timelike process in the fragmentation
region requiring that k0þ > 0 and Pþ

h > 0.
Therefore, the only contribution to the nonzero SSA

associated with the Collins effect comes from the cut going
through the fragmenting quark and the exchange-gluon, as
we labeled by short bars in this diagram. Summarizing the
above analysis, we find that the contribution from this
diagram can be written as

k̂ � n̂
ðP2 � k1Þ2ðP2 � PBÞ2

Z dqþdq�d2qT
ð2	Þ4

1

qþ
1

1� qþ

� 1

ðk0 � qÞ2 �M2
MðqÞ�ðq2Þ�ððPh þ k0 � qÞ2 �M2Þ;

(16)

where we have made the eikonal approximation for the
propagators 1=ðP2 þ qÞ2 and 1=ðP2 � PB þ qÞ2.
A similar analysis can be done for all other diagrams,

and we find that their contributions come from the same
poles of the fragmenting quark and the exchange-gluon.
Therefore, their contributions will have the similar expres-
sion as Eq. (16) with the same delta functions in the
integral: �ðq2Þ�ððPh þ k0 � qÞ2 �M2Þ and the propagator
1=ððk0 � qÞ2 �M2Þ. Thus the contributions from all these
diagrams can be summed together. In this sum, we notice
that the different diagrams have different color factors,

4ðaÞ: 1

N2
c

Tr½TaTcTbTc� � Tr½TaTb�

¼ CF � N2
c � 1

4N2
c

þ 1

N2
c

ifabc
2

Tr½TaTbTc�;

4ðbÞ: 1

N2
c

Tr½TaTcTb� � Tr½TaTd�ifdbc

¼ � 1

N2
c

ifabc
2

Tr½TaTbTc�;

4ðcÞ: 1

N2
c

Tr½TaTcTb� � Tr½TaTbTc�;

4ðdÞ: 1

N2
c

Tr½TaTcTb� � Tr½TaTcTb�:

(17)

We further find that the contributions (without the color
factors) from the diagrams (c) and (d) are opposite to each
other. Thus, their total contribution will be the difference

on the color factor, which is 1
N2

c

ifabc
2 Tr½TaTbTc�. That

means the contributions from all four diagrams can be
grouped into two terms with different color factors: one

with CF � N2
c�1
4N2

c
and one with 1

N2
c

ifabc
2 Tr½TaTbTc�. The

latter one vanishes in the leading order of PhT=P? after
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we sum all diagrams contributions, and thus we are left
with the first color-factor contribution.

After summing over all diagrams’ contributions, the
spin-dependent differential cross section coming from the
Collins effect will be

d�ðS?Þ
dP :S:

¼ �2
s

	

N2
c � 1

4N2
c

4ŝ û

�t̂2
���S�?

�
g��

0 � P�0
B

PB �PJ

P�
J

�

� g2

ð2	Þ3CFg
2
s

Z dqþdq�d2qT
ð2	Þ4 ðqþP�0

hT � zhq
�0
T Þ

� 1

ðk0 � qÞ2�ðq
2Þ�ððPh þ k0 � qÞ2 �M2Þ: (18)

where gs is the strong coupling. From the above result, we
find a clear separation of the short-distance physics at the
scale P? and the long-distance physics at the scale PhT .
The short-distance part is just the hard factor HCollins

qq0!qq0 for

the spin-dependent cross section, which can be calculated
from the partonic process with both initial- and final-state
quarks transversely polarized [39], as we show in the left
panel of Fig. 5. The long-distance part of the above result
can be factorized into the Collins fragmentation function
calculated from the right panel of Fig. 5. In this part,

because the q�
0

T integral is proportional to P�0
hT , we can

combine the two terms in the integral into one expression
contained in the Collins function. Therefore, the spin-
dependent cross section Eq. (18) can be rewritten as

d�ðS?Þ
dP :S:

¼ �2
s

	

N2
c � 1

4N2
c

4ŝ û

�t̂2
���S�?

�
P�
hT � PB � PhT

PB � PJ

P�
J

�

� �q̂ðzh; PhTÞ
Mh

; (19)

where the Collins function �q̂ is calculated from the
Feynman diagram in the right panel of Fig. 5,

�q̂ðzh; PhTÞ ¼ Mh

P�
hT

g2

ð2	Þ3 g
2
sCF

Z dqþdq�d2qT
ð2	Þ4

� ðqþP�
hT � zhq

�
T Þ

1

ðk0 � qÞ2 �M2

� �ðq2Þ�ððPh þ k0 � qÞ2 �M2Þ; (20)

where the index � is not understood as a sum. This final
result demonstrates that, at this particular order in this
model, the Collins contribution to the spin-dependent cross
section can be factorized into the hard factor HCollins

qq0!qq0

times the Collins fragmentation function. When we calcu-
late the Collins contributions to the azimuthal asymmetries
in eþe� and SIDIS processes in this model, we will derive
the same Collins function. A calculation of the Collins
function from the diagram in the right panel of Fig. 5 has
been performed in [34].
Therefore, by using the Ward identity at this particular

order, the final results for all the diagrams of Fig. 4 will
sum up together into a factorized form as shown in Fig. 5,
where the cross section is written as the hard partonic cross
section for the qðS?Þq0 ! qðs?Þq0 subprocess multiplied
by a Collins fragmentation function. The exchanged gluon
in Fig. 4 is now attaching to a gauge link from the frag-
mentation function definition [14] as shown in the right
panel of Fig. 5. This gauge link is the same for the Collins
function in SIDIS, eþe� annihilation, and the above
proton-proton scattering process. From this, we conclude
that the Collins function is universal at this order in this
particular model.
The key steps in the above derivation are the eikonal

approximation and the Ward identity. The eikonal approxi-
mation is valid when we calculate the leading power con-
tributions in the limit of PhT � k?. The Ward identity
ensures that when we sum up the diagrams with all possible
gluon attachments we shall get the eikonal propagator from
the gauge link in the definition of the fragmentation func-
tion. The most important point to apply the Ward identity
in the above analysis is that the eikonal propagator does not
contribute to the phase needed to generate a nonzero SSA.
This is what we have shown for the Collins asymmetry in
the above calculations, and the reason, as we mentioned
above, is due to the momentum flow of the exchanged
gluon and the kinematic constraints in the fragmentation
process. We will show in the next section, that for the two-
gluon exchange diagrams the eikonal propagators do not
contribute to the phase for the nonzero Collins SSA in this
process. Therefore, we conjecture that the above conclu-
sions are valid to higher order contributions too.
This argument cannot apply to the SSA associated with

the parton distributions, where the eikonal propagator does
contribute to the phase to generate a nonzero SSA. That is
the reason we have sign differences for the Sivers functions
in SIDIS and Drell-Yan processes.

FIG. 5 (color online). Factorize the contributions from Fig. 4
into the hard partonic cross section multiplied by the universal
Collins fragmentation function. The short bars indicate the pole
contribution to the Collins function.
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III. TWO-GLUON EXCHANGE CONTRIBUTIONS

As we discussed in the last section, to demonstrate the
universality of the Collins function, we have to apply the
Ward identity to sum up all gluon exchange contributions
into the gauge link from the definition of the fragmentation
function. In order to use this argument, the eikonal propa-
gator should not contribute to the phase needed to generate
nonzero SSA associated with the Collins effects. This has
been explicitly demonstrated in the last section for the one-
gluon exchange contribution. In this section, we will ex-
tend the discussions to the two-gluon exchange contribu-
tions. Especially, we will show that these eikonal
propagators do not contribute to the phase for the SSAs.
The reason, again, is due to the timelike feature and the
momentum flow in the fragmentation process.

We will focus our discussions on some representative
diagrams from the two-gluon exchange contributions. All
other diagrams will follow accordingly. We show these
diagrams in Figs. 6(a)–6(c). The contribution from Fig. 6
(a) will depend on the following integral of the exchange
gluons’ momenta q1 and q2:

Z d4q1
ð2	Þ4

d4q2
ð2	Þ4 Mðq1; q2Þ 1

ðPA � q1Þ2 þ i�

� 1

ðPA � q1 � q2Þ2 þ i�

1

ðk0 � q1Þ2 þ i�

� 1

ðk0 � q1 � q2Þ2 þ i�

1

ðk� q1 � q2Þ2 þ i�

� 1

q21 þ i�

1

q22 þ i�
;

(21)

where k ¼ P1 ¼ k0 þ Ph is the fragmenting quark’s mo-
mentum andMðq1; q2Þ represents the numerators depend-
ing on q1 and q2, especially their transverse momentum
components. Following the arguments used in the last
section, the first two propagators in the above expression
can be further simplified by using the eikonal approxima-

tion, and then we will obtain the following expression:

Z dq�1 dq
þ
1

ð2	Þ2
dq�2 dq

þ
2

ð2	Þ2
1

�qþ1 þ i�

1

�qþ1 � qþ2 þ i�

� 1

ðk0 � q1Þ2 þ i�

1

ðk0 � q1 � q2Þ2 þ i�

� 1

ðk� q1 � q2Þ2 þ i�

1

q21 þ i�

1

q22 þ i�
; (22)

where q	i follow the definitions in the last section. The
normalization of the above integral has been changed for
convenience. This normalization is not relevant for our
discussions, because we want to show that the eikonal
propagators do not contribute to the phase needed for a
nonzero SSA, not the actual contribution from this dia-
gram. We will show that if we take pole contributions from
these two eikonal propagators, the final integral will van-
ish. Because of the existence of two eikonal propagators,
the analysis will be more complicated than that in the last
section. We discuss their contributions separately.
(1) Pole contribution from 1

�qþ
1
�qþ

2
þi�

.

If we take the pole of this eikonal propagator, qþ1
and qþ2 will be constrained: qþ1 þ qþ2 ¼ 0, and the
integral of (22) will become

Z dqþ1 dq
þ
2

2	

�ðqþ1 þ qþ2 Þ
qþ1

Z dq�1 dq
�
2

ð2	Þ2

� 1

�2ðk0þ � qþ1 Þq�1 þ�1 þ i�

� 1

�2k0þðq�1 þ q�2 Þ þ�2 þ i�

� 1

�2kþðq�1 þ q�2 Þ þ �3 þ i�

� 1

2qþ1 q�1 þ�4 þ i�

1

2qþ2 q�2 þ�5 þ i�
; (23)

FIG. 6. Example diagrams for two-gluon exchange contributions (a,b,c) and one real gluon radiation contributions (d,e,f).
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where �i are some quantities depending on the
transverse momenta of qi, k

0, and Ph. The following
analysis does not depend on the details of these
numbers. In deriving the above equation, we have
used the constraint of qþ1 þ qþ2 ¼ 0 to simplify the
expression. We further notice that k0þ > 0 and kþ >
0. Thus, the poles of the second and third factors in
the integral of q�1 and q�2 are both in the upper half
plane. If qþ1 > 0, which means that qþ2 < 0, the pole
of the fifth factor will be also in the upper half plane
of q�2 . Therefore, the poles of the three factors (the
second, third, and fifth) depending on q�2 are all in
the upper half plane of q�2 , and the integral over q�2
will vanish, and so will the above integral. Similarly,
if qþ1 < 0, the pole of the fourth factor will be in the
upper half plane of q�1 . Meanwhile, we will also
have k0þ � qþ1 > 0, and the pole of the first factor
will be in the upper half plane too. Therefore, the
poles of the four factors (the first, second, third, and
fourth) depending on q�1 are all in the upper half
plane of q�1 . The integral over q

�
1 will vanish, and so

will the above expression. In conclusion, in any case
of qþ1 > 0 or qþ1 < 0, the above integral vanishes,
and we do not have a contribution from the pole of

1
�qþ1 �qþ2 þi�

.

(2) Pole contribution from 1
�qþ

1
þi�

Because qþ1 ¼ 0, we can simplify the integral of
(22) as follows:

Z dqþ1 dqþ2
2	

�ðqþ1 Þ
qþ2

Z dq�1 dq�2
ð2	Þ2

� 1

�2k0þq�1 þ�1 þ i�

� 1

�2ðk0þ � qþ2 Þðq�1 þ q�2 Þ þ�2 þ i�

� 1

�2ðkþ � qþ2 Þðq�1 þ q�2 Þ þ �3 þ i�

� 1

2qþ2 q�2 þ �5 þ i�
: (24)

Again, the normalization has been changed for con-
venience. Because kþ > k0þ, we will analyze the
contributions of the above equation by classifying
the different regions of qþ2 : (a) qþ2 > kþ; (b) qþ2 <
k0þ; (c) k0þ < qþ2 < kþ. In the region of (a), we will
have kþ � qþ2 < 0 and k0þ � qþ2 < 0. Therefore,
the poles of the three factors (the second, third,
and fourth) are all in the lower half plane of q�2 ,
and the integral over q�2 vanishes. In the region of
(b), we have k0þ > 0, k0þ � qþ2 > 0, and kþ �
qþ2 > 0. Thus, the poles of the three factors (the
first, second, and third) depending on q�1 are all in
the upper half plane, and the integral over q�1 van-

ishes. In the region of (c), we have qþ2 > 0, k0þ �
qþ2 < 0, and kþ � qþ2 > 0. Therefore, the q�2 inte-
gral will pick up the pole of the third factor, which
actually determines the value of q�1 þ q�2 . After
substituting this back into the equation, we will
find the second factor does not depend on q�1 any
more. The only dependence comes from the first
factor. Obviously, this integral over q�1 will vanish.
In conclusion, in any case of (a,b,c), the above
integral vanishes, and there is no contribution from
the pole of 1

�qþ
1
þi�

.

In summary, there is no contribution to the SSA from the
pole of the eikonal propagators in the diagram of Fig. 6(a).
Similarly, the contribution from Fig. 6(b) depends on the
following integral:

Z dq�1 dqþ1
ð2	Þ2

dq�2 dqþ2
ð2	Þ2

1

�qþ1 þ i�

1

�qþ1 � qþ2 þ i�

� 1

ðk0 � q2Þ2 þ i�

1

ðk0 � q1 � q2Þ2 þ i�

� 1

ðk� q1 � q2Þ2 þ i�

1

q21 þ i�

1

q22 þ i�
; (25)

where we have made the eikonal approximations for the
two propagators along the incident quark line PA.
Comparing with Eq. (22), we find the only difference is
the third factor q1 ! q2. Again, we can show that none of
the two eikonal propagators will contribute to the phase
needed for a nonzero SSA. We will discuss their contribu-
tions separately.
(1) Pole contribution from 1

�qþ1 �qþ2 þi�
.

After taking this pole, the integral of (25) will
become

Z dqþ1 dq
þ
2

2	

�ðqþ1 þ qþ2 Þ
qþ1

Z dq�1 dq
�
2

ð2	Þ2

� 1

�2ðk0þ � qþ2 Þq�2 þ�1 þ i�

� 1

�2k0þðq�1 þ q�2 Þ þ�2 þ i�

� 1

�2kþðq�1 þ q�2 Þ þ �3 þ i�

� 1

2qþ1 q
�
1 þ�4 þ i�

1

2qþ2 q
�
2 þ�5 þ i�

; (26)

which is the same as Eq. (23) if we interchange q	1
and q	2 . Thus, the above integral will vanish by the
same arguments we have used for Eq. (23).

(2) Pole contribution from 1
�qþ

1
þi�

Because qþ1 ¼ 0, we can simplify the integral of
(25) as follows:
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Z dqþ1 dq
þ
2

2	

�ðqþ1 Þ
qþ2

Z dq�1 dq
�
2

ð2	Þ2

� 1

�2ðk0þ � qþ2 Þq�2 þ �1 þ i�

� 1

�2ðk0þ � qþ2 Þðq�1 þ q�2 Þ þ�2 þ i�

� 1

�2ðkþ � qþ2 Þðq�1 þ q�2 Þ þ �3 þ i�

� 1

2qþ2 q
�
2 þ �5 þ i�

: (27)

Again, we classify three different regions of qþ2 in
the above equation: (a) qþ2 > kþ; (b) qþ2 < k0þ; (c)
k0þ < qþ2 < kþ. The contributions from (a) and (b)
regions vanish by the same reasons as we have
shown for Eq. (24) in the above. In region (c), we
have k0þ � qþ2 < 0 and kþ � qþ2 > 0. Therefore,
the q�1 integral will pick up the pole of the third
factor, which again actually determines the value of
q�1 þ q�2 . After substituting this back into the equa-
tion, we will find the second factor does not depend
on q�2 any more. The only dependence comes from
the first and last factors. Obviously, this integral over
q�2 vanishes because k0þ � qþ2 < 0 and qþ2 > 0, and
the poles of these two factors are both in the lower
half plane. In conclusion, in any case of (a,b,c), the
above integral vanishes, and there is no contribution
from the pole of 1

�qþ1 þi�
.

Similarly, the contribution from Fig. 6(c) will depend on
the following integral:

Z dq�1 dqþ1
ð2	Þ2

dq�2 dqþ2
ð2	Þ2

1

�qþ1 þ i�

1

qþ2 þ i�

� 1

ðk0 � q1Þ2 þ i�

1

ðk0 � q1 � q2Þ2 þ i�

� 1

ðk� q1 � q2Þ2 þ i�

1

q21 þ i�

1

q22 þ i�
; (28)

where again we have made the eikonal approximations.
There are two eikonal propagators in the above equation,
and as above we will discuss their contributions separately.

(1) Pole contribution from 1
�qþ

1
þi�

After taking this pole, qþ1 ¼ 0, the above equation
Eq. (28) will reduce to Eq. (24). According to the
same arguments we used there, there will be no
contributions from this pole.

(2) Pole contribution from 1
qþ
2
þi�

This pole contribution means that qþ2 ¼ 0, and the
integral of Eq. (28) becomes

Z dqþ1 dq
þ
2

2	

�ðqþ2 Þ
qþ1

Z dq�1 dq
�
2

ð2	Þ2

� 1

�2ðk0þ � qþ1 Þq�1 þ�1 þ i�

� 1

�2ðk0þ � qþ1 Þðq�1 þ q�2 Þ þ �2 þ i�

� 1

�2ðkþ � qþ1 Þðq�1 þ q�2 Þ þ �3 þ i�

� 1

2qþ1 q
�
1 þ �5 þ i�

; (29)

which will be identical to Eq. (27) if we interchange
q	1 to q	2 . Using the same arguments there, the
above integral vanishes.

The above three examples are typical diagrams we
encounter for the two-gluon exchange contributions for
this channel. All these diagrams can be analyzed in a
similar manner, and we will find that the eikonal propa-
gators do not contribute to the phase needed for a nonzero
SSA. Because of this fact, all of these diagrams can be
summed together to form the contributions from the gauge
link in the fragmentation function, where the two gluons
attach to the gauge link similar to the diagram we have
shown in Fig. 5. Since there are no contributions from these
eikonal propagators, the Collins function calculated from
these diagrams will be the same as that in eþe� and SIDIS
processes, and the universality preserved.
We have also drawn some other diagrams at this order in

Figs. 6(d)–6(f), which contribute to a real gluon radiation
in addition to the gluon exchange. The analysis of these
diagrams also shows that we do not get a contribution from
the pole of the eikonal propagators. For example, the
contribution from Fig. 6(d) depends on
Z d4q

ð2	Þ4
1

�qþ þ i�

1

�qþ � kþ1 þ i�

1

ðk0 � qÞ2 þ i�

� 1

ðk� q� k1Þ2 þ i�

1

q2 þ i�
; (30)

where k1 is the momentum for the radiated gluon. We have
two eikonal propagators in the above equation. However,
none of them contributes to the phase needed for a nonzero
SSA.
(1) Pole contribution from 1

�qþþi�

This pole contribution means that qþ ¼ 0, and the
integral of q� will reduce to

Z dq�

2	

1

�2k0þq� þ �1 þ i�

� 1

�2ðkþ � kþ1 Þq� þ�2 þ i�
: (31)

Because kþ ¼ kþ1 þ k0þ þ Pþ
h > kþ1 and k0þ > 0,

the poles of the above two factors are both in the
lower half plane of q�, and the integral vanishes.
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(2) Pole contribution from 1
�qþ�kþ1 þi�

After taking this pole, we will have the following q�
integral:

Z dq�

2	

1

�2ðk0þ � qþÞq� þ�1 þ i�

� 1

�2kþq� þ �2 þ i�

1

2qþq� þ �3 þ i�
:

(32)

Because the pole constrains that qþ ¼ �kþ1 < 0
and k0þ � qþ > 0, the poles of the above three
factors are all in the lower half plane. The integral
over q� vanishes.

In summary, there is no contribution from the pole of the
eikonal propagators in the diagram of Fig. 6(d).

The contribution from Fig. 6(e) will depend on the
following integral:

Z d4q

ð2	Þ4
1

�kþ1 þ i�

1

�qþ � kþ1 þ i�

1

ðk0 � qÞ2 þ i�

� 1

ðk� q� k1Þ2 þ i�

1

q2 þ i�
: (33)

Because kþ1 > 0, we only have one possible pole contribu-
tion from the eikonal propagator 1=ð�qþ � kþ1 þ i�Þ,
which vanishes for the same reason as above for diagram
Fig. 6(d). Similarly, if the gluon with momentum q attaches
to the radiated gluon instead of the incident quark line with
momentum PA (we did not show this diagram in Fig. 6), the
contribution vanishes for the same reason.

The contribution from Fig. 6(f) depends on the follow-
ing integral:

Z d4q

ð2	Þ4
1

�qþ þ i�

1

ðk0 � qÞ2 þ i�

1

ðk� q� k1Þ2 þ i�

� 1

ðk� qÞ2 þ i�

1

q2 þ i�
; (34)

after eikonal approximation. If we take the pole contribu-
tion from the eikonal propagator, the above integral will
reduce to

Z dq�

2	

1

�2k0þq� þ�1 þ i�

1

�2ðkþ � kþ1 Þq� þ �2 þ i�

� 1

�2kþq� þ�3 þ i�
: (35)

Again, because kþ > kþ1 , the poles of the above three
factors are all in the lower half plane, and the integral
over q� vanishes. Thus, there is no contribution from the
pole of the eikonal propagator for this diagram.

In summary, for the gluon radiation diagrams, there is no
contribution from the pole of the eikonal propagators.
Because of this fact, we can use Ward identity to sum all
these diagrams together to form the gauge link contribution

from the fragmentation function, similar to the diagram in
Fig. 5 with an additional gluon radiation.
Concluding the analysis of the two-gluon exchange dia-

grams in Fig. 6, the eikonal propagators do not contribute
to the phase needed for the nonzero SSA associated with
the Collins effect. Therefore, we can apply the Ward
identity at this order to sum all these diagrams plus other
similar ones. This sum will lead to the gauge link contri-
bution from the fragmentation function definition. Because
the gauge link contribution is process independent, the
fragmentation function will be the same as that in eþe�
and SIDIS processes.

IV. SUMMARYAND DISCUSSIONS

In this paper, we have shown that the Collins function in
hadron production in single-transverse-spin polarized pp
scattering is the same as that in eþe� and SIDIS processes.
This universality is a general and model-independent ob-
servation and it depends on the fact that the eikonal propa-
gators do not contribute to the phase needed for a nonzero
SSA. We have demonstrated this by explicit calculations
for one-gluon exchange diagrams which correspond to one
eikonal propagator in the amplitudes, and two-gluon ex-
change diagrams which correspond to two eikonal propa-
gators. Although our calculations were based on a model
[17,41], the analysis and arguments are quite general. The
results, as we emphasized, depend on the momentum flow
and kinematic constraints in the fragmentation process.
The key issues of this derivation are the eikonal approxi-

mation and the Ward identity. The eikonal approximation
is valid for the leading power contributions in the limit of
PhT � k?. By applying the Ward identity, we will be able
to sum up the diagrams with all possible gluon attachments
into the gauge link in the definition of the fragmentation
function. The gauge link derived is process independent.
Therefore, we will obtain the same Collins function as that
in the eþe� annihilation, SIDIS processes in this model.
This observation is very different from the SSAs asso-

ciated with the parton distributions, where the eikonal
propagators from the gauge link in the parton distribution
definition play very important roles. It is the pole of these
eikonal propagators that contributes to the phase needed
for a nonzero SSA associated with the naive-time-reversal-
odd parton distributions, which also predicts a sign differ-
ence for the quark Sivers function between the SIDIS and
Drell-Yan processes. More complicated results have been
found for the SSAs in the hadronic dijet-correlation
[29,30], where a normal TMD factorization breaks down
[31]. The reason is that the eikonal propagators from the
initial- and final-state interactions in a dijet-correlation
process do contribute poles in the cross section [30,31].
Because of this, the Ward identity is not applicable, and the
standard TMD factorization breaks down, although a
modified factorization may be valid if we modify the
definition of the TMD parton distributions to take into
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account all the initial- and final-state interaction effects
[29]. In the fragmentation process, as we discussed in our
paper, the eikonal propagators do not contribute to an
imaginary part, and the Ward identity is applicable. We
have shown this in our explicit calculations including one-
gluon and two-gluon exchange contributions.

There has been discussion about the twist-three quark-
gluon correlation contribution in the fragmentation func-
tion, especially for the Collins effects [23,44]. It will be
interesting to further understand these contributions fol-
lowing the analysis in this paper and discuss the universal-
ity issues in a more general sense [32,33,36].
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