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We study how the charge neutrality affects the phase structure of the three-flavor Polyakov-loop

Nambu–Jona-Lasinio (PNJL) model. We point out that, within the conventional PNJL model at finite

density, the color neutrality is missing because the Wilson line serves as an external colored field coupled

to dynamical quarks. In this paper we heuristically assume that the model may still be applicable. To get

color neutrality, one has then to allow nonvanishing color chemical potentials. We study how the quark

matter phase diagram in ðT;m2
s=�Þ-plane is affected by imposing neutrality and by including the

Polyakov-loop dynamics. Although these two effects are correlated in a nonlinear way, the impact of

the Polyakov loop turns out to be significant in the T direction, while imposing neutrality brings a

remarkable effect in the m2
s=� direction. In particular, we find a novel unlocking transition, when the

temperature is increased, even in the chiral SUð3Þ limit. We clarify how and why this is possible once the

dynamics of the colored Polyakov loop is taken into account. Also we succeed in giving an analytic

expression for Tc for the transition from two-flavor pairing (2SC) to unpaired quark matter in the presence

of the Polyakov loop.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is expected to exhibit
a variety of phases depending on the temperature and on
the baryon density [1]. At zero density and finite tempera-
ture, the two main features of QCD are the confinement/
deconfinement phase transition and chiral symmetry res-
toration. They should be realized when the hadronic sys-
tem is heated, for example, in ultrarelativistic heavy ion
scattering processes such as at the Relativistic Heavy Ion
Collision (RHIC) experiment [2] or in the future ALICE
experiment at the large hadron collider (LHC) at CERN.
Moreover, this behavior is clearly seen by lattice QCD
simulations [3]. In these conditions quarks and gluons
should be released as active degrees of freedom at some
critical temperature. Moreover, in the same range of tem-
peratures, one expects the restoration of chiral symmetry,
whose spontaneous breakdown is known to play a key role
in the mass spectroscopy of zero density QCD [4,5]. At
finite baryon densities similar transitions are also expected
although the comparison with lattice simulation data is still
lacking due to the so-called fermion sign problem.
However, at extremely high density, where perturbative
techniques are allowed, it is now theoretically well estab-
lished that quarks are deconfined forming diquark conden-

sates so that the system is in a color superconducting
ground state with asymptotic color-flavor locking (CFL)
[6]. While difficult to achieve in the laboratory, color
superconductivity might be relevant to the inner structure
of compact stellar objects [7].
Exploring phase structure at intermediate density, where

neither lattice simulations nor perturbative calculations can
be trusted, is the object of various model studies. There are
different effective models which provide simple descrip-
tions of chiral symmetry restoration at finite temperature
and density; the Nambu–Jona-Lasinio (NJL) model is one
of them [4,5,8,9]. The NJL model realizes the spontaneous
chiral symmetry breaking of QCD at small temperature
and density. Despite its simple structure, it can also realize
a CFL phase at the largest density. Moreover, it can even
reproduce the correct ratio of the gap and critical tempera-
ture for the transition from the CFL to the unpaired phase.
The main defect of the NJL model is the absence of the

confinement/deconfinement transition. A theoretical at-
tempt to understand the nature of the deconfinement tran-
sition goes back to the work [10] in which deconfinement
was shown to be associated with the spontaneous breaking
of the global ZðNcÞ-symmetry of a finite temperature
SUðNcÞ pure gauge theory. The order parameter is the
traced Polyakov loop, whose condensation and correlation
are related to the free energy of static quark and the string
tension between two static quarks in a thermal medium.
The inclusion of the Polyakov-loop dynamics into the

NJL model was first done by Fukushima [11] in order to
study the relation between chiral restoration and deconfine-
ment. It is now called the ‘‘Polyakov-loop extended
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Nambu–Jona-Lasinio NJL’’ (PNJL) model. In this model,
the chiral condensate �qq serves as an order parameter for
the chiral transition, while the traced Polyakov loop �
performs this job for the deconfinement transition. Even
though the former and the latter have their definite mean-
ings, as order parameters, only within different limits
(mq ! 0 and mq ! 1), they are still useful as indicators

of both crossovers and/or transitions. In addition, the
model enables one to interpret nicely some bulk properties
of matter observed on the lattice on the field theoretical
ground [12].

The purpose of this work is to investigate the color
superconducting phase structure in the ðT;m2

s=�Þ-plane
within the PNJL model, and to study the effect of imposing
neutralities, in both the paired and unpaired phases, in the
presence of the Polyakov loop. The neutrality constraints
are known to be important for the candidates of color
superconducting phases at a realistic density; they open a
window in a phase diagram to intriguing gapless phases
[13,14]. Although a few works have already explored the
pairing phases of PNJL models [15–17], none of them take
into account either the possibility of complicated gap
structures or the neutrality effects. Thus our study is a
natural extension of them. One surprising result is that,
once the PNJL model is applied to finite density, it inevi-
tably lacks color neutrality even when the system is un-
paired. This is a sort of sign problem at finite density. In
this paper we still proceed on the heuristic assumption that
PNJL is applicable to finite densities. Also, it will turn out
that the inclusion of the Polyakov loop greatly affects the
phase diagram by stabilizing the two-flavor pairing (2SC)
phase, and it also brings about a color-flavor unlocking
transition [18] at finite temperature in a new mechanism.

The paper is organized as follows. In Sec. II, we intro-
duce our model and approximations. In the first part of
Sec. III, we demonstrate the lack of color neutrality in the
conventional PNJL model at finite density. The rest of the
section is devoted to discussion of the numerical results.
The neutrality effects, the effect of dynamics of Polyakov
loop, and their interplay will be particularly covered. We
summarize the main contents of our paper with some
concluding remarks in Sec. IV.

II. FORMALISM

In order to accommodate for pairing in the JP ¼ 0þ
channel at finite density, we add the 4-point vertex to the
free part of the Polyakov-quark model, which hereafter we
shall refer to as the Polyakov NJL (PNJL) model:

L eff½q; �q;A4� ¼ �qðiðD6 ½A4� þ �0ð�þ ��effÞÞq

þG

4
�qP� �q

TqT �P�q

�UðT;�½A4�;�½A4��Þ: (1)

Here q stands for the quark field, and a summation over

color and flavor degrees of freedom is understood. P� ¼
C�5��ij��ab ( �P� ¼ �0P

y
��0) is the matrix, antisymmetric

in color, flavor, and spin, specifying the pairing channel.
The constant G parametrizes the strength of the coupling
leading to diquark condensation. Wework within the chiral
SUð2Þ limit, setting mu ¼ md ¼ 0, and take into account
the strange quark mass within the high density approxima-
tion. This means that we include the effect of its finite value
in the chemical potential difference ��eff [13]. As a result,

��eff ¼ ��eQþ�3T3 þ�8T8 � m2
s

2� diagð0; 0; 1Þf � 1c;

(2)

where Q ¼ diagð2=3;�1=3;�1=3Þf � 1c, T3¼1f� 1
2�3,

and T8 ¼ 1f � 1ffiffi
3

p �8, with f��g being the standard Gell-

Mann matrices. We find it more transparent switching to a
new spinor basis for the quark field defined as qA ¼
ðqur; qdg; qsb; qug; qdr; qsr; qub; qdb; qsgÞ by means of

qi� ¼ X9
A¼1

ðFAÞi�qA (3)

with ðFAÞi� unitary matrices in color and flavor space
defined in [19]. In this new basis (2) takes the form of a
diagonal matrix: ��A

eff�AB with A ¼ 1ðurÞ; 2ðdgÞ;
. . . ; 9ðsgÞ.
We treat the Polyakov loop by the static, homogeneous,

and classical background gauge field A4 � igA�
0
��

2 where

the temporal gauge field A4 is introduced by parametrizing

the Wilson line, as L ¼ eiA4=T . In the PNJL model, one
assumes that this background gauge field couples to quarks
with covariant derivative D� ¼ @� � ��0A4. In the con-

venient gauge called Polyakov gauge, the Wilson line L is
in the diagonal representation [11],1 i.e.,

L ¼ eði�3�3þi�8�8Þ=T: (4)

Moreover, we restrict ourselves to the case �8 ¼ 0 such
that the traced Polyakov loop � ¼ trcL=Nc becomes real

1One can always find the gauge rotation U such that ULU�1

becomes diagonal. This is simply a gauge fixing, and any
physical quantities will not depend on the gauge freedom U so
we can safely reduce the eight dynamical variables to parame-
trize L up to two independent parameters f�3; �8g. We note,
however, when the diquark condensation is taken into account,
this is no longer justified unless more general ansatz for the
diquark condensation, ���0��ab��0ij, is adopted. Simultaneous
color-flavor rotation can make the condensate matrix ���0
diagonal such that the usual assumption, ���0 / ���0 , is recov-
ered, but this is nothing but the gauge fixing. Thus in principle, if
we adopt the diagonal ansatz for the diquark condensation, we
can no longer make L gauge rotated to diagonal, and on the other
hand, if we adopt the diagonal form of L, we should work in
more general assumption for ���0 . Nevertheless, we work in the
simplified assumption that both L and ���0 are of diagonal as in
[15] leaving a further detailed analysis in the future.
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[15], whereas at finite density there is no strict reason why

� should be real [20,21]. Thus in this representation,� ¼
2 cosð�3=TÞþ1

3 , and the effect of the background field A4 is

just to shift the color chemical potential to the imaginary
direction �3 ! �3 � 2i�3 � ~�3. For the Polyakov-loop
effective potential U we use the following form, inspired
by the strong coupling analysis of the pure gauge sector
[11,22,23]:

UðT;�;��Þ
T4

¼ �b2ðTÞ
2

���þ bðTÞ logð1� 6���

þ 4ð��3 þ�3Þ � ð���Þ2Þ; (5)

with

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2
; bðTÞ ¼ b3

�
T0

T

�
3
:

(6)

The numerical values for coefficients are determined by
fitting several quantities to the lattice results of pure gauge
theory [12]:

a0 ¼ 3:51; a1 ¼ �2:47;

a2 ¼ 15:2; b3 ¼ �1:75:
(7)

In the absence of dynamical quarks, T0 is set to the value of
the transition temperature for deconfinement, i.e., T0 ¼
270 MeV. In our model, we use the value T0 ¼
208 MeV which is the theoretically suggested value for
T0 in the presence of two light flavors, Nf ¼ 2 [12,24],

although as we treat the strange quark mass as a free
parameter, our calculation will cover the situations be-
tween two flavor and three flavor, i.e., Nf ¼ 2ðþ1Þ ! 3.

In the case Nf ¼ 3, the slightly lowered value T0 ¼
178 MeV is proposed, but we have checked that choosing
this value for T0 does not change our results in any signifi-
cant way.
By introducing a charge conjugated field qc ¼ �Cq� as

an independent field, and after introducing the Hubbard-

Stratonovich field ��ð	; xÞ ¼ G
2 q

T �P�q and ���ð	; xÞ ¼
G
2
�qP� �q

T , we integrate out the fermion field Q ¼ ðq; qcÞ.
Within the mean field approximation for � and ��, the
effective potential becomes

�ð��; A4; �e; �3; �8;�; TÞ ¼ UðT;�;��Þ � �4
e

12
2
��2

eT
2

6
� 7
2T4

180
þX

�

�2
�

G

� 1

2
lnDet

i�0D6 ½A4� þ�þ ��eff ����5��ij��ab

����5��ab��ij iD6 ½�A4�t�0 ��t � ��t
eff

 !
: (8)

where D�½A4� ¼ D�½A4�j@0!i@	 with 	 denoting the
imaginary time, and the transpose operation Xt only acts
on the color and flavor structure of X.

It is useful to write down the thermodynamic potential in
the �� ¼ 0 and �e;3;8 ¼ 0 case. Leaving the trace over

color, it takes a form

� ¼ UðT;�;��Þ � 2NfT
Z dp

ð2
Þ3
� trc ln½ð1þ Lye�ðp��Þ=TÞð1þ Le�ðpþ�Þ=TÞ�; (9)

with Nf ¼ 3. Within the Polyakov gauge and imposing the

�8 ¼ 0 prescription, the Wilson line takes the following

form:

L ¼
l

l�
1

0
@

1
A; (10)

with l ¼ ei�3=T .
Let us now consider the case with �� � 0 and �e;3;8 �

0. We try to simplify the expression for the thermodynamic
potential. Within the current approximation (treatingms �
0 as a shift of the chemical potential), the action does not
mix the left-handed quark and the right-handed quarks.
Thus, we can rewrite the functional determinant as

� 1

2
lnDet

i�0D6 ½A4� þ�þ ��eff �����ij��ab
�����ab��ij iD6 ½�A4�t�0 ��t � ��t

eff

 !
� ðL ! R;�� ! ���Þ: (11)

Now the Dirac gamma matrices can be regarded as two-dimensional matrices for Weyl spinors, say, �� ¼ ð1;�Þ. Finally,
putting p ¼ �vþ l with velocity jvj ¼ 1, and discarding the antiquark contributions, we get the high density effective
theory (HDET) approximation for the effective potential [25]:
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�ð��; A4; �e; �3; �8;�; TÞ ¼ UðT;�;��Þ � �4
e

12
2
��2

eT
2

6
� 7
2T4

180
þX

�

�2
�

G
� T

2

X
n

Z dv

4


�
Z !c

�!c

�2dlk
2
2

lnS�1
L;þði!n;v � lÞ � ðL ! RÞ; (12)

where !c is a momentum cutoff, and the positive energy left-handed projected propagator is defined as

S�1
L;þði!n;v � lÞ ¼ i!n � v � lþ ��eff � iA4 �����ab��ij

�����ab��ij i!n þ v � l� ��t
eff þ iAt

4

� �
: (13)

This is now a 18� 18 matrix defined in the color-flavor
space. It has a form ði!n118 �H Þ. In order to evaluate the
Matsubara summation, we have to evaluate all the eigen-
values of the Hamiltonian density H . Since we have
doubled the degrees of freedom by introducing the
Nambu-Gorkov notation, the eigenvalues of the
Hamiltonian will appear as fEAðlkÞ;�EAðlkÞg with A ¼
1; 2; . . . ; 9. In contrast to the standard NJL models without
Polyakov loop, H is no longer Hermitian due to the
imaginary chemical potential ~�3, and accordingly each
quasiparticle energy EAðlkÞ can take in general complex
values. Consequently, � is no longer restricted to be real.
We avoid this sign problem by taking the real part of � as
in [12]. Once these quasiparticle energies are evaluated,
and choosing the basis as fEA;�EAg such that both the
conditions, <EA � 0 and EA ! jlk � ��A

effj when ��,
�3 ! 0, are satisfied, we can perform the Matsubara sum-
mation as

<�ð��; A4; �e; �3; �8;�; TÞ

¼ UðT;�;��Þ � �4
e

12
2
��2

eT
2

6
� 7
2T4

180

� X9
A¼1

ð�þ ��A
effÞ4

12
2
þX

�

�2
�

G
� X9

A¼1

Z !c

�!c

�2dlk
2
2

� ½<EAðlkÞ � jlk � ��A
effj

þ 2T lnðk1þ e�EAðlkÞ=TkÞ�: (14)

We took the energy density in the vacuum without any
condensation as the reference energy density. The fifth
term is nothing but the zero temperature part of free quark
contribution to the effective potential. We need the ultra-
violet cutoff !c only in the integral representing the con-
densation energy, i.e., the last term.2 Instead of G, we use
�0, the zero temperature CFL gap in the chiral SUð3Þ limit
without Polyakov loop, as the indicator of diquark attrac-
tion [26]

1

G
¼ 2�2


2
ln

�
2!c

21=3�0

�
: (15)

With the use of this cutoff dependent coupling constant, the
derivatives of the effective potentials, @<�

@ð��;�3Þ , now have
well-defined limits as!c ! 1. In this way, we can remove
the cutoff dependence from the gap equations, while it
remains in the effective potential itself.
The evaluation of the effective potential is carried out by

finding the eigenvalues of H for given momentum lk, and
integrating them over the momentum. Then the mean field
solution for the ground state is obtained by minimizing the
effective potential with respect to ð��;�3Þ imposing the

proper constraints of charge neutrality, @<�
@ð�e;�3;�8Þ ¼ 0.

III. RESULTS

In this section, for the numerical computations we fix
� ¼ 500 MeV, and concentrate on the case with �0 ¼
60 MeV with !c ¼ 300 MeV. We would study the phase
diagram, and how the physical quantities behave as func-

tions of m2
s

2� , and temperature T, treated as free parameters.

In the numerical calculations, in order to take the minimum
strong coupling effect into account, we bring back the

momentum dependence of the density of state �2

2
2 !
ðlkþ�Þ2
2
2 . By doing this, the particle-hole asymmetry which

is known as the first correction to the weak coupling
approximation will be properly taken into account.

A. Color neutrality

Before discussing the calculation in detail, let us briefly
comment on a strange feature that shows up, even in the
unpaired phase (�� ¼ 0), if one assumes vanishing charge

chemical potentials. The interesting fact is that the con-
ventional PNJL model calculation at finite � lacks color
neutrality. It is worth stressing here that this does not
follow from HDET approximation [see (9) obtained before
introducing HDET formalism]. It is clear from (10) that the
Wilson line couples to each color of quarks, ðr; g; bÞ, with
different weight. Looking at the real part only, the weight
for ðr; gÞ quarks differs from that of b quarks. Thus, the
energy required to populate ðr; gÞ quarks in the background
gauge field A4 is different from that for b quarks.
Furthermore, cosð�3=TÞ can take a negative value close
to �1=2 when the system is nearly confined. This means
that thermal excitations of on-shell ðr; gÞ quarks reduce the

2The integral of the thermal part (T lnð� � �Þ) can be evaluated
without cutoff.
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pressure of the system making it difficult to create on-shell
ðr; gÞ quarks in the system. This can be regarded as the
effect of confinement in this PNJL model at finite density.
The problem is that, even in this situation, b quarks can be
excited at finite temperature because L33 is unity and thus
the thermal weight for b quarks does not differ from that in
the deconfined phase. This unphysical feature might be
viewed as an artifact of this PNJL model which originates
in the assumption that the dynamics of traced Polyakov
loop � can be equivalently described by the constant
background gauge field A4. As a consequence, the develop-
ment of the finite value of A4 breaks not only the Zð3Þ
center symmetry but also the color SUð3Þ symmetry in a
spontaneous way; this fact does not contradict the Elitzur’s
theorem [27] since we still expect physical quantities such
as quasiparticle dispersions should not depend on the
gauge and thus have their definite meanings even after
gauge unfixing which would make A4 itself vanish.

One may think that this undesired feature is just due to
the wrong ansatz of the PNJL model itself. Apart from such
a possibility, in order to avoid an unphysical appearance of
color density within the model, we should inevitably in-
troduce an appropriate color chemical potential. According
to the gauge of the Polyakov loop, in our case, �8 is
required to maintain the unpaired phase color neutral. To
be more explicit, ignoring the antiquarks we can write the
color density as

nr;g ¼ 2Nf

Z dp

ð2
Þ3 fFðp��; lÞ � ðl ! l�; � ! ��Þ

¼ nb þ 2Nf

Z dp

ð2
Þ3
3ð�� 1Þ tanhðp��

2T Þ
6�þ 4 coshðp��

T Þ
� ð� ! ��Þ; (16)

where nb ¼ 2Nf

R dp
ð2
Þ3

1
eðp��Þ=Tþ1

is just the density of a free

Fermi gas and

fFðp��; lÞ � <
�

1

l�1eðp��Þ=T þ 1

�
(17)

is the modified Fermi distribution in the presence of A4

describing ðr; gÞ quarks which is plotted in Fig. 1(b) com-
pared to the standard Fermi distribution fFðp��Þ for
blue quarks. From (17) it follows that the density of r
and g quarks differs from that of simple Fermi gas, and
the difference never disappears unless either T ! 0 or
� ! 1ðT ! 1Þ is approached. The difference also cancels
at � ¼ 0 thanks to the equal and opposite contribution
from antiquarks.
In Fig. 1(a), we plot the ratios of each color density, nr,

ng, and nb, to the total quark density as a function of T in

the unpaired phase with�e;3;8 ¼ 0. In the numerical evalu-

ation we set � ¼ 500 MeV, and ignore the tiny antiquark
contributions. As discussed above, we can see the finite
difference between nr ¼ ng and nb in the intermediate

range of temperature.3 The deviation becomes maximum
near the steepest point of the Polyakov loop, which is
usually identified as the deconfinement transition [12].

FIG. 1. (a) Each color density of a finite density PNJL model with ms ¼ �� ¼ �e;3;8 ¼ 0 as a function of T. T8-color density is
induced by the antitriplet color charge l� of Wilson line coupled to quarks. (b) The occupation number profile of quark with red, green,
and blue, as a function of momentum at T ¼ 0:4T0 which is indicated by the vertical dotted line in (a).

3It should be noted that the color density itself is a gauge
dependent quantity and thus should depend on the choice of the
gauge parametrizing the Wilson line. With our diagonal repre-
sentation of Eq. (4) with �8 ¼ 0, the T8 color density becomes
finite as we observed above. If we selected the different gauge,
the other entry of octet color densities fhqyTaqig should have
appeared. The important thing is, however, whichever gauge we
choose, some color density should become finite; in fact the
squared sum of the octet color densities is shown to be the gauge
independent quantity [28].
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B. Phase diagrams

In Fig. 2(a), the phase diagram in the ðT; m2
s

2�Þ-plane of the
charge neutral PNJL model is displayed. The bold line
represents the first order phase transition, while the thin
line represents the second order phase transition. The
dashed line corresponds to the crossover from the 2SC
phase to the gapless 2SC (g2SC) phase. For comparison,
we have shown in Fig. 2(b) the phase diagram for the
charge neutral NJL model which is the same reported in
[29]. We are specifying each phase as summarized in
Table I. From these graphs, the impact of the Polyakov-
loop dynamics on the pairing is quite obvious. The inclu-
sion of the temporal gluon field significantly broadens the
region for the superconducting phase, in particular for the
2SC phase. In fact, the critical temperature is almost twice
as large as that in the NJLmodel without the Polyakov loop
which is already known in [15]. [Note that the scale for the
T-axis of Fig. 2(a) is twice as that of Fig. 2(b).] Apart from
this significant quantitative change, the qualitative behav-
ior of the phase diagram is not so much affected. In both
cases, the d-quark superconducting phase (�2 ¼ 0; dSC)
exists in a small region at finite temperature [29,30], and
there is the doubly critical point indicated by the upper
triangle, a point where the line for the vanishing of �1

intersects that for �2 [29]. Also the existence and the

location of the critical point where the fully gapped CFL
phase turns into the gapless CFL (gCFL) phase is not
affected. In both figures the point is indicated by a lower

triangle on the m2
s

2� axis. This fact means the effect of the

Polyakov loop on the pairing is absent at T ¼ 0. The
reason is that at T ¼ 0 the Polyakov dynamics decouples
from the pairing (NJL) dynamics so that the effect is absent
because the temporal gauge field �3 is proportional to T
itself.

C. Impact of the Polyakov loop at finite temperature;
color-flavor unlocking and stiff 2SC phase

Next we focus in detail on the phase transitions at ms ¼
0 in order to study the impact of the Polyakov-loop dy-
namics and charge neutrality. To this end, we examine each

effect step by step. In Fig. 3(a), we show the gaps ��ðTÞ
(solid lines) and the Polyakov loop�ðTÞ (long-dashed one)
calculated without the neutrality. For comparison, we also

show by the dashed line the ��ðTÞ calculated with the NJL
model without the Polyakov loop. In this case, the three
gaps have the same behavior as functions of T and they
drop to zero simultaneously when T0

c � 0:714�0 (shown

by the bold square on the m2
s

2� axis) is approached. Once the

Polyakov loop is taken into account this is no longer true as

FIG. 2. (a) Phase diagram in the ðm2
s

2� ; TÞ-plane at �0 ¼ 60 MeV, � ¼ 500 MeV with the Polyakov loop under charge neutrality
constraints. The energy scales are normalized by �0. The bold line corresponds to the 1st order phase transition while the thin line
indicates the 2nd order phase transition. For other instructions, see the text. (b) The same as (a) but without the Polyakov loop. In both
figures, the bold square put on the T axis indicates the weak coupling approximation of the critical temperature at chiral limit without
�, i.e., T0

c=�0 ¼ 0:714.

TABLE I. The definition of pairing phases of current interest.

(g)CFL �� � 0 for � ¼ 1, 2, 3 (with �2 	 j �e

2 þ �3

4 þ �8

2 � m2
s

4� j or �1 	 j � �3

4 þ �8

2 � m2
s

4� j satisfied)
dSC �1;3 � 0, �2 ¼ 0
uSC �2;3 � 0, �1 ¼ 0
(g)2SC �3 � 0, �1 ¼ �2 ¼ 0 (with �3 	 j j�ej�j�3j

2 j satisfied)
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one can see from the figure. Two gaps have the same
magnitude, �1ðdsÞ ¼ �2ðsuÞ, while �3ðudÞ is larger;
moreover the two gaps �1 ¼ �2 drop to zero simulta-
neously near a point lower than the bold square (T0

c �
0:714�0). This can be described as a second order color-
flavor unlocking transition induced by the Polyakov-loop
dynamics. This behavior is not strange because even

though the Polyakov loop is blind to the flavor degrees of

freedom, in the color-flavor locked phase, however, color is

locked to flavor which is the way the Polyakov loop affects

the gap structure. In fact, as we have already discussed in
Sec. III A, the presence of the Polyakov loop induces a
finite color T8 density as nr ¼ ng � nb in the unpaired

phase. This means that the existence of the Polyakov loop
adds to the real part of the effective potential, <�, the
finite external field with T8 charge, which explicitly breaks
global color SUð3Þc down to SUð2Þc. Since color and flavor
are locked in the CFL phase, the external field induced by
� tends to break the SUð3ÞcþV symmetry down to
SUð2ÞcþV . This is the very reason for the splitting, �1 ¼
�2 � �3 and also for the color-flavor unlocking to the 2SC
phase. The emergence of color-flavor unlocking is one of
the most interesting features of the inclusion of the
Polyakov-loop dynamics in NJL model.

A further aspect deserves to be stressed. The 2SC phase
persists up to 1:3�0 which is almost twice as large as the
weak coupling formula for the critical temperature, T0

c ¼
0:714�0 (indicated by the bold square). This striking fea-
ture is already noticed in the limiting case with the pure
CFL ansatz using the Ginzburg-Landau approach [16]. In
what follows, we try to explain this fact. In the case of the
2SC case, we can explicitly determine the quasiparticle
energy dispersion. Four out of nine quasiquarks have non-

trivial dispersion laws: E1;2¼
i�3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2kþ�2

3

q
and E4;5 ¼

�i�3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2k þ �2

3

q
. In this case, there is no shift of the

averaged chemical potential to the imaginary direction.
The gap equation in the absence of charge chemical po-
tentials then becomes


2

2�2

�
1

G

�
¼
Z !c

0
dlk

1� 2fF½1� ð3=2Þð1��Þð1�2fFÞð1�fFÞ
1�3ð1��ÞfFð1�fFÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2k þ �2
3

q ;

(18)

where fFðxÞ ¼ 1
1þex=T

is the Fermi distribution, and its

energy argument is now supposed to be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2k þ�2

3

q
. The

second term proportional to fF is referred to as a blocking
integral due to thermally excited quarks. We need no cutoff
!c for this part to be evaluated. We notice that the effect of
the temporal gauge field is just to suppress the blocking
integral. This explains the robustness of 2SC in the pres-
ence of �3, and the increase of the critical temperature as
follows. We put �3 ¼ 0 in (18) and try to solve it in T to
derive the critical temperature. Equation (18) with �3 ¼ 0
is nothing but the condition for criticality, the Thouless
criterion, which guarantees the divergent susceptibility.
This condition together with the definition of the effective
coupling constant (15) leads to

ln

�



e�E

T

21=3�0

�
¼
Z 1

0
dlk

1

lk
tanh

�
lk
2T

�

� 3ð1��ÞfFð1� fFÞ
1� 3ð1��ÞfFð1� fFÞ

� F ð1��Þ: (19)

Note that the quantity F is dimensionless and does not
depend on T. In the case of the deconfinement phase with

FIG. 3 (color online). (a) Gaps (solid lines) and the Polyakov loop (long-dashed line) as functions of T without the neutrality
constraints, i.e., �e;3;8 ¼ 0. For the dashed line and the bold square, see the text. (b) The same as (a) but with the neutrality constraints

being respected. Three charge chemical potentials are also depicted. �3ðudÞ in (a) is also shown by the dashed line, just for
comparison.
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� ¼ 1, F vanishes so that it simply reproduces the stan-

dard expression for the critical temperature T0
c ¼

e�E

 21=3�0 ¼ 0:714�0. It is now easy to imagine that the

deviation of� from unity leads to the positive F , and thus

increases the critical temperature Tc ¼ 0:714�0e
F ð1��Þ.

To the first order in (1��), F can be calculated as

F ð1��Þ � 21�ð3Þ
4
2

ð1��Þ ¼ 0:64ð1��Þ: (20)

Thus to this order, the critical temperature is approximated
by

Tc ¼ 0:714�0 � e0:64ð1��Þ; (21)

near �� 1. When � ¼ 0:4 is substituted into the above

formula, Tc gets the factor of enhancement e0:64ð1��Þ �
1:5. Although it is within the linear level, this value fairly
agrees with the numerically obtained factor, 1.8. If we use
the numerical value of F ð1� 0:4Þ ¼ 0:584, the factor of
enhancement becomes 1.79; the agreement is perfect.
Although unrealistic, at � ¼ 0 (the confinement), the ana-
lytical evaluation is also possible. In this case we have

F ð1Þ ¼ ln33=2 so that we have the factor eF ¼ 3
ffiffiffi
3

p ¼ 5:2.
This is the theoretical maximum of the critical temperature
in the PNJL model at weak coupling.

D. Effect of charge neutrality; the two-step hierarchical
unlocking transition

Let us now discuss charge neutrality atms ¼ 0. In Fig. 3
(b), we show the gaps and chemical potentials as a function
of T calculated respecting the charge neutrality constraints.
For comparison, we have shown �3 without neutrality [in
Fig. 3(a)] by a dashed line. At a first glance, we notice that,
even quantitatively, the charge neutrality plays only a
minor role at ms ¼ 0.

However, several interesting remarks deserve a discus-
sion here. (i) First, the charge neutrality conditions lift the
degeneracy �1 ¼ �2 away and open a small window for
the dSC (�2 ¼ 0) phase between the CFL and 2SC phases.
(ii) Second, �3 vanishes when the 2SC phase sets in.
(iii) Lastly, �8 does not vanish even when all the pairing
melt and the system goes into the unpaired quark matter as
already discussed in Sec. III A in the case of no pairing at
all. Without finite �8, the unpaired system inevitably has a
finite T8-color charge. The reason for (ii) is simple. The
2SC pairing preserves the SUð2Þc symmetry intact or, in
other words, the 2SC gap has SUð2Þc singlet structure and
is transparent to the SUð2Þc charge. Therefore the system
with no T3-color charge should have �3 ¼ 0. One may
think that a finite value of �3 induces a finite T3 charge in
the system with �3 ¼ 0, but this is not correct. In fact, as
we saw in the discussion in Sec. III A, restricting ourselves
to the real part of �, nr ¼ ng � nb is realized in the

unpaired system inducing a T8 charge but no T3 charge.
The point (i) can be understood as follows. In the presence

of �3, the gaps split as �1 ¼ �2 < �3 as we saw above.
This induces an imbalance in the thermal population of
nine quasiquarks in the CFL phase. Accordingly, the
charge neutrality is lost unless �3, �8, and �e are tuned
to their appropriate values. But of course the finite values
of �e and �3 explicitly break the remaining SUð2ÞcþV

symmetry. As a result of this secondary effect, the
SUð2ÞcþV degeneracy should be lifted away, as �1 � �2.
The appearance of the dSC phase at ms ¼ 0 is in contrast
either to the Ginzburg-Landau approach [30] or to the pure
NJL calculations [29]; this is definitely due to the non-
trivial interplay between the neutrality constraints and the
Polyakov-loop dynamics.

E. Effect of the stress due to nonzero strange quark
mass

Let us now discuss the effect of a nonzero strange quark
mass on the structure of gaps. In Fig. 4(a) we show the zero

temperature gaps �� as functions of m2
s

2� , both for the CFL

(solid lines) and 2SC (dashed line) solutions. The free
energy comparison shows that there is a first order phase
transition from the gCFL phase to the g2SC phase at the

point m
2
s

2� ffi 2:4�0 indicated by the vertical dash-dotted line

in the figure. Since at T ¼ 0 the Polyakov-loop dynamics
decouples from the pairing (NJL) sector, the Polyakov loop
plays no role in the gap structure. Consequently, the phase
structure and the behavior of the gaps is similar to the result
of [29] although the HDETapproximation was not adopted
there.
At lowms, the CFL phase is realized, and it continuously

goes into the gCFL phase [13] at a point slightly lower than
m2

s

2� ¼ �0. Then eventually the gCFL phase is taken over by

the g2SC phase at m2
s

2� ffi 2:4�0 by a first order transition

[14,29]. In Fig. 4(b), we have shown the gaps ��ðm
2
s

2�Þ at a
finite temperature, T ¼ 0:3�0. The first order transition is
completely washed away, and there are two successive
second order unlocking transitions until the system gets
unpaired, first from the CFL phase to the u-quark super-
conducting phase (�1 ¼ 0; uSC), and subsequently from
the uSC phase to the 2SC phase. This feature is also
qualitatively the same as in the NJL calculations [29].

F. Interplay of the Polyakov-loop dynamics and
enforced neutrality at finite strange quark mass

Let us finally examine the impact of enforcing charge
neutralities and including the Polyakov-loop dynamics into
the pairing phases at an intermediate density represented

by the finite value of m2
s

2� . In Fig. 5(a) the gap �3 and the

charge chemical potentials f�e;�8g are depicted as func-

tions of T at m2
s

2� ¼ 3:25�0. At this value of the stress, the

CFL pairing is not possible, so only the (g)2SC phase can
show up as a pairing pattern. What is surprising and also
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intriguing is that �3 once melts at T ffi 0:1�0 but appears
again at higher temperature about 0:24�0, and then finally
vanishes completely when T exceeds 1:23�0. The 2SC
phase exists in two different regions in temperature. This
feature is definitely due to the inclusion of both the neutral-
ity and the Polyakov loop into the problem. To see this, we
show in Fig. 5(b) the gaps calculated with simplified
versions of our PNJL model. The solid line indicated by
‘‘Full’’ is the same as �3 in Fig. 5(a). The long-dashed line
represents the result calculated using the pure NJL model
without the Polyakov-loop dynamics, while the dashed line
is that calculated with the PNJL model but without impos-
ing the charge neutrality constraints, i.e., putting�e;3;8 ¼ 0
from the very beginning. From these comparisons, it is

clear that the appearance of the intriguing possibility of the
existence of two islands of 2SC in temperature is due to the
combinatory, cooperative effect between the Polyakov-
loop dynamics and the neutrality constraints. In contrast
to the case with ms ¼ 0, imposing neutrality has a sizable
effect on the gap. It significantly reduces the magnitude of
the gap. It is so because in the case of a finite value of ms,
not only �8 but also �e should be finite even in the
unpaired phase in order to guarantee electrical neutrality.
Moreover the effect of the Polyakov loop is not only to
stabilize the 2SC phase against the increase of temperature
as in ms ¼ 0 case, but also to suppress the pairing at low
temperature making two separated islands of 2SC in
temperature.

FIG. 5 (color online). (a) The gaps ��, the chemical potentials �e;8, and the traced Polyakov loop � as a function of T at
m2

s=2� ¼ 3:25�0. (b) Comparison of (a) with simplified versions of the model. The bold full line is the same as �3ðTÞ in (a). The
long-dashed line is the 2SC gap �3ðTÞ calculated in the pure NJL model without the Polyakov-loop dynamics. The dashed line is
�3ðTÞ calculated with the Polyakov loop but without respecting charge neutralities, i.e., �e;3;8 ¼ 0.

FIG. 4. (a) The gaps �� as a function of m2
s=2� at T ¼ 0. The dashed line is �3 for the 2SC solution. The vertical dotted line

corresponds to the 1st order gCFL-to-g2SC transition; on the left of it the CFL is realized, while on the right of it the 2SC is realized as
the ground state. (b) The same as (a) at finite temperature, T ¼ 0:3�0. All the transitions are of second order.
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IV. SUMMARY

In this paper, we have studied the quark matter phase

structure in the ðT; m2
s

2�Þ plane starting from the PNJL model

in which a temporal static gluon field couples with quarks.
This work is a natural extension of previous studies [15–
17]. The particular focus was put on the effects produced
by the inclusion of the Polyakov-loop dynamics on the
pairing phases and by the enforcement of color and elec-
trical neutrality.

In the conventional PNJL model, there is a mismatch in
each color density so that the model lacks the color neutral-
ity even in the unpaired phase. This unphysical feature is
significant in the proximity of the deconfinement transi-
tion. We have pointed out that this behavior may be due to
the original assumption hidden in the PNJL model i.e. that
the traced Polyakov-loop dynamics can be represented by
the inclusion of the static temporal colored gauge field
which couples to the fundamental color charge of dynami-
cal quarks. By this assumption one misses gauge invari-
ance. Once this fact is admitted, in order to avoid the
unphysical appearance of color densities within this model,
one has to include the charge chemical potentials into the
problem from the beginning. In fact, we have shown that
�8 should be finite to maintain color neutrality in the
unpaired phase.

In the detailed numerical analysis, we have depicted the
phase diagram in the ðT;m2

s=2�Þ-plane, and clarified how
the phase diagram is affected by the inclusion of the
Polyakov loop and the enforcement of charge neutrality.
Even at ms ¼ 0, the effect of the Polyakov loop is remark-
able; it breaks the SUð3ÞcþV down to SUð2ÞcþV and causes
a continuous color-flavor unlocking at finite temperature in
a novel mechanism. In addition, it makes the 2SC phase
much more robust against the increase of temperature. The
critical temperature is about twice as large as the weak
coupling prediction, which is consistent with previous
calculations [15–17]. We have also examined a formal
explanation about these facts and derived an analytical
expression of this enhancement factor; it turned out that
the temporal gauge field reduces a blocking integral.

The effect of imposing neutralities gives only a tiny
effect at ms ¼ 0 although it opens a small window for
the dSC realization between the 2SC and CFL phases by
lifting away the SUð2ÞcþV degeneracy. In this case, we
have a hierarchical unlocking,CFL ! dSC ! 2SC, until it

eventually goes into the unpaired phase. This is in contrast
to the pure NJL calculation without the Polyakov loop
where the dSC never shows up at ms ¼ 0 [29].
The sizable effect of imposing charge neutrality on the

pairing phases manifests itself at finite ms. We have shown
that the nontrivial, complicated interplay between the
charge neutrality constraints and the Polyakov-loop dy-
namics atms � 0 produces a thermal reentrance phenome-
non, as two isolated windows for the 2SC pairing can show
up on the temperature axis.
There are several ways to extend our current study. One

is to take the chiral condensation into account by including
the chiral condensate and removing the high density ap-
proximation [31]. By this improvement, one can study the
interplay between the chiral condensate, the Polyakov
loop, and color superconductivity at the same time. The
other possibility is to study mesonic modes [32,33] as well
as the Meissner masses in the superconducting phases.
This might have an impact either on a possible meson
condensation in superconducting phases or on the so-called
chromomagnetic instability problem in gapless phases
[19,34]. These studies may be presented elsewhere in
future.
To conclude let us stress that two alternatives have been

presented to us:
(a) application of the PNJL model to finite density is

pathological and should be avoided, in relation to
the fact that color neutrality is not visibly satisfied;

(b) the model can be used also at finite density provided
neutrality is enforced: for such a case we have
derived the detailed consequences obtaining surpris-
ing results but without apparent physical
inconsistencies.

We hope that further work will illuminate on the choice
between (a) and (b).
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