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The purported observation of a state �� with strangeness S � �1 led to its quark model interpretation
in terms of a pentaquark combination involving a triquark-diquark structure—the Karliner-Lipkin model.
In this work, the proper color-spin symmetry properties for the qq �q triquark are elucidated by calculating
the SU(6) unitary scalar factors and Racah coefficients. Using these results, the color-spin hyperfine
interactions, including flavor symmetry breaking therein, become straightforward to incorporate and the
pentaquark masses are readily obtained. We examine the effect on the pentaquark mass of (a) deviations
from the flavor symmetric limit and (b) different strengths of the doublet and triplet hyperfine interactions.
Reference values of these parameters yield a �� mass prediction of 1601 MeV but it can comfortably
accommodate 1540 MeV for alternate choices. In the same framework, other pentaquark states ��S �
�2� and �c (with charm C � �1) are expected at 1783 MeV and 2757 MeV, respectively.
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I. INTRODUCTION

For a long time now, baryon spectroscopy has been an
arena for learning about low-energy quantum chromody-
namics. The purported observation of a narrow baryon
state of strangeness �1 at a mass around 1540 MeV, ��,
by several experiments [1] brought renewed attention to
this theatre. The evidence in support of this new state is
now of conflicting nature, loaded more in the direction of
nonobservation [2,3]. Within the quark picture, the positive
strangeness ( � �s) of the �� baryon puts it in an exotic
category and entails an interpretation in terms of a mini-
mum of four quarks and an antiquark—a pentaquark state
(udud �s).

Soon after, three other states which also demand a
pentaquark classification were also observed. These are
the ����dsds �u� and �0�dsus �d� both at 1862 MeV [4]
and the �c�udud �c� [5] with mass 3099 MeV.

Though exotic states such as the pentaquark have a long
history, particular attention was drawn to a possible
��-like state in the SU(3) version of the chiral soliton
model [6]. Subsequently, the experimental results have
stimulated the exploration of many ideas, e.g., quark clus-
ters, color hyperfine interactions, Goldstone boson ex-
change, QCD sum rules, lattice methods, etc., which
have been reviewed in the literature [7].

For the ��, within the quark model framework, two
models [8,9] have achieved special prominence. It is con-
venient to discuss these using the language of SU(6) of
color-spin, SU(3) of color, and SU(2) of spin. Thus, for
example, a quark transforms as (6,3,2), where the three
integers within the parentheses identify the representations
of the above SU(6), SU(3), and SU(2), respectively. To
avoid cluttering, the flavor SU(3) structure is not explicitly
shown. Our interest will be on the triquark state which is an
ingredient of the Karliner-Lipkin model [8].

An alternative possibility is the Jaffe-Wilczek (JW)
model [9]. Here the four quarks are assumed to form two
diquark clusters, each in the �21; �3; 1� representation. Of
the four possible combinations for a two-quark cluster—
(21,6,3), (15,6,1), �15; �3; 3�, �21; �3; 1�—this is the one of
the lowest energy. The two diquark clusters and the re-
maining antiquark—each one of which is in color �3—
combine to form the color singlet pentaquark state
�qq��qq�� �q�, e.g., �� � �ud��ud���s�. A relative orbital
angular momentum, L � 1, is assumed between the di-
quarks; this is in tune with the observed narrow width of
the state. Another consequence is that the pentaquark
parity is predicted to be positive. Note that the color-spin
symmetric nature of the �21; �3; 1� diquark requires it to be
antisymmetric, �3, in flavor to satisfy the generalized Pauli
principle. The two diquarks ( color �3 bosons) combine to
form color 3 to match up with the antiquark. This, and L �
1, requires the combination to be in a flavor symmetric �6
state. The overall pentaquark flavor must be in �6 � �3 �
8� 10. The quantum numbers of �� can be accommo-
dated only in the 10.

In the Karliner-Lipkin model the quark clustering is
different. Here, it is postulated that there is one diquark
cluster with the same quantum numbers as in the JW
model. The difference is that the remaining two quarks
and the antiquark are assumed to form a triquark cluster
�qq �q� with the quantum numbers (6,3,2) which is in a
flavor �6. The pentaquark state is the color singlet
�qq��qq �q� combination. To explain the narrowness of the
observed states, a relative orbital angular momentum, L �
1, is postulated between the clusters so that the parity of the
state is predicted to be positive in this model as well. The
flavor structure of the states is the same as in the JW model.

In this work, we set two goals. First, we take a detailed
look at the group-theoretic properties of the triquark state.
We derive expressions for the SU(6) unitary scalar factors
and Racah coefficients related to the Clebsch-Gordan co-*swarup@mri.ernet.in
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efficients relevant for this state. Second, we use these
results to estimate masses for pentaquark states. We indi-
cate how flavor symmetry breaking may be incorporated in
the analysis.

In the next section we present the SU(6) unitary scalar
factors and Racah coefficients, which have been derived ab
initio. In Sec. III we recall the nature of the color-spin
hyperfine interaction while in the following section we use
it to estimate the hyperfine energies for baryons, mesons,
diquarks, and triquarks. In Sec. V the different threads are
brought together for estimating pentaquark masses. In
Sec. VI we discuss the results. We end in Sec. VII with
our conclusions.

II. SOME GROUP-THEORETIC RESULTS

In this section, we collect some results about SU(6)
unitary scalar factors and Racah-like coefficients which
will be useful for the subsequent discussion. Though our
motivation in obtaining these results is the triquark state,
they may find some use in other applications of the SU(6)
group.

A. SU(6) unitary scalar factors

To minimize the complexities, we first summarize the
notations. A member of a SU(2) multiplet is denoted by
f�2I � 1�; I3g; e.g., the sz � �

1
2 state of a spin-half particle

is f2;� 1
2g.

For SU(3), the subrepresentations are designated by the
SU�2�c representation1 and the ‘‘hypercharge,’’ Yc. Thus,
one uses the combination fR3; �; I

c
3g where R3 is the SU(3)

representation and � � ��2Ic � 1�; Yc	. For illustration, a
quark state with Ic3 � �

1
2 and Yc � 1

3 will be denoted as
f3; �2; 1

3	;�
1
2g.

Putting the above together, an SU(6) state is denoted by
�R6; fR3; �; I

c
3g; f�2I � 1�; I3g� where R6 is the SU(6) rep-

resentation while fR3; �; Ic3g and f�2I � 1�; I3g characterize
the corresponding SU(3) and SU(2) subrepresentations.
The quark state mentioned above will be �6; f3; �2; 1

3	;�
1
2g;

f2;
 1
2g�, where the SU(3) [SU(2)] quantum numbers are

enclosed in the first (second) braces. In most of the follow-
ing, it will be possible to suppress �, Ic3, and I3 —e.g., the
quark state � �6; 3; 2�. This is because the unitary scalar
factors and the Racah coefficients are independent of �, Ic3,
and I3.

The SU(6) unitary scalar factors are generalizations of
the SU(3) isoscalar factors. The Clebsch-Gordan (CG)
coefficients of SU(2) are well known. If i � j � k � . . . ,
where i; j; k are SU(2) representations, we use
CG�SU�2�i;j;k� as an abbreviation for the usual Ci;j;ki3;j3;k3

[10].

Using the SU(2) submultiplets within a SU(3) represen-
tation, the CG coefficients for SU(3) can be expressed in
terms of products of isoscalar factors and SU(2) CG co-
efficients. Schematically, for the case P �Q � R � . . . :

 CG �SU�3�P;Q;R� �
P Q R
�P �Q �R

� �
CG�SU�2�IP;IQ;IR�;

(1)

where the �i, i � P;Q; R indicate the subrepresentations
of the SU(3) representations P;Q; R. The first factor on the
right-hand-side is the SU(3) isoscalar factor. It is indepen-
dent of IP3, IQ3, IR3. Tables of SU(3) isoscalar factors have
been available for quite some time [11].

Similarly, in SU(6), if X � Y � Z � . . . then
 

CG�SU�6�X;Y;Z� �
X Y Z

�PX; IX� �PY; IY� �PZ; IZ�

" #

� CG�SU�3�PX;PY;PZ�CG�SU�2�IX;IY ;IZ �:

(2)

Here, the first factor on the right-hand-side is an SU(6)
unitary scalar factor—the generalization of the SU(3) iso-
scalar factor. PX�IX	 indicates the SU(3) [SU(2)] subrepre-
sentation within the SU(6) multiplet X.

Since the triquark state is made out of two quarks
(q1; q2) and an antiquark ( �q3), the following SU(6) combi-
nations arise:

 qq state: 6 � 6 � 21 � 15; (3)

 qq �q state: 21 � �6 � 120 � 6�1 ; 15 � �6 � 84 � 6�2 ;

(4)

or, alternatively,

 q �q state: 6 � �6 � 35 � 1; (5)

 q �qq state: 35 � 6 � 120 � 84 � 6 1 ; 1 � 6 � 6 2 :

(6)

The superscripts � and  will be clarified in the next
subsection where we identify the Racah coefficients which
relate �6�1 ; 6

�
2 � to �6 1 ; 6

 
2 �.

For the purpose of the triquark, the SU(6) CG coeffi-
cients for the product 21 � �6 � 120 � 6 are necessary. We
have not been able to find the SU(6) unitary scalar factors
for this product in the published literature [12]. Here,
therefore, their ab initio calculated values are presented.
We follow the generalized Condon-Shortley phase conven-
tion [13] and obtain

 

21 6 6
�6; 3� �3; 2� �3; 2�

" #
�

���
6

7

s
;

21 6 6
�3; 1� �3; 2� �3; 2�

" #
�

���
1

7

s
:

(7)

1The superscript c has been added to indicate the subgroups of
SU(3).
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Also,

 

21 6 120
�6; 3� �3; 2� �3; 2�

" #
�

���
1

7

s
;

21 6 120
�3; 1� �3; 2� �3; 2�

" #
� �

���
6

7

s
:

(8)

For the sake of completeness, the SU(6) unitary scalar
factors for the case 15 � �6 � 84 � 6 are

 

15 6 6
�6; 1� �3; 2� �3; 2�

" #
�

���
2

5

s
;

15 6 6
�3; 3� �3; 2� �3; 2�

" #
�

���
3

5

s
;

(9)

and

 

15 6 84
�6; 1� �3; 2� �3; 2�

" #
�

���
3

5

s
;

15 6 84
�3; 3� �3; 2� �3; 2�

" #
� �

���
2

5

s
:

(10)

B. Racah coefficients for the triquark cluster

1. SU(2) and SU(3)

In this subsection, after recapitulating the concept of
Racah coefficients, using angular momentum as an illus-
tration, the necessary results useful for the triquark case are
presented.

When three angular momenta j1; j2; j3 are added, one
can obtain the same final angular momentum j by, for
example, (a) combining j1 and j2 first to get j12 and adding
j3 to it, or by (b) first adding j1 and j3 to obtain j13 and then
combining it with j2, or by (c) adding j2 and j3 to obtain
j23 and then adding j1 to it. The states of the representation
j obtained by these three different routes may be denoted
by jj1; j2; j3; j12; j; mi, jj1; j2; j3; j13; j; mi, and jj1; j2; j3;
j23; j; mi, respectively. These three sets of states are related
to each other by unitary transformations whose coeffi-
cients, U, are called the normalized Racah coefficients.
For example,
 

U�j1; j2; j3; j; j12; j13�

� hj1; j2; j3; j12; j; mjj1; j2; j3; j13; j; mi: (11)

The triquark state is of the structure �q1q2 �q3�. Since the
quarks (antiquarks) transform as 6 (�6) of color-spin SU(6),
for the analysis of these states one requires the Racah
coefficients for SU(6) for the product 6� 6� �6.

For most purposes, it actually suffices if one has the
color SU(3) and spin SU(2) Racah coefficients.

The same final triquark state may be reached by first
combining q1 and q2 ( color: 3� 3 � �3� 6 and spin: 2�

2 � 3� 1) and then combining with each of these possi-
bilities the antiquark state �q3. An alternate way of obtain-
ing the same state is to first pair q1 with �q3 (color:
3� �3 � 8� 1 and spin: 2� 2 � 3� 1) and then adjoin-
ing q2 to the result. A third possibility is obtained by
interchanging q1 $ q2 in the previous alternative.

We concentrate, in the interest of the pentaquark appli-
cation, on the triqark state which transforms like a color
SU(3) triplet and an SU(2) doublet. The basis states in this
sector may be denoted as

 

j�1i

j�2i

j�3i

j�4i

0
BBB@

1
CCCA �

j�q1q2�
�3
1� �q3�

�3
2i�3;2�

j�q1q2�
6
1� �q3�

�3
2i�3;2�

j�q1q2�
�3
3� �q3�

�3
2i�3;2�

j�q1q2�
6
3� �q3�

�3
2i�3;2�

0
BBBB@

1
CCCCA (12)

and

 

j 1i

j 2i

j 3i

j 4i

0
BBB@

1
CCCA �

j�q1 �q3�
1
1�q2�

3
2i�3;2�

j�q1 �q3�
8
1�q2�

3
2i�3;2�

j�q1 �q3�
1
3�q2�

3
2i�3;2�

j�q1 �q3�
8
3�q2�

3
2i�3;2�

0
BBB@

1
CCCA;

j�1i

j�2i

j�3i

j�4i

0
BBB@

1
CCCA �

j�q2 �q3�
1
1�q1�

3
2i�3;2�

j�q2 �q3�
8
1�q1�

3
2i�3;2�

j�q2 �q3�
1
3�q1�

3
2i�3;2�

j�q2 �q3�
8
3�q1�

3
2i�3;2�

0
BBB@

1
CCCA:

(13)

The notation used here, for example, is that the triquark
state with SU(3) [SU(2)] multiplicity c0 (s0) obtained
through the diquark combination �q1q2� with SU(3) and
SU(2) multiplicity c and s, respectively, is represented as
j�q1q2�

c
s� �q3�

�3
2i�c0;s0�.

These possibilities are related by Racah-like coefficients
which are found by explicit calculation to be

 

j�1i

j�2i

j�3i

j�4i

0
BBB@

1
CCCA �

� 1
2
��
3
p 1��

6
p 1

2 � 1��
2
p

1��
6
p 1

2
��
3
p � 1��

2
p � 1

2
1
2 � 1��

2
p 1

2
��
3
p � 1��

6
p

� 1��
2
p � 1

2 � 1��
6
p � 1

2
��
3
p

0
BBBBB@

1
CCCCCA
j 1i

j 2i

j 3i

j 4i

0
BBB@

1
CCCA
(14)

and

 

j�1i

j�2i

j�3i

j�4i

0
BBB@

1
CCCA �

� 1
2
��
3
p 1��

6
p 1

2 � 1��
2
p

� 1��
6
p � 1

2
��
3
p 1��

2
p 1

2

� 1
2

1��
2
p � 1

2
��
3
p 1��

6
p

� 1��
2
p � 1

2 � 1��
6
p � 1

2
��
3
p

0
BBBBB@

1
CCCCCA
j�1i

j�2i

j�3i

j�4i

0
BBB@

1
CCCA:

(15)

2. SU(6) Racah coefficients

One can use the unitary scalar factors in Eqs. (7) and (8)
to write
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jq1q2 �q3i�6�1 ;3;2�
�

���
6

7

s
j�4i �

���
1

7

s
j�1i;

jq1q2 �q3i�120;3;2� �

���
1

7

s
j�4i �

���
6

7

s
j�1i:

(16)

From Eqs. (9) and (10) the states obtained if the diquarks
are in the 15 of SU(6) are

 jq1q2 �q3i�6�2 ;3;2�
�

���
2

5

s
j�2i �

���
3

5

s
j�3i;

jq1q2 �q3i�84;3;2� �

���
3

5

s
j�2i �

���
2

5

s
j�3i:

(17)

Using Eq. (14) one then has

 jq1q2 �q3i�6�1 ;3;2�
� �

������
7

12

s
j 1i �

������
2

21

s
j 2i �

������
1

28

s
j 3i

�

���
2

7

s
j 4i (18)

and

 jq1q2 �q3i�6�2 ;3;2�
�

������
5

12

s
j 1i �

������
2

15

s
j 2i �

������
1

20

s
j 3i

�

���
2

5

s
j 4i: (19)

Thus, one arrives at the Racah coefficients

 

j�6�1 ; 3; 2�i
j�6�2 ; 3; 2�i

 !
�

����
5
12

q
�

����
7
12

q
����
7
12

q ����
5
12

q
0
B@

1
CA j�6 1 ; 3; 2�i
j�6 2 ; 3; 2�i

 !
: (20)

The nontrivial unitary scalar factors corresponding to
Eq. (6) can be written as

 

35 6 �
i �3; 2� �3; 2�

� �
� Ui;�; (21)

with i � 1, 2, 3 corresponding to (8,1), (1,3), and (8,3)
while � � 1, 2, 3 to 120, 84, and 6 1 . Then,

 U �

�
����
9

28

q
�

����
8
21

q ����
25
84

q
����
9

20

q
�

����
8
15

q
�

����
1
60

q
�

����
8

35

q
�

����
3
35

q
�

����
24
35

q

0
BBBB@

1
CCCCA; (22)

Now we turn to the application of these results to the
pentaquark.

III. COLOR-SPIN HYPERFINE INTERACTION

Besides color electric forces between all quarks and
antiquarks, there exists a color-spin hyperfine (color mag-
netic) interaction [14]. In the Karliner-Lipkin model, it is

assumed that this interaction is operative inside the clusters
but, due to the larger separation, the hyperfine interaction
between clusters is negligible.2 The color-spin SU(6) hy-
perfine interaction energy is

 V � �
X
i>j

vij� ~�i: ~�j�� ~�i: ~�j�: (23)

Here, ~� and ~� are the Pauli and Gell-Mann matrices, and i
and j run over the constituent quarks and antiquarks. The
common practice is to take vij � v (flavor symmetry). v
captures information about the radial dependence of the
bound state wave function. For a composite system of nq
quarks and n �q antiquarks, the hyperfine energy contribu-
tion is given by

 Ehyp � �D�q� �q� � 2D�q� � 2D� �q� � 16�nq � n �q�	v=2;

(24)

where

 D�R6; R3; s� � C6�R6� � C3�R3� �
8

3
s�s� 1�: (25)

C6 andC3 are the quadratic Casimir operators of SU(6) and
SU(3), respectively, and s, is the spin of the state. The
effect of this hyperfine interaction on multiquark exotic
states has been a topic of research over several decades
[16,17].

The mass estimate for the pentaquark proceeds along the
following pattern. There are three contributions: (a) the
masses of the constituent quarks, (b) the color-spin hyper-
fine energy, and (c) the energy due to the P-wave excita-
tion. The practice has been to estimate (a) from the masses
of the decay products, (baryon�meson), since their quark
content is the same as that of the parent; but here the
hyperfine interaction contribution to the baryon and meson
mass must be first subtracted out, as detailed in Sec. V.
Thus, the hyperfine interaction enters directly in (b) and
also indirectly in (a) through the way it is extracted.

IV. HYPERFINE ENERGIES

A. Mesons and Baryons

As noted, the hyperfine interaction contributions to the
meson �q �q� and baryon �qqq� masses are required for the
estimation of the pentaquark mass. These can be readily
calculated using Eq. (24). For example, in the flavor sym-
metry limit, one finds

 EN�70;1;2� � �8v; E��20;1;4� � 8v;

E��1;1;1� � �16v; E��35;1;3� �
16
3v;

(26)

where in the parentheses the SU(6), SU(3), and SU(2)
properties of the particle have been indicated.

2Inclusion of the intercluster hyperfine interaction has also
been considered [15].
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B. The diquark cluster

As already mentioned, the diquark �qq� is usually
chosen to be in the �21; �3; 1� representation which is sym-
metric in SU(6). In addition, a diquark can be in the
(21,6,3), (15,6,1), and �15; �3; 3� but these have higher
energy. One finds from Eq. (24) that the hyperfine energies
for these four states are
 

E�21;�3;1� � �8v; E�21;6;3� � �
4
3v;

E�15;6;1� � 4v; E�15;�3;3� �
8
3v:

(27)

C. The triquark cluster

The triquark cluster in the Karliner-Lipkin model is a
member of the (6,3,2) multiplet and contains two quarks
and an antiquark. The two quarks are assumed to combine
to a symmetric 21 of color-spin SU(6). For SU(6) 21 � �6 �
6 � 120, and the triquark (120,3,2) carries higher hyperfine
energy. If the two quarks are combined in an antisymmetric
fashion, producing a 15 of SU(6), then3 the triquark can be
in (6,3,2) or (84,3,2).

More important is the fact that in the existing literature,
the triquark in the (6,3,2) is assumed to be made with the
two quarks within the cluster forming a (21,6,3). In actual-
ity, so long as flavor symmetry of the hyperfine interaction
holds, the lowest energy eigenstate of SU(6) receives con-
tributions from both the (21,6,3) and the �21; �3; 1� combi-

nations—see Eq. (7)—and this triquark has the form given
in the first expression in Eq. (16). The other possible
triquark states are the second expression in Eq. (16) and
the ones in Eq. (17).

The triquark hyperfine energy

The calculation of the triquark hyperfine energy using
Eq. (24) is complicated by the fact that the operator D�q�
�q� andD�q� do not commute; e.g., in Eq. (16) an eigenstate
of D�q� �q� is expressed as a linear combination of those
of D�q�.

To circumvent this difficulty, we use the following pro-
cedure. We consider the contribution of Eq. (23) for the
triquark state term by term as

 V � V12� ~�1: ~�2�� ~�1: ~�2� � V13� ~�1: ~�3�� ~�1: ~�3�

� V23� ~�2: ~�3�� ~�2: ~�3�: (28)

The hyperfine energy from each term is most readily
calculated in the basis where the two contributing quarks/
antiquarks are first combined [18]; i.e., corresponding to
the three terms in the right-hand side of Eq. (28) these are
the j�i, j i, and j�i bases of Sec. II, respectively. They are
related to each other through Eqs. (14) and (15). In terms of
these basis states, one can immediately write down the
expectation value of the Hamiltonian in Eq. (28). Thus4

one has

 h�jVj�i �

4
3V12 �

20
3 V

�
� 4

���
2
p
V��

10��
3
p V�� 2

���
6
p
V��

4
���
2
p
V�� � 8

3V12 �
8
3V

�
� 2

���
6
p
V��

4��
3
p V��

10��
3
p V�� 2

���
6
p
V�� �4V12 0

2
���
6
p
V��

4��
3
p V�� 0 8V12

0
BBBBBB@

1
CCCCCCA; (29)

where V�
 � V13 
 V23. Analogously,

 h jVj i �

8
3V12 �

2
3V13 �

28
3 V23

16
3
��
2
p V �

4��
3
p V12 �

14��
3
p V23

8��
6
p V �

16
3
��
2
p V � � 16

3 V13
8��
6
p V � 0

4��
3
p V12 �

14��
3
p V23

8��
6
p V � �2V13 0

8��
6
p V � 0 0 16V13

0
BBBBBB@

1
CCCCCCA; (30)

where V 
 � V12 
 V23. h�jVj�i is similar and is not pre-
sented here.

The eigenvalues and eigenvectors of this matrix give the
triquark energy and its corresponding group-theoretic con-
figuration, respectively.

The method which we follow can be smoothly adopted
to the case of flavor symmetry violation by appropriately
changing the individual coupling strengths in the three

terms of Eq. (28). In the flavor symmetry limit, V12 �
V23 � V13 � v, whence V�� � V � � 0. It is seen from
Eq. (29) that ��1; �4� decouple from ��2; �3� in this limit.

V. PENTAQUARK MASSES

A. Hyperfine interaction couplings

Needless to say, the strength of the color-spin hyperfine
interaction, v, is an important ingredient of the pentaquark
mass estimation. The procedure has generally been to

3In SU(6), 15 � �6 � 6 � 84. In the absence of flavor symme-
try, the triquark is a superposition of these and the 6 and 120 (see
later). 4This form was noted in [18]
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assume that it takes a universal value which is estimated by
ascribing the �� N mass splitting to this interaction.
Using Eq. (26),

 v3 �
m� �mN

16
’ 18:3 MeV: (31)

While this can be a first approximation, it should be borne
in mind that v is determined by the radial dependence of
the bound state wave function and thus is most likely
different for two-body and three-body bound states.
Indeed, using Eq. (26) for the meson sector one has

 v2 �
m� �m�

64=3
’ 29:6 MeV: (32)

This is actually an overestimate of v2 since it is well known
that the pion mass is too small for a simple quark model
interpretation. Equation (32) is only for the purpose of
illustration.5 However, it does indicate that it may not be
unreasonable to expect that v2 � v3 would give a better
approximation to reality. In the following, in addition to
discussing the results for the choice v2 � v3, for the sake
of comparison, we also use a v2 for the diquarks different
from the v3 for the triquarks.

B. Flavour symmetry breaking

In the limit of exact flavor symmetry, the splitting be-
tween the lowest lying pseudoscalar mesons and the cor-
responding vector mesons with the same quark content
would be flavor independent. A measure of flavor symme-
try breaking can be obtained from

 xf �
mK �mK

m� �m�
’ 0:63: (33)

This suggests that the hyperfine interaction involving an
s-quark or antiquark carries a suppression by the factor xf.
In Eqs. (32) and (33) the use of m� makes the precise
values inaccurate. To improve upon this, we use the masses
of the heavier mesons �, �, K, and K. Using Eq. (26), the
hyperfine contributions for these states are, respectively,

 

E� �
16
3v2; E� �

16
3 x

2
f2v2;

EK �
16
3 xf2v2; EK � �16xf2v2:

(34)

Here we have added a subscript to v and xf to indicate that
these values of the hyperfine parameters apply for two-
quark and/or antiquark systems. Using the masses of the
mesons, one can solve for the hyperfine interaction pa-
rameters �v2; xf2� as well as the quark masses. In this
manner, one gets

 v2 � 23:62 MeV; xf2 � 0:782;

mu;d � 322 MeV; ms � 471 MeV:
(35)

These values are used in our subsequent calculations.
There are two three-body systems which enter in this

analysis. One is the triquark state and the other the baryon
to which the pentaquark decays. Just as for mesons, one
can estimate the values of v3 and xf3 from the N � � and
�� � mass splittings which are given by
 

E� � EN � 16v3; E� � E� �
16
3v3�2xf3 � 1�;

E� � E� �
16
3v3xf3�xf3 � 2�: (36)

As a consistency check, we use the values so obtained to
calculate the ��� splitting and find that the agreement
is not satisfactory. Therefore, we use all of the three above
splittings to arrive at the best-fit values:

 v3 � 17:89 MeV; xf3 � 0:708: (37)

In the following, these have been used for the triquark and
baryons.

C. P-wave excitation

The energy due to the P-wave excitation can be esti-
mated from the recently observed Ds state at 2317 MeV,
which is believed to be an orbital excitation of the state at
2112 MeV. This gives6

 EP � mDs �P� �mDs �S� ’ �2317� 2112� MeV

� 205 MeV: (38)

VI. RESULTS

A. The flavor antidecuplet and the octet

Putting together the inputs from the previous sections,
one can readily obtain the masses of the pentaquark states
in the Karliner-Lipkin model. For example, for ��, using
Eqs. (26) and (27):

 m�� � f�mN � 8v3� � �ms �mq�g � EP � 8v2

� Etri�v3; xf3�; (39)

where the expression in the curly brackets is the contribu-
tion from the quark masses. The last (penultimate) term is
the hyperfine energy of the triquark (diquark). For other
pentaquarks, the right-hand side in Eq. (39) has to be
appropriately modified to reflect the quark content of the
state and, when necessary, deviations from flavor symme-
try have to be incorporated in Eq. (28) to obtain the correct
Etri�v3; xf3�.

5We extract v2 from heavier mesons in the next subsection.

6Alternatively, one might use EP � m��1=2�� �m��1=2�� ’
�1406� 1116� MeV � 290 MeV. This will increase all penta-
quark mass estimates below by �85 MeV.
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As noted earlier, the pentaquark states fill an octet and an
antidecuplet of flavor. Excepting for the three states, �� �
udud �s, ��� � dsds �u, and �� � usus �d, all other states
in the antidecuplet have partners in the octet with identical
isospin and hypercharge. In estimating the masses, we have
assumed ideal mixing between the partners and ascribed
the lighter member to the antidecuplet. Note that isospin
symmetry is assumed unbroken, so it is enough to present
the mass of one member of an isomultiplet. The masses of
the pentaquark states at the reference values of the parame-
ters—see Eqs. (35) and (37)—are given in Table I.

In Fig. 1, in the top panel the antidecuplet pentaquark
masses are shown as a function of the flavor symmetry
violation parameter xf, which assumes the value unity in
the symmetry limit. In view of the closeness of the esti-
mates of xf in Eqs. (35) and (37), for this figure we have
taken xf3 � xf2 � xf. The triquark interaction strength
has been kept fixed at v3 � 17:89 MeV. The bands arise
from a variation of the strength of the diquark hyperfine
interaction, v2, with the lower edge corresponding to v2 �
v3 and the upper to v2 � 23:62 MeV [(see Eq. (35)]. For
this figure, EP has been chosen as 209 MeV, following
Eq. (38). It is observed that the triquark corresponding to
the lowest eigenvalue of the hyperfine energy Hamil-
tonian—Eq. (29)—is predominantly a combination of
the states �1 and �4 [see Eq. (12)] which are antisymmet-
ric in the quark flavors.

Note that, N10, the nonstrange member of the antidecu-
plet7 is predicted to be at a mass of 1355 MeV for v2 � v3

which is enhanced to�1400 MeV when v2 � 23:62 MeV
is used. This prediction is independent of the choice of xf
since the state does not have strange quarks. For the exotic
���10 state the mass prediction is in the range 1795–
1825 MeV for xf � 0:7 to be compared with that of the
experimentally observed state at 1862 MeV [4].

In the bottom panel of Fig. 1 are shown the octet
pentaquark masses. The splitting between the masses of
the octet states and the corresponding antidecuplet states is
seen to be typically around 500–600 MeV. As noted ear-
lier, at the level of these calculations, the masses of the I �
1 and I � 0 members of the octet with S � �1 are the
same. The nonstrange neutral state in the octet, N0

8 , has the

quark structure �ud �s��ds� and its mass is consequently
dependent on xf.

A remark needs to be made about the symmetry property
of the triquark state for the octet pentaquarks. This feature
is most easily brought out from a consideration of the S �
�2 member of the octet, �8, which has the quark structure
�us��ss�s�. The diquark is antisymmetric in flavor so its
choice is fixed. Unlike all the other states, here the triquark
is compelled to have two identical (s) quarks, besides the
antiquark. Consequently, in the notation of Sec. II, it can
arise only from a combination of the states �2 and �3 [see
Eq. (12)] which are symmetric in flavor. Obviously, all
states in the pentaquark octet will share this feature in the
exact flavor SU(3) limit.

The H1 experiment at HERA found evidence of a pos-
sible charmed pentaquark at mass 3099 MeV [5]. This state
has the quantum numbers of a pentaquark with the struc-
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FIG. 1 (color online). The dependence of pentaquark masses
on the deviation from flavor symmetry (xf � 1). The top (bot-
tom) panel corresponds to flavor antidecuplet (octet) penta-
quarks. The bands are obtained when the diquark hyperfine
interaction strength is varied over the range 17:89 MeV � v2 �
23:62 MeV (see text).

TABLE I. Pentaquark lowest and first color-spin excited state
masses for the reference values of the parameters in Eqs. (35)
and (37).

Pentaquark states Mass (in MeV)
�� N10 �10 �10 N8 �8 �8

Lowest 1601 1358 1626 1783 2057 2217 2326
SU(6) Excited 1789 1573 1840 1966 2321 2439 2512

7This state could have been proposed as a possible interpre-
tation of the Roper resonance at 1440 MeV.
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ture udud �c. Including flavor violation (xf � 0:23 for the �c
quark) and taking v2 � 23:62 MeV, v3 � 17:89 MeV, we
find the predicted mass for such a state is 2757 MeV.

B. Triquark SU(6) excitations

Color triplet, spin 1
2 triquarks come in four varieties.

These are the four eigenstates of the hyperfine energy
matrix in Eq. (29). The results presented so far are obtained
using the eigenstate with the minimum energy consistent
with symmetry requirements—a certain choice of color-
spin assignments for the quark clusters—and leads to the
lowest lying pentaquarks. It is evident that the other tri-
quark eigenstate clusters also lead to color singlet spin 1

2
pentaquark states, albeit heavier. How different are the
masses in these other cases?

For illustration, we show in Table I the masses of the first
excited partners of the antidecuplet and octet pentaquarks
for the reference values of the hyperfine interaction pa-
rameters. In the flavor symmetry limit (xf3 � xf2 � 1), the
spacing between the excited states is independent of the
flavor and the lowest and first excited states are separated
by 215 MeV (370 MeV) for every member of the anti-
decuplet (octet).

There is no obvious argument to suppress the production
of these additional states. It will be of interest to extend the
ongoing searches to look for such SU(6) color-spin excited
partners, a novelty of QCD and the pentaquark system.

VII. CONCLUSIONS

A pentaquark interpretation of the �� leads to predic-
tions of several other color singlet states in a similar mass
range which populate an antidecuplet and an octet of flavor
SU(3). In this paper, the masses of these pentaquark states
have been calculated in a triquark-diquark (Karliner-

Lipkin) model with refined estimates, up to first order, of
the color-spin SU(6) hyperfine interaction contributions.

Motivated by the structure of these states, the SU(6)
unitary scalar factors relevant for the qq �q triquark structure
and the Racah coefficients, not available in the literature,
have been calculated ab initio. Using these results, the
color-spin SU(6) hyperfine contributions have been ob-
tained taking two variations from the simplest picture.
One of these concerns the deviation from flavor symmetry.
The other originates from a possible difference in the
strength of the hyperfine interaction for two- and three-
quark bound states which can be related to the known
splittings in baryonic and mesonic systems. Both of these
variations do affect the pentaquark mass predictions. An
element of uncertainty is introduced in these mass esti-
mates by the P-wave excitation energy for which we have
used the information from the D-meson system.

The triquark states within the antidecuplet and the octet
are chosen, for good reason, to be the lowest eigenstate of
the hyperfine energy Hamiltonian satisfying symmetry
requirements. The other eigenstates are possible triquark
states of SU(6) color-spin excitations. The masses of color
singlet, spin 1

2 pentaquarks resulting from these triquark
excitations have also been estimated.

Irrespective of whether the claimed observation of the
�� baryon is vindicated or not, pentaquarks can prove to
be the tip of a revealing iceberg of new hadronic states
illuminating novel facets of QCD.
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[18] H. Högaasen and P. Sorba, Mod. Phys. Lett. A 19, 2403

(2004); Fiz. B 14, 245 (2005).

SU(6), TRIQUARK STATES, AND THE PENTAQUARK PHYSICAL REVIEW D 77, 074016 (2008)

074016-9


