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In the past few years, a great deal of evidence has accumulated which indicates that the gluon
polarization inside the nucleon is likely to be small at least at the low renormalization scales. On the other
hand, the recent lattice QCD analyses suggest that the net orbital angular momentum carried by the quarks
is nearly zero. There is also some indication, noted by Brodsky and Gardner based on the COMPASS
observation of small single-spin asymmetry on the isoscalar deuteron target, that the gluon orbital angular
momentum inside the nucleon is likely to be small. Naively combining all these observations, we are led
to a rather embarrassing conclusion that the nucleon constituents altogether do not carry an adequate
amount of angular momentum saturating the total nucleon spin. We show that this somewhat confused
state of affairs can be cleared up only by paying careful attention to the scale dependencies of the nucleon
spin decomposition.
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I. INTRODUCTION

If the intrinsic quark spin carries a little of the total
nucleon spin, what carries the rest of it? This is the famous
‘‘nucleon spin problem’’ raised by the EMC measurements
nearly 20 years ago [1,2]. In the past few years, there have
been several remarkable advances toward the resolution of
this long-standing problem. First, a lot of experimental
evidence has been accumulated, which indicates that the
gluon polarization inside the nucleon is likely to be small,
at least at the low renormalization scales [3–6]. At the
least, it is now widely accepted that the UA�1�-anomaly
motivated explanation of the nucleon spin puzzle is disfa-
vored. Second, the quark spin fraction or the net longitu-
dinal quark polarization �� has been fairly precisely
determined through the high-statistics measurements of
deuteron spin structure function by the COMPASS [7,8]
and HERMES groups [9]. According to their new analyses,
the portion of the nucleon spin coming from the intrinsic
quark spin is around 30%. Putting together these two
observations blindly, one might be led to the conclusion
that the rest of the nucleon spin must be carried by the
orbital angular momentum of quarks and/or gluons. On the
other hand, however, the recent lattice QCD simulations
indicate that the net orbital angular momentum carried by
the quark fields is very small or close to zero [10–18].
Besides, based on the conjecture on the relation between
the Sivers mechanism and the quark and gluon orbital
angular momenta [19,20], Brodsky and Gardner [21] ar-
gued that the small single-spin asymmetry observed by the
COMPASS Collaboration on the deuteron target [22] is an
indication of small gluon orbital angular momentum inside
the nucleon.

Naively combining all the observations above, we might
be led to the conclusion that the nucleon constituents on
aggregate do not carry an adequate amount of angular
momentum saturating the total nucleon spin. What’s wrong
with the above deduction? The purpose of the present study

is to resolve the apparent paradox above. To clear up this
confused status of our understanding of the nucleon spin
puzzle, we propose to carry out an analysis, in which
special care is paid to the fact that the decomposition of
the nucleon spin is an absolutely scale-dependent idea.
What plays a central role in this analysis is Ji’s angular
momentum sum rule, supplemented with some additional
knowledge listed below. The first is the information ob-
tained from the recent theoretical studies of the isoscalar
and isovector combinations of the nucleon anomalous
gravitomagnetic moments, Bu�d20 �0� and Bu�d20 �0�, within
the lattice QCD as well as within the chiral quark soliton
model (CQSM). The second is the empirical information
on the momentum fractions carried by the quarks and
gluons, as well as on the longitudinal quark polarizations.
The third is the observation, first made by Ji, that the total
angular momentum fractions carried by the quarks and
gluons obey exactly the same evolution equations as do
the momentum fractions of the quarks and gluons.

The plan of the paper is as follows. First, in Sec. II, we
briefly review main predictions of the lattice QCD simu-
lations for generalized form factors and the spin contents of
the nucleon carried out in the past few years. On the other
hand, Sec. III is devoted to new and improved investigation
of the corresponding generalized form factors within the
framework of the chiral quark soliton model. Next, in
Sec. IV, armed with the knowledge gained in the previous
two sections, we try to carry out semiempirical analysis of
the nucleon spin contents by paying special attention to
their scale dependence. Several concluding remarks will
then be given in Sec. V.

II. LATTICE QCD PREDICTIONS ON NUCLEON
SPIN CONTENTS

Most theoretical analyses of the nucleon spin contents
nowadays heavily rely upon Ji’s angular momentum sum
rule [23–26]. According to it, the total angular momentum
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carried by the quark field with flavor q is given as

 Jq �
1

2
�Aq20�0� � B

q
20�0�� �

1

2
�hxiq � Bq20�0��: (1)

Here, Aq20�0� is the forward (t! 0) limit of the generalized
Dirac form factor Aq20�t�, which is related to the second
moment of the unpolarized spin-non-flip generalized par-
ton distribution function (GPD) Hq�x; �; t�. It just reduces
to the momentum fraction hxiq carried by the quark with
flavor q. On the other hand, Bq20�0� is the forward limit of
the generalized Pauli form factor Bq20�t�, which is some-
times called the anomalous gravitomagnetic moment
(AGM). (More precisely, Bq20�0� is the contribution of the
quark with flavor q to the nucleon AGM.) The quantity
Bq20�0� is also related to the second moment of the unpo-
larized spin-flip generalized parton distribution Eq�x; �; t�,
so that it is in principle measurable through the high-
energy deeply virtual Compton scatterings (DVCS) and/
or deeply virtual meson production processes [23,26].
Confining to the two-flavor case, for simplicity, we have
two independent relations:

 Ju�d �
1

2
�hxiu�d � Bu�d20 �0��; (2)

 Ju�d �
1

2
�hxiu�d � Bu�d20 �0��: (3)

Since the quark momentum fractions hxiu�d and hxiu�d are
empirically known fairly well, the knowledge of Bu�d20 �0�
and Bu�d20 �0� is essential to extract the total angular mo-
mentum Ju and Jd carried by the u- and d-quarks. In fact,
these are the quantities of central interest in several lattice
QCD studies [10–18]. Here, we briefly review the relevant
predictions of lattice QCD studies on the nucleon spin
contents in the past few years.

We first look into the results on Bu�d20 �0� and Bu�d20 �0�
reported by the QCDSF Collaboration in [10,11] some
years ago. Their predictions are

 Bu�d20 �0� � 0:102� 0:113;

Bu�d20 �0� � 0:566� 0:113:
(4)

(We recall that their simulations were performed in the so-
called heavy-pion region with m� ’ �640–1070� MeV.
The values quoted in (4) are those extrapolated to the
physical pion mass. In practice, however, no strong pion
mass dependencies were observed in their simulations at
this stage.) Combining (4) with their predictions on
Au�d20 �0� and Au�d20 �0�, given by

 Au�d20 �0� � hxi
u�d � 0:547� 0:022;

Au�d20 �0� � hxi
u�d � 0:253� 0:022;

(5)

they estimated that

 2Ju � 0:74� 0:12; 2Jd � �0:08� 0:08: (6)

Further combining with their results on the quark polariza-
tion,

 �u� �d � 0:60� 0:02; �u��d � 1:08� 0:02;

(7)

they concluded that the net orbital angular momentum
(OAM) of the quarks is very small or consistent with zero:

 2Lu�d � 0:06� 0:14: (8)

An independent study of Bu�d20 �0� and Bu�d20 �0� is reported
by the LHPC Collaboration [12–15]:

 Bu�d20 �0� � �0:09� 0:03; Bu�d20 �0� � 0:67� 0:03:

(9)

Using their previous results for the quark momentum frac-
tions as well as the quark longitudinal polarizations [16],

 �� � 0:682� 0:018; (10)

they also estimated the quark orbital angular momentum to
get

 Lu � �0:088� 0:019; Ld � 0:036� 0:013; (11)

or

 2Lu�d � �0:104� 0:038;

2Lu�d � �0:248� 0:038:
(12)

Their conclusion at this stage was as follows. Both flavors
separately give a rather small contribution of the order of
17% (7%) for u-quark (d-quark) to the nucleon spin, due to
cancellation in quark momentum fraction, spin and B20

[15]. Adding further u and d contributions give a very
small and negative total orbital angular momentum.

Comparing the results of the two groups, one notices
several discrepancies. For instance, the central value of the
QCDSF prediction for Bu�d20 �0� is small and positive, while
the corresponding prediction by the LHPC group is small
and negative. In spite of these discrepancies, a main con-
clusion of the two analyses was common: the net OAM
carried by the quarks is very small or consistent with zero.
As admitted by themselves, however, a main problem of
their analyses was that these conclusions were obtained
from the simulations performed with fairly large pion
mass, ranging from 640 MeV to 1070 MeV.

Very recently, both groups carried out more refined
analyses of the nucleon spin contents. The simulations
were extended to much lower pion mass, and the results
were further extrapolated to the physical pion mass with
the help of chiral perturbation theory. We first review the
main results of the LHPC Collaboration [17]. For the chiral
extrapolation, they tried several versions of chiral pertur-
bation theory, i.e., covariant baryon chiral perturbation
theory (BChPT) and heavy baryon chiral perturbation the-
ory (HBChPT) with and without the � resonance. The
results obtained with the use of covariant BChPT are
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 Au�d20 �0� � 0:520� 0:014; Au�d20 �0� � 0:157� 0:006;

(13)

 Bu�d20 �0� � �0:094� 0:050;

Bu�d20 �0� � 0:274� 0:037;
(14)

which give
 

2Ju�d � 0:426� 0:052;

2Ju � 0:428� 0:032;

2Jd � �0:002� 0:032:

(15)

On the other hand, the predictions obtained with the
HBChPT without the � resonance are given only for the
isoscalar quantities:

 Au�d20 �0� � 0:485� 0:014; (16)

 Bu�d20 �0� � 0:050� 0:049; (17)

which give

 2Ju�d � 0:526� 0:048: (18)

One sees that the final answers are fairly sensitive to the
ways of chiral extrapolation. In particular, Bu�d20 �0�, one of
our central interests, is slightly negative in the covariant
BChPT, while it is slightly positive in HBChPT. In either
case, combined with their new preliminary estimate for the
quark spin ~Au�d10 �t � 0� � ��u�d, they reconfirmed their
previous conclusion that the net quark orbital angular
momentum is nearly zero.

The QCDSF-UKQCD Collaboration also carried out a
similar analysis [18]. Their main results are summarized as

 Au�d20 �0� � 0:572� 0:012; Au�d20 �0� � 0:198� 0:008;

(19)

 Bu�d20 �0� � �0:120� 0:023;

Bu�d20 �0� � 0:269� 0:020:
(20)

We point out that these new results by the QCDSF-
UKQCD group changed considerably from the previous
QCDSF predictions obtained in the heavy-pion region
several years ago [10,11]. This would mainly be an effect
of chiral extrapolation to the physical pion mass. Putting
aside moderate changes of Au�d20 �0� and Au�d20 �0�, the
changes of Bu�d20 �0� and Bu�d20 �0� are drastic. First, even
the sign is changed for Bu�d20 �0�, although the fact, that its
absolute value is relatively small, is intact. Also drastic is a
considerable (more than a factor of 2) reduction of the
magnitude of isovector Bu�d20 �0�. (This is also the case for
the old and new LHPC predictions for Bu�d20 �0� [14,15,17].)
Here, we emphasize that this reduction was predicted in
our theoretical analysis of Bu�d20 �0� within the chiral quark
soliton model [27]. In fact, it was shown there that this

quantity has a strong pion mass dependence and that the
lattice QCD predictions obtained in the heavy-pion region
have a danger of overestimating it. The QCDSF-UKQCD
Collaboration also carried out a new estimate of ~Au�d10 �0� �
��u�d [18] and obtained

 ��u�d � 0:402� 0:048: (21)

Combining these, they finally obtain an estimate:

 2Ju�d � 0:452� 0:026; 2Lu�d � 0:050� 0:054:

(22)

Thus, despite some appreciable changes of the predictions
for some generalized form factors, a common conclusion
of the two lattice QCD groups, that the net quark OAM is
small, appears to be reconfirmed also by these new
analyses.

Now we have a dilemma. Neither the intrinsic quark
spin, the gluon polarization, nor the quark OAM seems to
carry an adequate amount of angular momentum to satu-
rate the total nucleon spin. Does it mean that the rest of the
nucleon spin is mostly carried by the gluon OAM? As
already mentioned, however, very large gluon OAM seems
to contradict the recent claim by Brodsky and Gardner
based on the observed small single-spin asymmetry on
the deuteron target by the COMPASS group [21,22]. In
our opinion, this confused status arises because we have
not paid enough care to the fact that the decomposition of
the nucleon spin is a highly scale-dependent idea. Later, we
shall carry out an analysis, which pays more careful atten-
tion to the scale dependencies of the nucleon spin
decomposition.

III. CHIRAL QUARK SOLITON MODEL
PREDICTIONS

In a previous paper [27], we investigated the generalized
form factors of the nucleon within the framework of the
CQSM. A particular emphasis was put there on the pion
mass dependence of the relevant quantities. (A similar
analysis was carried out also in [28–30]. See also [31],
in which the strong pion mass dependence of the net quark
polarization �� in the chiral region was pointed out.) We
discuss here only the predictions on Au�d20 �0�, B

u�d
20 �0�,

Au�d20 �0�, and Bu�d20 �0�, which provide us with enough in-
formation for the nucleon spin decomposition.

The largest discrepancy between the predictions of the
CQSM and those of the lattice QCD simulations was
observed for the isovector AGM Bu�d20 �0� of the nucleon
[27], so that we will start our discussion with this quantity.
Within the framework of the CQSM, or more generally in
any other low-energy models, the forward (t! 0) limits of
the isovector Pauli form factor Bu�d10 �t� as well as the AGM
form factor Bu�d20 �t� are calculated as the difference of the
standard and generalized Sachs magnetic and electric form
factors at t � 0 as (see [27] for more details):
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 Bu�d10 �0� � G�I�1�
M;10 �0� �G

�I�1�
E;10 �0�; (23)

 Bu�d20 �0� � G�I�1�
M;20 �0� �G

�I�1�
E;20 �0�: (24)

For completeness, we list below the theoretical expressions
for the above quantities within the CQSM. The isovector
electric form factor in the forward limit, i.e. G�I�1�

E;10 �0�, is
just reduced to the isovector charge of the nucleon, which
denotes that

 G�I�1�
E;10 �0� � 1: (25)

On the other hand, the isovector gravitomagnetic moment
G�I�1�
E;20 �0� is given as

 G�I�1�
E;20 �0� �

1

MN

1

3I

�
Nc
2

� X
m>0;n	0

1

Em � En
hmk�kni




�
Em � En

2
hmk�kni � hmk

1

3
�� � p��kni

�
;

(26)

with MN being the nucleon mass. Here, jni and En are the
eigenstates and the corresponding eigenenergies of the
static Dirac Hamiltonian H with the hedgehog mean field,
i.e.,

 Hjni � Enjni; (27)

where

 H �
� � r

i
� �M�cosF�r� � i�5� � r̂ sinF�r��; (28)

with M being the dynamical quark mass. The symbolsP
n	0 and

P
m>0 stand for the summation over all the

occupied and unoccupied single-quark eigenstates of H.
(The fact that G�I�1�

E;20 �0� is given as a double sum over the
single-quark orbitals is connected with the fact that it
vanishes at the mean-field level and survives only at the
first order in the collective angular velocity of the soliton.)

Concerning the isovector magnetic moment G�I�1�
M;10 �0�

and the corresponding isovector gravitomagnetic moment
G�I�1�
M;20 �0�, some comments are in order. In our previous

study [27], we have calculated only the leading-order con-
tributions to these quantities and neglected the subleading
1=Nc corrections, for simplicity. In the present study, we
shall include the latter as well. The reason is because a
similar 1=Nc correction (or more concretely, the first-order
rotational correction in the collective angular velocity of
the soliton) is known to be important for resolving the
famous underestimation problem of some isovector ob-
servables, like the isovector axial-charge, inherent in the
hedgehog-type soliton model [32–34]. Taking account of
this first-order rotational correction, the isovector magnetic
moment of the nucleon consists of the leading O��0� term
and the subleading O��1� term as

 G�I�1�
M;10 �0� � G�I�1��0

M;10 �0� �G�I�1��1

M;10 �0�; (29)

where

 G�I�1��0

M;10 �0� � �
MN

9
Nc
X
n	0

hnk�x
�� � �kni; (30)

 

G�I�1��1

M;10 �0� � �i
MN

9I

�
Nc
2

� X
m>0;n	0

1

Em � En
hmk�kni


 hmk�x
�� 
 �kni: (31)

Similarly, G�I�1�
M;20 �0� is given as a sum of the O��0� and the

O��1� terms:

 G�I�1�
M;20 �0� � G�I�1��0

M;20 �0� �G�I�1��1

M;20 �0�; (32)

where
 

G�I�1��0

M;20 �0� � �
1

9
Nc
X
n	0

fEnhnk�x
 �� � �kni

� hnkL � �knig; (33)

 

G�I�1��1

M;20 �0� � �i
1

9I

�
Nc
2

� X
m>0;n	0

1

Em � En
hmk�kni




�
Em � En

2
hmk�x
�� 
 �kni

� hmkL
 �kni
�
: (34)

As usual, the above sums over the eigenstates of H can
be evaluated with use of the discretized momentum basis
of Kahana and Ripka [35,36]. (Some generalization of the
Kahana-Ripka basis is necessary for the evaluation of the
O��1� terms including double sums [37].) Now, we are
ready to show the results of our numerical calculation.
Similarly to the analysis reported in [27], we see the effect
of varying the pion massm�, by fixing the dynamical quark
mass M to be 400 MeV. For that purpose, we prepare self-
consistent soliton solutions for seven values of m�, i.e.,
m� � 0, 100, 200, 300, 400, 500, and 600 MeV, within the
double-subtraction Pauli-Villars regularization scheme
[38]. Favorable physical predictions will be obtained by
using the value M � 400 MeV and m� � 100 MeV, since
this set gives a self-consistent solution close to the phe-
nomenologically successful one obtained with M �
375 MeV and m� � 0 MeV in the single-subtraction
Pauli-Villars regularization scheme [39–41]. (For the nu-
cleon mass MN , appearing in the above formulas of the
generalized form factors, the theoretical consistency re-
quires us to use self-consistent soliton masses. Otherwise,
fundamental conservation laws like the momentum sum
rule would be violated. See [27] for the details.)

Table I shows the theoretical predictions for the isovec-
tor magnetic moment of the nucleon, in dependence of the
pion mass m�. The second and the third columns, respec-
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tively, stand for the O��0� and the O��1� contributions,
while their sums are shown in the fourth column. One can
be convinced that the first-order rotational correction is
very important for these isovector observables. With the
favorable set of parameters, i.e., m� � 100 MeV with
M � 400 MeV, the theory gives �p ��n � G�I�1�

M;10 �0� ’
4:64, which is remarkably close to the empirically known
isovector magnetic moment of the nucleon:

 ��p ��n�
exp � 4:70589: (35)

Next, shown in Table II are the predictions of the CQSM
for relevant generalized form factors in the forward limit,
as functions of m�, which are necessary to evaluate the
isovector AGM. The second and the third columns of this
table, respectively, stand for the isovector gravitomagnetic
moment and the gravitoelectric moment, while the fourth
column represents the leading-order contribution to the
isovector AGM of the nucleon. Note that the numbers in
the fourth column are obtained as the difference of those in
the second and the third columns, according to the formula,
B�u�d��

0

M;20 �0� � G�I�1�
M;20 �0� �G

�I�1�
E;20 �0�. These are the predic-

tions already given in our previous paper. What is new here
is the fifth column, which represents the first-order rota-
tional correction to the isovector AGM of the nucleon. We
have already seen that the first-order rotational correction
is very important for reproducing the observed isovector
magnetic moment of the nucleon. Table II shows that the
effect of the first-order rotational correction is even more
drastic for the isovector AGM of the nucleon. This is

because the leading-order estimate of the isovector AGM
shown in the third column is obtained as the difference of
the two quantities G�I�1�

M;20 �0� and G�I�1�
E;20 �0�, having the same

size of magnitude, and a sizable cancellation occurs be-
tween them. As a consequence, the final predictions of the
CQSM for the isovector AGM of the nucleon, given in the
seventh column are nearly a factor of 3 or 4 larger than our
previous results neglecting the first-order rotational
correction.

At this stage, one might be interested in a comparison
with the predictions of lattice QCD. One must be careful
here. Different from the anomalous magnetic moment of
the nucleon, which is scale independent due to the conser-
vation of the electromagnetic current, the anomalous grav-
itomagnetic moment is a scale-dependent quantity. The
predictions of the lattice QCD simulations correspond to
the renormalization scale of Q2 ’ 4 GeV2, while the pre-
dictions of the CQSM are thought to correspond to a much
lower energy scale around Q2 � 0:30 GeV2. Fortunately,
by making use of Ji’s observation that Jq and hxiq obey
exactly the same evolution equation, we can figure out the
scale dependence of Bu�d20 �0�. (See the next section, for
more details.) From the predictions of the CQSM for
Bu�d20 �0� given in the sixth column, we have estimated the
corresponding values at Q2 � 4 GeV2. The results are
shown in the seventh column of Table II. For the favorable
pion mass parameter m� � 100 MeV, our estimate gives
Bu�d20 �0� ’ 0:289, which should be compared with the cor-
responding prediction Bu�d20 �0� � 0:274� 0:037 of the
new LHPC lattice simulation [17], and Bu�d20 �0� � 0:269�
0:020 of the QCDSF-UKQCD one [18]. One finds that the
predictions of the CQSM and those of the lattice QCD
simulations are now remarkably close to each other. This is
a welcome result, since it is thought to give strong support
to the reliability of the theoretical predictions on the iso-
vector AGM of the nucleon Bu�d20 �0�.

After obtaining a refined estimate of Bu�d20 �0� within the
framework of the CQSM, we revise Fig. 5b in our previous
paper [27]. The filled circles in Fig. 1 are the CQSM
predictions of Bu�d20 �0� corresponding to the scale Q2 �
4 GeV2, in dependence of the pion mass. The correspond-
ing predictions of the QCDSF and LHPC Collaborations
carried out in the heavy-pion region several years ago are

TABLE I. The CQSM predictions for the isovector magnetic
moment of the nucleon in dependence of the pion mass. See the
text for more detailed explanation.

m� �MeV� G�I�1��0

M;10 �0� G�I�1��1

M;10 �0� G�I�1��0��1

M;10 �0�

0 4.12 1.14 5.26
100 3.41 1.24 4.64
200 2.89 1.39 4.28
300 2.69 1.53 4.21
400 2.67 1.66 4.33
500 2.72 1.80 4.52
600 2.73 1.99 4.72

TABLE II. The CQSM predictions for the isovector AGM of the nucleon in dependence of the pion mass. See the text for more
detailed explanation.

m� �MeV� G�I�1�
M;20 �0� G�I�1�

E;20 �0� B�u�d��
0

20 �0� B�u�d��
1

20 �0� Bu�d20 �0� Bu�d20 �0� at Q2 � 4 GeV2

0 0.361 0.228 0.133 0.272 0.405 0.256
100 0.392 0.276 0.116 0.342 0.458 0.289
200 0.452 0.327 0.125 0.429 0.554 0.350
300 0.519 0.350 0.169 0.491 0.660 0.418
400 0.579 0.354 0.225 0.534 0.759 0.480
500 0.640 0.347 0.293 0.567 0.860 0.544
600 0.716 0.328 0.388 0.600 0.988 0.625
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represented by the open squares and the open triangles
[10,15]. On the other hand, the new predictions by the
LHPC and QCDSF-UKQCD Collaborations, extrapolated
to the physical pion mass by utilizing the chiral perturba-
tion theory, are shown, respectively, by the open diamond
and the filled triangles [17,18]. One sees that the effect of
chiral extrapolation is drastic such that the new predictions
of the lattice QCD are more than a factor of 2 smaller than
the old predictions given in the heavy-pion region. This
sizable reduction is just consistent with our analysis based
on the CQSM [27]. Now, one can be convinced that the
predictions of the CQSM and the lattice QCD for the
isovector AGM of the nucleon Bu�d20 �0� are mutually
consistent.

Next, we turn to the discussion of more difficult isosca-
lar quantities. As shown in [27,28], the CQSM predicts that

 Au�d20 �0� � hxi
u�d � 1; Bu�d20 �0� � 0: (36)

It should be noticed that these equalities hold irrespective
of the pion mass within the model. The first relation is only
natural. It simply means that the momentum sum rule is
saturated by the quark fields alone in this effective quark
model, which does not contain explicit gluon degrees of
freedom. The second relation holds by the similar reason.
From Ji’s angular momentum sum rule, we generally have
(in the two flavor case)

 2�Ju�d � Jg� � hxiu�d � Bu�d20 �0� � hxi
g � Bg20�0� � 1:

(37)

If this is combined with the momentum sum rule of QCD,

 hxiu�d � hxig � 1; (38)

we are led to a novel identity,

 Bu�d20 �0� � B
g
20�0� � 0; (39)

which dictates that the total nucleon AGM (quark plus
gluon contributions) vanishes identically. The answer
Bu�d20 �0� � 0 is therefore an inevitable conclusion of any
effective quark model without gluon fields. In both of the
LHPC and QCDSF lattice QCD simulations carried out in
the heavy-pion region several years ago, the magnitude of
Bu�d20 �0� was found to be fairly small [11,12]. Since
Bu�d20 �0� is equal to the difference of 2Ju�d and hxiu�d,
the small values of the lattice QCD predictions for Bu�d20 �0�
at this point were interpreted to indicate approximate
equality of the total angular momentum and linear mo-
mentum fractions of quarks and gluons as advocated by
Teryaev several years ago [42,43]. However, the recently
performed ChPT fits by the LHPC and QCDSF-UKQCD
Collaborations appear to indicate a sizable bending
through the chiral extrapolation in the low pion mass
region, leading to negative Bu�d20 �0� of the order of �0:1,
although one must be very careful about the fact that the
final conclusion depends on the ways of the chiral extrapo-
lation method [17,18].

Under such circumstances, it would be fine if we can
give some useful constraint on the magnitude of Bu�d20 �0�.
To this end, we first recall the fact that Bu�d20 �0� is given as
the second moment of the forward limit of the unpolarized
spin-flip GPD Eu�d�x; �; t� as

 Bu�d20 �0� �
Z 1

�1
xEu�d�x; 0; 0�dx: (40)

It is important to recognize that the first moment of the
same quantity gives the isoscalar magnetic moment of the
nucleon up to a factor of 3:

 Bu�d10 �0� �
Z 1

�1
Eu�d�x; 0; 0�dx � �u�d � 3��p � �n�:

(41)

The forward limit of the GPD Eu�d�x; 0; 0� was calculated
within the framework of the CQSM by Ossmann et al. [44].
(There is also a calculation for the forward limit of the
isovector GPD Eu�d�x; 0; 0� within the CQSM [45].) It is
given as a sum of the two part, i.e., the contribution of
Nc�� 3� valence quarks and that of the vacuum-polarized
Dirac-sea quarks as

 Eu�d�x; 0; 0� � Eu�dval �x; 0; 0� � E
u�d
v:p: �x; 0; 0�: (42)

There are interesting findings that the valence quark term
turns out to have a similar shape as the corresponding
valence term fu�dval �x� of the standard unpolarized PDF,
while the deformed Dirac-sea contribution has a strong
chiral enhancement near x � 0, which is antisymmetric
with respect to the transformation x! �x. (Note that the
antisymmetric nature of the Dirac-sea contribution to
Eu�d�x; 0; 0� means that it gives no contribution to its first
moment.) Following the schematic analysis carried out in
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FIG. 1. The pion mass dependence of Bu�d20 �0� predicted by the
CQSM, in comparison with the old and new lattice QCD
predictions. Both correspond to the scale Q2 ’ 4 GeV2.
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[46] (see also [27]), we therefore propose to parametrize
the characteristic feature of Eu�d�x; 0; 0� in the following
simple form:

 Eu�d�x; 0; 0� � Cfu�dval �x� �D�
0�x�; (43)

with C< 0 and D> 0. With this schematic parametriza-
tion, the first and the second moment sum rules of
Eu�d�x; 0; 0� become

 

Z 1

�1
Eu�d�x; 0; 0�dx � 3C � 3��p � �n�; (44)

 

Z 1

�1
xEu�d�x; 0; 0�dx � C

Z 1

�1
fu�dval �x�dx�D: (45)

Using the observed anomalous magnetic moments of the
proton and the neutron, the first relation gives

 C � ��p � �n�exp � �0:120: (46)

On the other hand, the second relation gives

 Bu�d20 �0� � C
Z 1

�1
fu�dval �x�dx�D: (47)

As a matter of course, in the CQSM, the valence and the
vacuum polarization contributions in (47) exactly cancel
each other so that the identity Bu�d20 �0� � 0 holds. Such an
exact cancellation may not happen in real QCD, which
contains the gluon fields as well. Nonetheless, it is reason-
able to expect that the general shape of Eu�d�x; 0; 0� pre-
dicted by the CQSM, especially its chiral behavior
observed in the small x region, would be preserved when
going to real QCD, which in turn strongly indicates that
there will be no change of sign in the contribution of the
sea-quark-like component to Bu�d20 �0�. We thus conjecture
that the coefficient D in (47) is at least larger than or equal
to 0. Combining this with the fact that

R
1
�1 f

u�d
val �x� is

smaller than 1 (this is because the sea-quark-like compo-
nent also carries some portion of the total momentum
fraction of the nucleon), we would then conclude
from (47) that the lower limit of Bu�d20 �0� is
�0:12�� ��p � �n�exp�. In carrying out a semiempirical
analysis of the nucleon spin contents in the next section, we
therefore take a standpoint that the precise value of
Bu�d20 �0� is still uncertain, but it lies most likely in the range

 � 0:12 	 Bu�d20 �0� 	 0: (48)

This is the main theoretical uncertainty in our semipheno-
menological analysis of the nucleon spin contents carried
out in the next section.

IV. SEMI-EMPIRICAL ESTIMATE OF NUCLEON
SPIN CONTENTS

Now, we are ready to start our semiempirical analysis of
the nucleon spin contents. Our strategy here is to use
empirical information as much as possible, if available.
To explain our approach more concretely, we start again

with Ji’s angular momentum sum rule written in a slightly
more general form:

 

1

2
� JQ � Jg; (49)

with

 JQ �
1

2
�hxiQ � BQ20�0��; Jg �

1

2
�hxig � Bg20�0��:

(50)

Here, Q denotes the sum of all active quark flavors. (Q �
u� d for the two-flavor case, and Q � u� d� s for the
three-flavor case.) To carry out flavor decomposition of the
total quark angular momentum, we also need another
combination of Ji’s sum rule:

 Ju�d �
1

2
�hxiu�d � Bu�d20 �0��: (51)

We emphasize again that the momentum fractions hxiQ,
hxiu�d, and hxig are all empirically well determined.
Naturally, these momentum fractions are all scale-
dependent quantities. A key observation here, first made
by Ji [23,26], is that JQ and Jg obey exactly the same
evolution equations as hxiQ and hxig do. According to him,
the underlying reason is that forming spatial moment of
energy momentum operator does not change short-distance
singularity of the operator. The solution of this (coupled)
evolution equation is extremely simple at the leading order
(LO):
 

2JQ�Q2� �
3nf

16� 3nf
�

�
lnQ2

0=�2

lnQ2=�2

�
2�16�3nf�=�33�2nf�




�
2JQ�Q2

0� �
3nf

16� 3nf

�
; (52)

 2Jg�Q2� �
16

16� 3nf
�

�
lnQ2

0=�2

lnQ2=�2

�
2�16�3nf�=�33�2nf�




�
2Jg�Q2

0� �
16

16� 3nf

�
: (53)

Particularly interesting here are the asymptotic values in
the Q2 ! 1 limit:

 2JQ�1� �
3nf

16� 3nf
; 2Jg�1� �

16

16� 3nf
: (54)

Numerically, we obtain

 2JQ�1� ’ 0:529; 2Jg�1� ’ 0:471; (55)

for nf � 6, while

 2JQ�1� ’ 0:360; 2Jg�1� ’ 0:640; (56)

for nf � 3.
In our actual analysis below, we take account of the scale

dependencies of the relevant quantities by using the known
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evolution equations at the next-to-leading order (NLO) for
the momentum fractions, making full use of the fact that Jq

and hxiq (and also Jg and hxig) obey the same evolution
equations. For the sake of completeness, we write down
here the relevant NLO equations, which we use in the
following analysis. The singlet moments JQ and Jg (and
also hxiQ and hxig) evolve as (see, for example, [47–49])
 

JQ�Q2�

Jg�Q2�

 !
�

��
�S�Q2�

�S�Q
2
0�

�
	�=2�0

�
P� �

1

2�0



�S�Q2

0� ��S�Q
2�

4�
P�RP�

�

�
�S�Q

2
0�

4�
�
�S�Q

2�

4�

�
�S�Q

2�

�S�Q2
0�

�
�	��	��=2�0

�



P�RP�

2�0�	� �	�

�
� ��$��

� JQ�Q2
0�

Jg�Q2
0�

 !
:

(57)

Here, �S�Q2� is the QCD running coupling constant at the
NLO given by

 �S�Q2� �
4�

�0 ln�Q2=�2�

�
1�

�1 lnln�Q2=�2�

�2
0 ln�Q2=�2�

�
; (58)

with the choice � � 0:248 GeV, while �0 � 11� 2
3nf

and �1 � 102� 38
3 nf with nf being the active number of

quark flavor. The quantities R and P� are defined by

 R � ��1� �
�1

�0
��0�; (59)

 P � � �
��0� � 	
	� � 	�

; (60)

where ��0� and ��1� are the relevant anomalous dimension
matrices at the LO and NLO, respectively, given by [50–
52]

 � �0� �
64=9 �4nf=3
�64=9 4nf=3

� �
(61)

and

 � �1� �
64

243

367� 39nf � 1833
32 nf

��367� 39nf�
1833
32 nf

 !
(62)

while 	� are the two eigenvalues of the LO anomalous
dimension matrix ��0�.

On the other hand, the nonsinglet (NS) moments evolve
as [47–49]
 

JNS�Q
2� �

�
1�

�S�Q2� � �S�Q2
0�

4�

�
��1�NS

2�0
�
�1�

�0�
NS

2�2
0

��




�
�S�Q

2�

�S�Q
2
0�

�
��0�NS=2�0

JNS�Q2
0�; (63)

with

 ��0�NS �
64

9
; ��1�NS �

64

243
�367� 39nf�: (64)

Here, it is understood that, for nf � 3, JNS stands for either
J�3� � Ju � Jd or J�8� � Ju � Jd � 2Js.

Now, we are left with two quantities, Bu�d20 �0� and
Bu�d20 �0�, which are yet empirically unknown. Here, one
might be tempted to use lattice QCD predictions for those.
In our opinion, however, blind acceptance of the lattice
QCD predictions at the present stage is a little dangerous,
especially because there seems to be large uncertainties in
the process of chiral extrapolation. We proceed slightly
more cautiously by also taking account of the information
from a phenomenologically successful low-energy model
of the nucleon, i.e., the CQSM.

After explaining our general strategy, let us now start our
semiphenomenological analysis of the nucleon spin con-
tents. We start with the empirical information obtained
from the MRST2004 as well as the CTEQ5 fits [53,54].
As already emphasized, these two popular PDF fits give
almost the same quark and gluon momentum fractions
below the energy scale Q2 ’ 10 GeV2, Although these
PFDs are given basically above Q2 ’ 1 GeV2, we try to
see what happens if we evolve down these fits to a lower
energy scale as Q2 ’ 0:30 GeV2 ’ �600 MeV�2, which is
understood to be the energy scale of the CQSM. Using the
known NLO evolution equations for hxiQ and hxig, together
with the MRST2004 predictions [53],

 hxiQ ’ 0:578; hxig ’ 0:422 at Q2 � 4 GeV2; (65)

we have estimated the scale dependencies of hxiQ and hxig

in the range 0:30 GeV2 	 Q2 	 4 GeV2. The result is
shown in Fig. 2. One sees that the scale dependencies of
the quark and gluon momentum fractions are fairly strong
below Q2 ’ 1 GeV2. At the low-energy scale around Q2 ’
0:30 GeV2, one finds that the momentum fraction carried
by the quarks is nearly 80%, while that of the gluons is
about 20%.

As a matter of course, the standard view is that the
applicability range of the perturbative QCD is at least
above 1 GeV, so that one might be a little suspicious of
the physical significance of such ‘‘disevolution’’ to low-
energy scales. Still, we believe it is meaningful for the
following reason. Basically, we are following the spirit of
PDF fits by Glück, Reya, and Vogt [47,48]. As is well
known, these authors start the QCD evolution at the excep-
tionally low-energy scales, i.e., Q2

ini ’ 0:23 GeV2 in the
leading-order case, andQ2

ini ’ 0:34 GeV2 in the NLO case.
They thus found that, even at such low-energy scales, they
absolutely need nonperturbatively (or dynamically) gener-
ated sea-quarks, which may be interpreted as the effects of
meson clouds. We believe such analyses (somewhat non-
standard from the viewpoint of more conservative use of
the perturbative QCD) play an important role to connect
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the physics of nonperturbative QCD in the low-energy
domain and the perturbative QCD in the high-energy
deep-inelastic-scattering (DIS) domain. In fact, we have
carried out several theoretical analyses based on the GRV
spirit. That is, we use the predictions of the CQSM for
various PDFs as initial-scale distributions given at the low-
energy scale around 600 MeV. After evolving them with
use of the NLO evolution equation, we compare the result-
ant predictions with the corresponding DIS observables
with a remarkable success without any other adjustable
parameters [39,40,55–58]. Then, we shall continue our
analysis by accepting the viewpoint that the energy scale
between 600 MeVand 1 GeV is an important region, which
connects the low-energy nonperturbative physics and the
high-energy perturbative physics of QCD.

Now, we show in Fig. 3 our estimate of the scale
dependence of the total angular momentum fractions car-
ried by the quarks and the gluons. They are obtained in the
following way. As argued in [27], if the net quark contri-
bution to the nucleon AGM vanishes, i.e., Bu�d20 �0� � 0, we
have extremely simple proportionality relations as

 JQ �
1

2
hxiQ; Jg �

1

2
hxig; (66)

which was advocated by Teryaev based on the equivalence
principle some years ago [42,43,59]. Very interestingly,
these proportionality relations hold independent of the
energy scale, since �JQ; Jg� and �hxiQ; hxig� obey the
same evolution equations. Thus, the solid curves in Fig. 3
are nothing different from the curves for hxiQ and hxig in
Fig. 2. On the other hand, the dashed curves correspond to

another extreme, which is obtained by using the value
Bu�d20 �0� � �0:12 at Q2 � 0:30 GeV2. With this negative
value of Bu�d20 �0�, 2JQ becomes a little smaller and 2Jg

becomes a little larger as compared with the case
Bu�d20 �0� � 0. Still, one notices that, at the scale Q2 ’
0:30 GeV2, the quarks carry about 65% of the total angular
momentum fraction. At the moment, there is a sizable
ambiguity in the magnitude of Bu�d20 �0�, but we believe
that the truth lies between the two extreme cases illustrated
in Fig. 3. (See the discussion at the end of the previous
section.)

Now, the net orbital angular momentum fractions carried
by the quarks can be obtained by subtracting �� from 2JQ.
Since the prediction of the CQSM at Q2 ’ 5 GeV2 is
remarkably close to the central value �� � 0:33 of the
recent HERMES analysis, we use this HERMES value
here. To make the discussion simple, we shall neglect
here the scale dependence of ��. (In the MS scheme at
the NLO, �� is known to have a weak scale dependence
due to the coupling with �g. This scale dependence is very
weak, however.)

Shown in Fig. 4 are 2LQ, ��, and 2Jg as functions of
Q2. Here, the solid and dashed curves correspond to the
cases Bu�d20 �0� � 0 and Bu�d20 �0� � �0:12, respectively.
First, let us look into the case Bu�d20 �0� � 0. In this case,
there is a crossover aroundQ2 ’ 0:7 GeV2 ’ �840 MeV�2,
where the magnitudes of 2LQ, ��, and 2Jg are all ap-
proximately equal,

 2LQ ’ �� ’ 2Jg ’ 1=3: (67)

One sees that LQ is a rapidly decreasing function of Q2, so
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FIG. 3. The scale dependencies of the quark and gluon angular
momentum fractions. The solid and dashed curves, respectively,
correspond to the choices Bu�d20 �0� � 0 and Bu�d20 �0� � �0:12.
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that, as Q2 increases beyond this crossover energy scale,
LQ becomes less and less important as compared with ��
and JQ. However, the fact that LQ is a rapidly decreasing
function below 1 GeV conversely means that it must be
very large at the low-energy scale around 600 MeV, which
we emphasize is qualitatively consistent with the picture of
the CQSM [37,60].

Next, we turn to the case Bu�d20 �0� � �0:12. In this case,
the crossover, where 2LQ ’ �� ’ 2Jg ’ 1=3, occurs
around the energy scale Q2 ’ 0:30 GeV2. Although the
role of quark OAM is less important as compared with
the case corresponding to Bu�d20 �0� � 0, it still carries about
1=3 of the total nucleon spin at this low-energy scale. We
emphasize that this is an inevitable conclusion of believing
the QCD evolution equation, since it tells us that, at this
low-energy scale, the gluon (spin plus OAM) carries at
most 1=3 of the total nucleon spin, so that what remains to
carry the remainder 1=3 of the nucleon spin must be the
quark OAM. On the other hand, when going to higher
energy scale, say at Q2 ’ 4 GeV2, corresponding to the
renormalization scale of the lattice QCD calculations, one
sees that the amount of the quark OAM becomes much
smaller. Still, it is seen to carry nearly 20% of the total
nucleon spin even at Q2 ’ 4 GeV2. One might suspect that
this would contradict the conclusion of the lattice QCD
analyses. Probably, the main cause of discrepancy can be
traced back to a little overestimation of the net quark
polarization �� in the lattice QCD. In fact, the result of
the QCDSF-UKQCD group for �� is 0:402� 0:024 [18],

which overestimates a little the central value 0.33 of the
HERMES analysis [9], which we have used in our semi-
empirical analysis here. (One of the reasons of a little
overestimation of �� in the lattice QCD simulations
may be attributed to the so-called quenched approxima-
tion, i.e., the neglect of the disconnected diagrams.) In our
opinion, the quark OAM fraction of the order of 20% is
reasonable enough from the following simple considera-
tion. To prove this statement, we recall that the asymptotic
value (the value in the Q2 ! 1 limit) of the total angular
momentum fractions of the quarks and the gluons is ex-
tracted from the relations (52) and (53), which follows
from the fact that �JQ; Jg� and �hxiQ; hxig� obey the same
evolution equation. With the realistic case of six flavors,
we have

 2JQ�1� ’ 0:529; 2Jg�1� ’ 0:471: (68)

Subtracting �� ’ 0:33, which is thought to be nearly scale
independent, we thus obtain

 2LQ�1� ’ 0:199: (69)

Since LQ is a decreasing function of Q2, the magnitude of
2LQ at the scale Q2 ’ 4 GeV2 must be larger or at least
approximately equal to this asymptotic value, which jus-
tifies our reasoning above.

So far, we have concentrated on the analysis of the net
quark and gluon contribution to the nucleon spin and the
net quark contribution to the orbital angular momentum.
Now, we try to make a flavor decomposition of the quark
contribution to the nucleon spin and orbital angular mo-
mentum, which requires the knowledge of the quantity
Bu�d20 �0�, i.e., the isovector nucleon AGM. Since we want
to investigate the scale dependencies of the momentum
fractions and the total angular momenta of the quarks and
gluons up to Q2 � 4 GeV2, we use again the NLO evolu-
tion equation with three active flavors, although we assume
that the strange quarks carry a negligible momentum frac-
tion and AGM at the initial low-energy scale, for simplic-
ity. As initial conditions of evolution, we need the
following quantities at Q2 � 0:30 GeV2:

 hxi�0� � hxiu�d�s � hxiQ; hxig; (70)

 hxi�3� � hxiu�d; hxi�8� � hxiu�d�2s: (71)

The singlet moments hxiQ and hxig evolve according to the
evolution Eq. (57). Here, we use the initial condition

 hxiu�d � 0:785; hxiu�d � 0:250; hxig � 0:215;

(72)

with hxis � 0, since it gives at Q2 � 4 GeV2

 hxiu�d�s � 0:579; hxig � 0:421; (73)

 hxiu�d � 0:552; hxiu�d � 0:158; (74)
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FIG. 4. The scale dependencies of the total angular momentum
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respectively, correspond to the choices Bu�d20 �0� � 0 and
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which approximately reproduces the empirical MRST2004
fit at the same scale [53]. We can make a similar analysis
also for the total angular momentum of the quarks and
gluons, because they obey the same evolution equations as
the corresponding momentum fractions. To proceed, we
need initial conditions for the following quantities:
 

Ju�d �
1

2
�hxiu�d � Bu�d20 �0��;

Ju�d �
1

2
�hxiu�d � Bu�d20 �0��;

Jg �
1

2
�hxig � Bg20�0��;

with the general constraint Bu�d20 �0� � B
g
20�0� � 0. Here,

we have assumed Js � 0 at the initial scale. For Bu�d20 �0�,
we consider the two cases again, i.e.,Bu�d20 �0� � 0 and
Bu�d20 �0� � �0:12. For Bu�d20 �0�, we use the prediction of
the CQSM given by

 Bu�d20 �0� � 0:458: (75)

At first sight, the magnitude of the isovector AGM above
seems to be fairly larger than the corresponding predictions
of the lattice QCD given at Q2 � 4 GeV2. As already
mentioned in the previous section, however, after taking
account of the scale dependence, we find that the above
CQSM prediction for Bu�d20 �0� is remarkably close to that
of the lattice QCD.

Now that all the necessary conditions are given at the
initial scale Q2 � 0:30 GeV2, let us first try to estimate the
total angular momentum fractions at Q2 � 4 GeV2, which
correspond to the renormalization scale of lattice QCD
simulations. First, we show the results corresponding to
the choice Bu�d20 �0� � 0. We have, at Q2 � 4 GeV2,

 hxiQ � 0:579; hxig � 0:421; (76)

 hxiu�d � 0:552; hxiu�d � 0:158; hxis � 0:028;

(77)

and

 2JQ � 0:579; 2Jg � 0:421; (78)

 2Ju�d � 0:552; 2Ju�d � 0:448; 2Js � 0:028;

(79)

which gives

 2Ju ’ 0:500; 2Jd ’ 0:052: (80)

On the other hand, with the choice Bu�d20 �0� � �0:12 at the
initial energy scale, we get

 2JQ � 0:519; 2Jg � 0:481; (81)

 2Ju�d � 0:486; 2Ju�d � 0:448; 2Js � 0:033;

(82)

which gives

 2Ju ’ 0:467; 2Jd ’ 0:019: (83)

Depending on the two choices for Bu�d20 �0�. i.e., Bu�d20 �0� ’
�0:12 or Bu�d20 �0� � 0, we thus obtain an estimate,

 2Ju ’ 0:46� 0:50; 2Jd ’ 0:02� 0:05; (84)

which supports the conclusion of the lattice QCD studies
that the total angular momentum carried by the d-quarks is
nearly zero at least qualitatively. For reference, we show in
Fig. 5 the predicted scale dependence of Ju and Jd.

Now, the information on the quark OAM can be obtained
from Ju, Jd, and Js by subtracting the corresponding
intrinsic spin contributions. Here, we use the empirical
information provided by the recent HERMES analysis
[9], which gives at Q2 � 5 GeV2,

 g�0�A � ��u�d�s

� 0:330� 0:011�theor� � 0:025�exp� � 0:028�evol�;

(85)

 g�3�A � ��u�d � 1:269� 0:003; (86)

 g�8�A � ��u�d�2s � 0:586� 0:031: (87)

Neglecting the error-bars, for simplicity, this gives

 ��u � 0:842; ��d � �0:427; ��s � �0:085:

(88)

As is well known, due to the conservation of the flavor
nonsinglet axial-current, g�3�A and g�8�A are exactly scale
independent. Then, if we neglect very weak scale depen-
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dence of g�0�A , all of ��u, ��d, and ��s are thought to be
scale independent. Let us first estimate the quark OAM at
Q2 � 4 GeV2. Depending on the two choices for Bu�d20 �0�,
i.e., Bu�d20 �0� � �0:12 and Bu�d20 �0� � 0, we obtain
 

2Lu � ��0:333� 0:300�;

2Ld � 0:489� 0:522;

2Ls � 0:033� 0:028:

(89)

A prominent feature here is that the magnitudes of Lu and
Ld are sizably large with the opposite sign such that Lu < 0
and Ld > 0, which leads to the inequality

 jLu�dj � jLu�dj; (90)

i.e., the isovector dominance of the quark OAM. (As al-
ready discussed, the cancellation between Lu and Ld is not
so perfect in our semiphenomenological analysis as com-
pared with the lattice QCD predictions.) To understand the
physical meaning of the above unique feature, we find it
instructive to look into the scale dependence of Lu�d as
well as of Lu and Ld.

Shown in Fig. 6 are scale dependencies of 2Lu, 2Ld, and
2Lu�d. (Note that the difference Lu�d of Lu and Ld does
not depend on the choice of Bu�d20 �0�.) One clearly sees that
Lu�d is a decreasing function of Q2. Since Lu�d is nega-
tive, this means that jLu�dj is an increasing function ofQ2.
Actually, this somewhat peculiar behavior of Lu�d can
naturally be understood from the definitional equation of
quark OAM:

 2Lu�d�Q2� � 2Ju�d�Q2� ���u�d: (91)

Since Ju�d�Q2� is a decreasing function of Q2, while
��u�d is Q2-independent, Lu�d�Q2� is a decreasing func-
tion of Q2. In particular, since 2Ju�d�1� � 0, as verified
from the nonsinglet evolution Eq. (63), one finds that the
isovector quark OAM in the asymptotic limit Q2 ! 1 is
solely determined by the isovector axial-charge of the
nucleon g�I�1�

A � ��u�d as

 2Lu�d�1� � �g�I�1�
A � �1:269: (92)

This is really an astonishing observation, since it means
that the quark OAM in the asymptotic limit, at least its
isovector combination, is determined solely by the longi-
tudinal quark polarization! Note that, since there is no
room for doubt in using the relation Lq � Jq � 1

2 ��q to
extract quark OAM, this mysterious conclusion is an in-
evitable consequence of the following two theoretical pos-
tulates:

(i) the definition of Jq through Ji’s angular momentum
sum rule, Jq � 1

2 �hxi
q � Bq20�0��.

(ii) the observation that Jq and hxiq obey the same
evolution equation.

Anyhow, since the net quark OAM 2Lu�d�Q2� is a
rapidly decreasing function of Q2, we can easily under-
stand the feature that Lu is large and negative, while Ld is
large and positive above a few GeV scale. It is an interest-
ing open question whether such a large OAM of the u- and
d-quarks with opposite sign can be verified through some
direct measurements like the single-spin asymmetry of
semi-inclusive reactions depending on the Sivers mecha-
nism [19], which is believed to be sensitive to the OAM of
nucleon constituents.

Now, we attempt to give a complete solution to our first
question, i.e., the problem of determining the full spin
contents of the nucleon. Our answer on the decomposition
of the nucleon spin into the sum of LQ, 1

2 ��, and Jg is
already given in Fig. 4 within the range 0:30 GeV2 &

Q2 & 4:0 GeV2. Still, uncompleted is further decomposi-
tion of Jg into the sum of �g and Lg. Unfortunately, this
decomposition is not gauge invariant and it cannot be done
very reliably as compared with the analysis done so far.
Still, the following qualitative consideration would be of
some help to have a rough idea about the complete decom-
position of the nucleon spin, thereby clarifying the fairly
confused situation pointed out in the Introduction. A basis
of the following analysis is the observation that the gluon
polarization in the nucleon cannot be very large at least at
the low renormalization scales [7,8] and HERMES groups
[9]. As the simplest trial, we therefore assume that the
gluon polarization �g is zero, at the low-energy model
scale around Q2 � 0:3 GeV2. Combining this with the
CQSM prediction �� � 0:35 for the net quark longitudi-
nal polarization, we solve the NLO evolution equation for
�� and �g in the standard MS factorization scheme.

The resultant �� and �g as functions of Q2 are illus-
trated in Fig. 7 together with the empirical values obtained
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in the recent NLO analyses by the COMPASS and the
HERMES groups [7–9], as well as the old SMC fit [61].
As repeatedly emphasized, the new COMPASS and the
HERMES results for �� are remarkably close to the
prediction of the CQSM. Also noteworthy here is the
strong scale dependence of the longitudinal gluon polar-
ization. In spite of that we have assumed that �g is zero at
the starting energy scale; it grows rapidly with increasing
Q2. As nicely explained in [62], the growth of the gluon
polarization withQ2 can be traced back to the positive sign
of the relevant anomalous dimension ���0�1qg . The positivity
of this quantity dictates that the polarized quark is pre-
ferred to radiate a gluon with helicity parallel to the quark
polarization. Since the net quark spin component in the
proton is clearly positive, it follows that �g > 0 at least for
the gluon perturbatively radiated from the quarks. The
growth rate of �g is so fast especially in the relatively
low Q2 region that its magnitude reaches around (0.3–0.4)
already atQ2 � 3 GeV2, which may be compared with the
estimate given by the COMPASS group:

 �g�Q2 � 3 GeV2�COMPASS ’ �0:2–0:3�: (93)

It should be emphasized that the gluon polarization of this
size is not inconsistent with the GRSV standard scenario of
the polarized PDF fit [63]. (Almost the same viewpoint was
emphasized also in a recent bag model study of the gluon
polarization [64].) Let us therefore proceed further by
assuming that our estimate of �g shown in Fig. 7 is not
extremely far from the reality, which enables us to carry
out a decomposition of Jg into �g and Lg.

Figure 8 shows the gluon OAM Lg obtained in the above
way, together with 2Jg and 2�g. One sees that the gluon
OAM Lg is a rapidly decreasing function of Q2. This
feature naturally follows since Lg � Jg � �g and the in-
creasing rate of �g is much faster than that of Jg. Very
interestingly, the magnitude of Lg in the vicinity Q2 ’
1 GeV2 turns out to be fairly close to zero. We are not
sure whether this can be interpreted as giving support to
Brodsky and Gardner’s interpretation of the recent
COMPASS observation of small single-spin asymmetry
on the isoscalar deuteron target.

Anyhow, keeping in mind that the spin decomposition of
the nucleon is highly scale dependent, our estimate at the
scale Q2 ’ 4 GeV2 can be summarized as follows. The net
angular momentum fractions carried by the quarks and the
gluons are 2JQ ’ 0:52� 0:58 and 2Jg ’ 0:42� 0:48. The
total angular momentum carried by the quarks can further
be decomposed into the spin and OAM parts as �� ’ 0:33
and 2LQ ’ 0:19� 0:25. The decomposition of Jg into the
sum of �g and Lg is still very ambiguous. But, the standard
scenario for the evolution of �g indicates that the gluon
total angular momentum of the order of 2Jg ’ 0:42� 0:48
is a consequence of the cancellation of relatively large and
positive �g and negative gluon OAM with a little smaller
magnitude.

Finally, we make a short comment on the recent extrac-
tion of the quark total angular momentum through the
model-dependent GPD analyses of the semi-inclusive re-
actions. The first experimental result for the quark angular
momentum was obtained by the HERMES Collaboration
by studying the hard exclusive �0 production on the trans-
versely polarized hydrogen target [65]. Their results, cor-
responding to the average energy scaleQ2 ’ 2:5 GeV2, are
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given by [66,67],

 Ju � Jd=2:9 � 0:42� 0:21� 0:06: (94)

On the other hand, another combination of Ju and Jd was
extracted by the JLab Hall A Collaboration through the
analysis of the DVCS and the Bethe-Heitler processes on
the neutron and on the deuteron target [68]. Their result,
corresponding to the average energy scale Q2 ’ 1:9 GeV2,
is given by

 Jd � Ju=5:0 � 0:18� 0:14: (95)

For reference, we show below the corresponding predic-
tions of our semiphenomenological analysis. Depending
on the two choices Bu�d20 �0� � �0:12 and Bu�d20 �0� � 0, we
obtain

 Ju � Jd=2:9 � �0:245� 0:268�; Q2 � 2:5 GeV2;

(96)

and

 Jd � Ju=5:0 � �0:056� 0:078�; Q2 � 1:9 GeV2:

(97)

Clearly, our estimates lie in the allowed ranges of both the
HERMES and JLab determinations of Ju and Jd. However,
it is also clear that the error-bars of the two determinations
are still too large to be able to say something definite.

V. CONCLUDING REMARKS

After completing our semiempirical analysis of the nu-
cleon spin contents, we now try to answer several questions
raised in the Introduction. Accepting the observation that
the intrinsic quark spin carries about 1=3 of the total
nucleon spin, what carries the rest of it? As we have shown,
the answer depends on the scale of observation in an
essential manner. At the relatively high-energy scale
around Q2 ’ 4 GeV2, corresponding to the renormaliza-
tion scale of the recent lattice QCD simulations, the quarks
and gluons, respectively, carry about �52� 58�% and
(0.42–0.48)% of the total nucleon spin. The total angular
momentum fraction 2JQ carried by the quarks can further
be decomposed into the spin and OAM parts as �� ’ 0:33
and 2LQ ’ 0:19� 0:25. Our estimate for the quark OAM
appears to contradict the conclusion of the lattice QCD
studies that the OAM carried the quarks is nearly zero. The

cause of this discrepancy can mainly be traced back to a
little overestimation of the net longitudinal quark polariza-
tion �� in the lattice QCD simulation. In fact, once we
accept the use of the central value �� � 0:33 given by the
recent HERMES fit, the quark OAM of the order of 20% at
Q2 ’ 4 GeV2 is not unreasonable as can be shown from the
following two observations based on the evolution equa-
tions of relevant quantities. One is the fact that the asymp-
totic (Q2 ! 1� value of the net quark OAM fraction is
given by 2LQ�1� � 2JQ�1� � �� ’ 0:529� 0:33 ’
0:199 for nf � 6. The other is the fact that LQ is a decreas-
ing function of Q2. The decomposition of Jg into the sum
of the spin and the OAM parts is still very ambiguous.
Nonetheless, the standard scenario for the evolution of �g
strongly indicates that the total gluon angular momentum
of the order 2Jg � 0:42� 0:48 at Q2 � 4 GeV2 is likely
to be a consequence of the cancellation of relatively large
and positive �g and negative gluon OAM with a little
smaller magnitude.

At the low-energy scales of nonperturbative QCD
around Q2 ’ �0:30� 0:70� GeV2, we get a very different
picture on the nucleon spin contents. In these energy
scales, the quark OAM, the intrinsic quark spin, and the
gluon total angular momentum would give roughly the
same magnitude of contributions to the nucleon spin, i.e.,
2LQ ’ �� ’ 2Jg ’ 1=3.

Also very interesting is the flavor decomposition of the
total angular momentum and the OAM carried by the
quarks. On the basis of Ji’s observation that Jq and hxiq

obey the same evolution equation, we have shown that the
asymptotic limit of the isovector quark OAM is solely
determined by the isovector axial-charge of the nucleon
or the isovector part of the longitudinal quark polarization
as 2Lu�d�1� � �g�I�1�

A � ���u�d � �1:269, which
leads to novel isovector dominance of the quark OAM at
the high-energy scale. It is an interesting open question
whether this unique feature of the quark OAM at high Q2

can be probed through some direct observations in high-
energy DIS processes.
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