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We present an improved calculation of the B! K transition form factor with a chiral current in the
QCD light-cone sum rule approach. Under the present approach, the most uncertain twist-3 contribution is
eliminated. And the contributions from the twist-2 and the twist-4 structures of the kaon wave function are
discussed, including the SUf�3�-breaking effects. One-loop radiative corrections to the kaonic twist-2
contribution together with the leading-order twist-4 corrections are studied. The SUf�3�-breaking effect is
obtained, F

B!K
� �0�

FB!�� �0�
� 1:16� 0:03. By combining the light-cone sum rule results with the newly obtained

perturbative QCD results that have been calculated up to O�1=m2
b� by Wu, Huang, and Fang [Eur. Phys. J.

C 52, 561 (2007)], we present a consistent analysis of the B! K transition form factor in the large and
intermediate energy regions.
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I. INTRODUCTION

There are several approaches to calculate the B!
light meson transition form factors, such as the lattice
QCD technique, the QCD light-cone sum rules (LCSRs),
and the perturbative QCD (PQCD) approach. The PQCD
calculation is more reliable when the involved energy scale
is hard, i.e. in the large recoil regions; the lattice QCD
results of the B! light meson transition form factors are
available only for soft regions; while the QCD LCSRs can
involve both the hard and the soft contributions below
m2
b � 2mb� (� is a typical hadronic scale of roughly

500 MeV) and can be extrapolated to higher q2 regions.
Therefore, the results from the PQCD approach, the lattice
QCD approach, and the QCD LCSRs are complementary
to each other, and by combining the results from these
three methods, one may obtain a full understanding of the
B! light meson transition form factors in its whole
physical region. In Refs. [1,2], we have done a consistent
analysis of the B! � transition form factor in the whole
physical region. Similarly, one can obtain a deep under-
standing of the B!K transition form factor in the physical
energy regions by combining the QCD LCSR results with
the PQCD results and by properly taking the
SUf�3�-breaking effects into account.

The B!K transition form factors are defined as fol-
lows:
 

hK�p�j �q��bj �B�pB�i�FB!K� �q2�

�
�p�pB���

M2
B�M

2
K

q2 q�

�

�FB!K0 �q2�
M2
B�M

2
K

q2 q�

�2FB!K� �q2�p��F
B!K
� �q2�q�; (1)

where the momentum transfer q � pB � p. If we confine
ourselves to discuss the semileptonic decays B! Kl�l, it
is found that the form factor FB!K� �q2� is irrelevant for
light leptons (l � e, �) and only FB!K� �q2� matters, i.e.

 

d�

dq2 �B! Kl�l� �
G2
FjVtbV

�
tsj

2

192�3M3
B

�3=2�q2�jFB!K� �q2�j2;

(2)

where ��q2� � �M2
B �M

2
K � q

2�2 � 4M2
BM

2
K is the usual

phase-space factor. So, in the following, we shall concen-
trate our attention on FB!K� �q2�.

The B! K transition form factor has been analyzed by
several groups under the QCD LCSR approach [3–5],
where some extra treatments to the correlation function
either from the B-meson side or from the kaonic side are
adopted to improve their LCSR estimations. It is found that
the main uncertainties in estimation of the B! K transi-
tion form factor come from the different twist structures of
the kaon wave functions. It has been found that by choos-
ing proper chiral currents in the LCSR approach, the con-
tributions from the pseudoscalars’ twist-3 structures to the
form factor can be eliminated [6,7]. In the present paper,
we calculate the B! K form factor with a chiral current in
the LCSR approach to eliminate the most uncertain twist-3
light-cone functions’ contributions. And more accurately,
we calculate the O��s� corrections to the kaonic twist-2
terms. The SUf�3�-breaking effects from the twist-2 and
twist-4 kaon wave functions shall also be discussed.

In Ref. [8], we have calculated the B! K transition
form factor up to O�1=m2

b� in the large recoil region within
the PQCD approach [8], where the B-meson wave func-
tions �B and ��B that include the three-Fock states’ con-
tributions are adopted and the transverse momentum
dependence for both the hard scattering part and the non-
perturbative wave function, the Sudakov effects, and the
threshold effects are included to regulate the endpoint
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singularity and to derive a more reliable PQCD result.
Furthermore, the contributions from different twist struc-
tures of the kaon wave function, including its
SUf�3�-breaking effects, are discussed. So we shall adopt
the PQCD results of Ref. [8] for our discussion, i.e. to give
a consistent analysis of the B! K transition form factor in
the large and intermediate energy regions with the help of
the LCSR and the PQCD results.

The paper is organized as follows. In Sec. II, we present
the results for the B! K transition form factor within the
QCD LCSR approach. In Sec. III, we discuss the kaonic
distribution amplitudes (DAs) with SUf�3�-breaking ef-
fects being considered. In particular, we construct a model
for the kaonic twist-2 wave function based on the two
Gegenbauer moments aK1 and aK2 . Numerical results are
given in Sec. IV, where the uncertainties of the LCSR
results and a consistent analysis of the B! K transition
form factor in the large and intermediate energy regions by
combining the QCD LCSR result with the PQCD result are
presented. The final section is reserved for a summary.

II.FB!K� �q2� IN THE QCD LIGHT-CONE SUM RULE

The sum rule for FB!K� �q2� by including the perturbative
O��s� corrections to the kaonic twist-2 terms can be
schematically written as [3,7,9]

 fBF
B!K
� �q2� �

1

M2
B

Z s0

m2
b

e�M
2
B�s�=M

2
��LCT2 �s; q

2�

� �LCT4 �q
2�	ds; (3)

where �LCT2 �s; q
2� is the contribution from the twist-2 DA

and �LCT4 �q
2� is for twist-4 DA, and fB is the B-meson decay

constant. The Borel parameter M2 and the continuum
threshold s0 are determined such that the resulting form
factor does not depend too much on the precise values of

these parameters; in addition, the continuum contribution,
which is the part of the dispersive integral from s0 to1 that
has been subtracted from both sides of the equation, should
not be too large, e.g. less than 30% of the total dispersive
integral. The functions �LCT2 �s; q

2� and �LCT4 �q
2� can be

obtained by calculating the following correlation function
with a chiral current,

 

���p; q� � i
Z
d4xeiq
xhK�p�jTf �s�x����1� �5�

� b�x�; �b�0�i�1� �5�d�0�gj0i

� ���q2; �p� q�2	p� ����q2; �p� q�2	q�:

(4)

The calculated procedure is the same as that of the B! �
form factor that has been done in Refs. [6,7,9,10]. So for
simplicity, we only list the main results for B! K and
highlight the parts that are different from the case of B!
�, and the interesting reader may turn to Refs. [7,9] for
more detailed calculation technology.

As for �LCT2 �s; q
2�, it can be further written as

 �LCT2 �s; q
2� � �

fK
�

�
Z 1

0
du	K�u;�� ImTT2

�
q2

m�2b
;
s

m�2b
; u;�

�
;

(5)

where TT2�
q2

m�2b
; s
m�2b
; u; �� is the renormalized hard scatter-

ing amplitude, andm�b stands for the b-quark pole mass [9].
Defining the dimensionless variables r1 � q2=m�2b , r2 �
�p� q�2=m�2b , and � � �r1 � u�r2 � r1� � u�1�
u�M2

K=m
�2
b 	, up to order �s, we have

 

�
ImTT2�r1; r2; u; ��

�
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�
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�
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�
2
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�
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�
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�
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��
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8
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1
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� 2� 2 ln�r2 � 1� � ln

m�2b
�2

�
1

�� 1

����������
1� �

�2 �
2�1� r1�

�r1 � r2��r2 � ��

�

�
ln
�
r2
� 2 ln

�� 1

r2 � 1

�
�

4 ln�
�� 1

�
2�r2 � 1�

�r1 � r2���� r1�

�
ln�� 2 ln��� 1� � 1� ln

m�2b
�2

��

� ��1� ��
�

2
�
lnr2 �

1

r2
� 2 ln�r2 � 1� � ln

m�2b
�2

�
1

�� 1

����������
2�1� r2�

r2�r2 � ��

�
2�1� r1�

�r1 � r2��r2 � ��

�
1� ln

r2

�r2 � 1�2
� ln

m�2b
�2

���
; (6)

for the case of r1 < 1 and r2 > 1. As for the coefficients of 
�1� ��, the higher power suppressed terms of order
O��M2

K=m
�2
b �

2� have been neglected due to their smallness. The dilogarithm function Li2�x� � �
R
x
0
dt
t ln�1� t� and the

operation ‘‘�’’ is defined by
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Z
d�f���

1

1� �

����������
Z
d��f��� � f�1�	

1

1� �
: (7)

In the calculation, both the ultraviolet and the collinear
divergences are regularized by dimensional regularization
and are renormalized in the MS scheme with the totally
anticommuting �5. And similar to Ref. [3], to calculate the
renormalized hard scattering amplitude TT2�

q2

m�2b
; s
m�2b
; u; ��,

the current mass effects of the s-quark are not considered
due to their smallness. By settingMK ! 0, we return to the

case of B! �, and it can be found that the coefficients of
���� 1� and ��1� �� agree with those of Refs. [7,9],
while the coefficients of 
�1� �� confirm that of
Ref. [9] and differ from that of Ref. [7]. The present results
can be checked with the help of the kernel of the Brodsky-
Lepage evolution equation [11], since the � dependences
of the hard scattering amplitude and of the wave function
should compensate each other.

As for the subleading twist-4 contribution �LCT4 �q
2�, we

calculate it only in the zeroth order in �s, i.e.
 Rs0

m2
b
e�M

2
B�s�=M

2
�LCT4 �q

2�ds

M2
B

�
m�2b fKe

M2
B=M

2

M2
B

�Z 1

4
due��m

�2
b ��1�u��q

2�uM2
K��=uM

2

�
2g2�u�

uM2 �
8m2

b�g1�u� �G2�u�	

u3M4

�

�
Z 1

0
dv

Z
D�i

���1 � v�3 � ��

��1 � v�3�
2M2 e��m

2
b��1��1�v�3��q2���1�v�3�M2

K��=M
2��1�v�3�

� �2’?��i� � 2 ~’?��i� � ’k��i� � ~’k��i��
�
; (8)

where ’?��i�, ~’?��i�, ’k��i�, and ~’k��i� are three-
particle twist-4 DAs, respectively, and g1�u� and g2�u�
are two-particle twist-4 wave functions. Here, G2�u� �R
u
0 g2�v�dv, 4 �

���������������������������������������������
�s0�q2�M2

K�
2�4M2

K�m
2
b�q

2�
p

��s0�q2�M2
K�

2M2
K

,
and s0 denotes the subtraction of the continuum from the
spectral integral. By settingMK ! 0 (the lower integration
range of u should be changed to 4 �

m�2b �q
2

s0�q2 for this case),
we return to the results of B! � [7].

III. THE DISTRIBUTION AMPLITUDES OF THE
KAON

A. Twist-2 DA moments

Generally, the leading twist-2 DA 	K can be expanded
as Gegenbauer polynomials:

 	K�u;�0� � 6u�1� u�
�

1�
X1
n�1

aKn ��0�C
3=2
n �2u� 1�

�
:

(9)

In the literature, only aK1 ��0� is determined with higher
confidence level, and the higher Gegenbauer moments still
have large uncertainty and are determined with large er-
rors. Alterative determinations of Gegenbauer moments
rely on the analysis of experimental data.

The first Gegenbauer moment aK1 has been studied by
the light-front quark model [12], the LCSR approach [13–
17], and the lattice calculation [18,19], etc. In Ref. [14], the
QCD sum rule for the diagonal correlation function of local
and nonlocal axial-vector currents is used, in which the
contributions of condensates up to dimension six and the
O��s� corrections to the quark-condensate term are taken
into account. The moments derived there are close to that
of the lattice calculation [18,19], so we shall take
aK1 �1 GeV� � 0:05� 0:02 for our discussion. At the scale

�b �
����������������������
M2
B �m

�2
b

q
’ 2:2 GeV, aK1 ��b��0:793aK1 �1 GeV�

with the help of the QCD evolution.

The higher Gegenbauer moments, such as aK2 , are still
determined with large uncertainty and are determined with
large errors [3,13–15,20,21]. For example, Ref. [21] shows
that the value of aK2 is very close to the asymptotic distri-
bution amplitude, i.e. jaK2 �1 GeV�j � 0:04, while
Refs. [14,15,20] give larger values for aK2 , i.e.
aK2 �1 GeV� � 0:16� 0:10 [15], aK2 �1 GeV� � 0:27�0:37

�0:12
[14], and aK2 �2 GeV� � 0:175� 0:065 [20]. It should be
noted that the value of aK2 affects not only the twist-2
structure’s contribution but also the twist-4 structures’
contributions, since the SUf�3�-breaking twist-4 DAs
also depend on aK2 due to the correlations among the
twist-2 and twist-4 DAs, as will be shown in the next
subsection. Since the value of aK2 cannot be definitely
known, we take its center value to be a smaller one, i.e.
aK2 �1 GeV� � 0:115, for easily comparing with the results
of Ref. [3]. Furthermore, to study the uncertainties caused
by the second Gegenbauer moment aK2 , we shall vary aK2
within a broader region, e.g. aK2 �1 GeV� 2 �0:05; 0:15	, so
as to see which value is more favorable for aK2 by compar-
ing with the PQCD results.

B. Models for the twist-2 and twist-4 DAs

Before doing the numerical calculation, we need to
know the detailed forms for the kaon twist-2 DA and the
twist-4 DAs.

As for the twist-2 DA, we do not adopt the Gegenbauer
expansion (9), since its higher Gegenbauer moments are
still determined with large errors whose contributions may
not be too small; i.e. their contributions are comparable to
that of the higher twist structures. For example, by taking a
typical value aK4 �1 GeV� � �0:015 [3], our numerical
calculation shows that its absolute contributions to the
form factor are around 1% in the whole allowable energy
region, which is comparable to the twist-4 structures’ con-
tributions. Recently, a reasonable phenomenological
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model for the kaon wave function has been suggested in
Ref. [8], which is determined by its first Gegenbauer mo-
ment aK1 , by the constraint over the average value of the
transverse momentum square, hk2

?i
1=2
K  0:350 GeV [22],

and by its overall normalization condition. With the help of
such a model, a more reliable PQCD calculation on the
B! K transition form factors up to O�1=m2

b� has been
completed.

In the following, we construct a kaon twist-2 wave
function following the same arguments as that of Ref. [8]
but with a slight change to include the second Gegenbauer
moment aK2 ’s effect, i.e.
 

�K�x;k?�� �1�BKC
3=2
1 �2x�1��CKC

3=2
2 �2x�1�	

�
AK

x�1�x�
exp

�
��2

K

�k2
?�m

2
q

x
�
k2
?�m

2
s

1�x

��
;

(10)

where q � u, d, and C3=2
1 �1� 2x� is the Gegenbauer poly-

nomial. The constitute quark masses are set to be mq �

0:30 GeV and ms � 0:45 GeV. The four parameters AK,
BK, CK, and �K can be determined by the first two
Gegenbauer moments aK1 and aK2 , the constraint hk2

?i
1=2
K 

0:350 GeV [22], and the normalization conditionR
1
0 dx

R
k2
?
<�2

0

d2k?
16�3 �K�x;k?� � 1. For example, we have

AK��b� � 252:044 GeV�2, BK��b��0:09205, CK��b��
0:05250, and �K � 0:8657 GeV�1 for the case of
aK1 �1 GeV��0:05 and aK2 �1 GeV��0:115. Quantitatively,
it can be found that BK, CK, and �K decrease with the
increment of aK1 ; �K decreases with the increment of aK2 ,
while BK and CK increase with the increment of aK2 . Under
such a model, the uncertainty of the twist-2 DA mainly
comes from aK1 and aK2 . It can be found that the SUf�3�
symmetry is broken by a nonzero BK and by the mass
difference between the s quark and u (or d) quark in the
exponential factor. The SUf�3� symmetry breaking effect
of the leading twist kaon distribution amplitude has been
studied in Refs. [14,23] and references therein. The SUf�3�
symmetry breaking in the lepton decays of heavy pseudo-
scalar mesons and in the semileptonic decays of mesons
have been studied in Ref. [24]. After doing the integration
over the transverse momentum dependence, we obtain the
twist-2 kaon DA,
 

	K�x;�0��
Z
k2
?
<�2

0

d2k?
16�3 �K�x;k?�

�
AK

16�2�2�1�BKC
3=2
1 �2x�1��CKC

3=2
2 �2x�1�	

�exp
�
��2

K

�m2
q

x
�
m2
s

1�x

��

�

�
1�exp

�
�
�2
K�

2
0

x�1�x�

��
; (11)

where�0 � �b for the present case. Then, the Gegenbauer
moments aKn ��0� can be defined as

 aKn ��0� �

R
1
0 dx	K�1� x;�0�C

3=2
n �2x� 1�R

1
0 dx6x�1� x��C3=2

n �2x� 1�	2
; (12)

where 	K�1� x;�0� other than 	K�x;�0� is adopted to
compare the moments with those defined in the literature,
e.g. [13–15], since in these references x stands for the
momentum fraction of the s-quark in the kaon ( �K), while
in the present paper we take x as the momentum fraction of
the light q (anti)quark in the kaon (K).

The twist-3 contribution is eliminated by taking proper
chiral currents under the LCSR approach, so we only need
to calculate the subleading twist-4 contributions. The
needed four three-particle twist-4 DAs that are defined in
Ref. [25] can be expressed as [26]1

 

’?��i�� 30�2
3��2��1��h00�h01�3�

1
2h10�5�3�3�	;

~’?��i���30�2
3�h00�1��3��h01��3�1��3��6�1�2	

�h10��3�1��3��
3
2��

2
1��

2
2�		;

’k��i�� 120�1�2�3�a10��1��2�	;

~’k��i�� 120�1�2�3�v00�v10�3�3�1�	; (13)

where

 h00 � v00 � �
M2
K

3
4 � �


2

3
;

a10 �
21M2

K

8
4!4 �

9

20
aK2 M

2
K � 
2��

9

20
aK2 M

2
K;

v10 �
21M2

K

8
4!4 � 
2�;

h01 �
7M2

K

4
4!4 �

3

20
aK2 M

2
K �

2

3

2��

3

20
aK2 M

2
K

and

 h10 �
7M2

K

2
4!4 �

3

20
aK2 M

2
K �

4

3

2��

3

20
aK2 M

2
K;

with 4 � 
2=M2
K, !4 � 8�=21 and 
2�1 GeV� �

0:20 GeV2 and "�1 GeV� � 0:53 [26]. With the help of
QCD evolution, we obtain 
2��b� � 0:16 GeV2 and
"��b� � 0:34. It can be found that the dominant meson-
mass effects are proportional to aK2 and M2

K, so if setting
MK ! 0 or if the value of aK2 is quite small, then we return
to the results of Ref. [25]. For the remaining two-particle
twist-4 wave functions, their contributions are quite small
in comparison to the leading twist contribution and even
compared with those of the three-particle twist-4 wave
functions. And by taking only the leading meson-mass
effect into consideration, they can be related to the three-

1Similar to Ref. [3], we adopt the results that only include the
dominant meson-mass corrections. The less important meson-
mass-correction terms are not taken into consideration.
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particle twist-4 wave functions in the following way:

 g2�u� �
Z u

0
d�1

Z �u

0
d�2

1

�3
�2’?��i� � ’k��i�	 (14)

and
 

g1�u� �
Z u

0
dvg2�v� �

1

2

Z u

0
d�1

Z �u

0
d�2

1

�2
3

� �u�1 � u�2�

� �2’?��i� � ’k��i�	; (15)

which lead to
 

g1�u� �
�uu
6
��5 �uu�9h00 � 3h01 � 6h10 � 4 �uh01u

� 10 �uh10u� � a10�6� �uu�9� 80 �uu��	

� a10 �u3�10� 15 �u� 6 �u2� ln �u

� a10u
3�10� 15u� 6u2� lnu; (16)

 

g2�u� �
5 �uu�u� �u�

2
�4h00 � 8a10 �uu� h10�1� 5 �uu�

� 2h01�1� �uu�	: (17)

Similarly, it can be found that when setting aK2 ! 0, the
above expressions of g1�u� and g2�u� return to those
of Ref. [25]. Here, by adopting the relations d

du g2�u� �
� 1

2 limM2
K!0M

2
K�gK�u� �	K�u�	 and g1�u� �R

u
0 dvg2�v� �

1
16 limM2

K!0M
2
KA�u�, one can conveniently

obtain the higher mass-correction terms for g1�u� and
g2�u� on the basis of gK�u� and A�u� derived in
Refs. [13,26], and numerically, it can be found that these
terms’ contributions are indeed small.

IV. NUMERICAL RESULTS

A. Basic input

In the numerical calculations, we use

 MB � 5:279 GeV; MK � 494 MeV;

fK � 160 MeV; f� � 131 MeV:
(18)

Next, let us choose the input parameters entering into the
QCD sum rule. In general, the value of the continuum
threshold s0 might be different from the phenomenological
value of the first radial excitation mass. Here we set the
threshold value of s0 to be smaller than smax

0 ’ 34 GeV2,
whose root is slightly bigger than the mass of the B-meson
first radial excitation predicted by the potential model [27].
The pole quark mass m�b is taken as 4:7–4:9 GeV. Another
important input is the decay constant of the B-meson fB.
To keep consistent with the next-to-leading-order calcula-
tion of the twist-2 contribution, we need to calculate the
two-point sum rule for fB up to the corrections of order �s.
And in doing the numerical calculation, we shall adopt the

NLO fB to calculate the NLO twist-2 contribution and LO
fB for the LO twist-4 contributions, for consistency.

The reasonable range for the Borel parameter M2 is
determined by the requirement that the contributions of
twist-4 wave functions do not exceed 10% and those of the
continuum states are not too large, i.e. less than 30% of the
total dispersive integration. At a typical q2 � 6 GeV2, we
draw FB!K� �q2� versusM2 in Fig. 1. It can be found that the
contribution from the kaonic twist-2 wave function slightly
increases with the increment ofM2, while the contributions
from the kaonic twist-4 wave functions decrease with the
increment of M2; as a result, there is a platform for
FB!K� �q2� as a function of the Borel parameter M2 for
the range of 8 GeV2 <M2 < 18 GeV2. For convenience,
we shall always take M2 � 12 GeV2 in our following
discussions.

B. Uncertainties for the LCSR results

In the following we discuss the main uncertainties
caused by the present LCSR approach with a chiral current.

The present adopted chiral current approach has a strik-
ing advantage that the twist-3 light-cone functions which
are not known as well as the twist-2 light-cone functions
are eliminated, and then it is supposed to provide results
with less uncertainties. In fact, it has been pointed out that
the twist-3 contributions can contribute�30%–40% to the
total contribution [28] by using the standard weak current
in the correlator, e.g.
 

���p; q� � i
Z
d4xeiq
xhK�p�jTf�s�x���b�x�;

�b�0�i�5d�0�gj0i: (19)

If the twist-3 wave functions are not well known, then the

FIG. 1 (color online). FB!K� �q2� as a function of the Borel
parameter M2 at q2 � 6 GeV2, where s0 � 33:5 GeV2,
aK1 �1 GeV� � 0:05, aK2 �1 GeV� � 0:115, m�b � 4:7 GeV. The
solid line stands for the total contributions, the dashed line is
for the NLO result of the twist-2 kaonic wave function, and the
dotted line is for the LO result of twist-4 kaonic wave functions.
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uncertainties shall be large.2 So, in the literature, two ways
are adopted to improve the QCD sum rule estimation on the
twist-3 contribution: One is to calculate the above corre-
lator by including one-loop radiative corrections to the
twist-3 contribution together with the updated twist-3
wave functions [3]; the other is to introduce the proper
chiral current into the correlator, cf. Eq. (4), so as to
eliminate the twist-3 contribution exactly, which is what
we have adopted. We shall make a comparison of these two
approaches in the following. For such a purpose, we adopt
the following form for the QCD sum rule of Ref. [3], which
splits the form factor into contributions from different
Gegenbauer moments:
 

FB!K� �q2� � fas�q2� � aK1 ��0�f
aK1 �q2� � aK2 ��0�f

aK2 �q2�

� aK4 ��0�f
aK4 �q2�; (20)

where fas contains the contributions to the form factor
from the asymptotic DA and all higher-twist effects from
three-particle quark-quark-gluon matrix elements, and
fa

K
1 ;a

K
2 ;a

K
4 contains the contribution from the higher

Gegenbauer term of the DA that is proportional to aK1 ,
aK2 , and aK4 , respectively. The explicit expressions of
fas;a

K
1 ;a

K
2 ;a

K
4 can be found in Table V and Table IX of

Ref. [3]. And in doing the comparison, we shall take the
same DA moments for both methods; in particular, the
value of aK4 ��0� is determined from Eq. (12).

We show a comparison of our result of FB!K� �q2� with
that of Eq. (20) in Fig. 2 by varying aK1 �1 GeV� 2
�0:03; 0:07	, aK2 �1 GeV� 2 �0:05; 0:15	, and m�b 2
�4:7; 4:9	 GeV. In Fig. 2 the solid line is obtained with
aK1 �1 GeV� � 0:03, aK2 �1 GeV� � 0:15, and m�b �
4:9 GeV; the dashed line is obtained with aK1 �1 GeV� �
0:07, aK2 �1 GeV� � 0:05, and m�b � 4:7 GeV, which set
the upper and the lower ranges of FB!K� �q2�, respectively.
The shaded band in the figure shows the result of Eq. (20)
within the same aK1 and aK2 region and with its 12%
theoretical uncertainty [3]. It can be found that our present
LCSR results are consistent with those of Ref. [3] within
the large energy region q2 2 �0; 15 GeV2	. In other words,
these two treatments on the most uncertain twist-3 contri-
butions are equivalent to each other, while the chiral cur-
rent approach is simpler due to the elimination of the twist-
3 contributions. One may also observe that in the lower q2

region, different from Ref. [3] where FB!K� �q2� increases
with the increment of both aK1 and aK2 , the predicted
FB!K� �q2� will increase with the increment of aK2 but
with the decrement of aK1 . This difference is caused by
the fact that we adopt the model wave function (10) for our
discussion, whose parameters are determined by the com-
bined effects of aK1 and aK2 , while in Ref. [3], aK1 and aK2 are

varied independently and then their contributions are
changed separately.

Next we discuss the main uncertainties caused by the
present LCSR approach with a chiral current. First, we
discuss the uncertainties of FB!K� �q2� caused by the effec-
tive quark mass m�b by fixing aK1 �1 GeV� � 0:05 GeV and
aK2 �1 GeV� � 0:115 GeV. Under such a case, the value of
s0, and the LO and NLO values of fB should be varied
accordingly and be determined by using the two-point sum
rule with the chiral currents, e.g. to calculate the following
two-point correlator:
 

��q2� � i
Z
d4xeiqxh0j �q�x��1� �5�b�x�;

�b�0��1� �5�q�0�j0i: (21)

The sum rule for fB up to NLO can be obtained from
Ref. [30] through a proper combination of the scalar and
pseudoscalar results shown there,3 which can be schemati-
cally written as

 f2
BM

2
Be
�M2

B=M
2
�
Z s0

m2
b

�tot�s�e�s=M
2
ds; (22)

where the spectral density �tot�s� can be read from
Ref. [30]. The Borel parameter M2 and the continuum
threshold s0 are determined such that the resulting form

FIG. 2 (color online). FB!K� �q2� for aK1 �1 GeV� 2
�0:03; 0:07	, aK2 �1 GeV� 2 �0:05; 0:15	, and m�b 2
�4:7; 4:9	 GeV. The solid line is obtained with aK1 �1 GeV� �
0:03, aK2 �1 GeV� � 0:15, and m�b � 4:9 GeV; the dashed line is
obtained with aK1 �1 GeV� � 0:07, aK2 �1 GeV� � 0:05, andm�b �
4:7 GeV, which set the upper and the lower ranges of FB!K� �q2�,
respectively. As a comparison, the shaded band shows the result
of Ref. [3] together with its 12% theoretical uncertainty.

2A better behaved twist-3 wave function is helpful to improve
the estimations; e.g. Ref. [29] provides such an example for the
pionic case.

3One needs to change the c-quark mass to the present case of
the b-quark mass, and we take h�s� G

a
��G

a��i � 2� �0:33 GeV�4

[31] and �shq �qi2 � 0:162� 10�3 GeV6 [30] to do the numeri-
cal calculation.
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factor does not depend too much on the precise values of
these parameters; in addition, (1) the continuum contribu-
tion, which is the part of the dispersive integral from s0 to
1, should not be too large, e.g. less than 30% of the total
dispersive integral; (2) the contributions from the
dimension-six condensate terms shall not exceed 15% for
fB. Furthermore, we adopt an extra criterion as suggested
in Ref. [3] to derive fB: i.e. the derivative of the logarithm
of Eq. (22) with respect to 1=M2 gives the B-meson mass
MB,

 M2
B �

Z s0

m2
b

�tot�s�e�s=M
2
sds=

Z s0

m2
b

�tot�s�e�s=M
2
ds;

and we require its value to be fulfilled with high accuracy
�0:1%. These criteria define a set of parameters for each
value of m�b. Some typical values of fB are shown in
Table I, where fB is taken as the extremum within the
reasonable region of �M2; s0� and the value of m�b is taken
as [32]: m�b ’ 4:8� 0:1 GeV. fB decreases with the incre-
ment of m�b. The NLO result agrees with the first direct
measurement of this quantity by the Belle experiment,
fB � 229�36

�31�stat��34
�37�syst� MeV, from the measurement

of the decay B� ! � ��� [33].
The values of FB!K� �q2� for three typical values of m�b,

i.e. m�b � 4:7 GeV, 4.8 GeV, and 4.9 GeV, respectively, are
shown in Fig. 3. FB!K� �q2� increases with the increment of
m�b. It can be found that the uncertainty of the form factor
caused by m�b 2 �0:47 GeV; 0:49 GeV	 is �5% at q2 � 0
and increases to �9% at q2 � 14 GeV2. By taking a more
accurate m�b, e.g. m�b � �4:80� 0:05� GeV as suggested
by Ref. [3], the uncertainties can be reduced to �3% at
q2 � 0 and �5% at q2 � 14 GeV2.

Second, we discuss the uncertainties of FB!K� �q2�
caused by the twist-2 wave function �K, i.e. the two
Gegenbauer moments aK1 �1 GeV� and aK2 �1 GeV�. For
such a purpose, we fix s0 � 33:5 GeV2 and m�b �
4:7 GeV. To discuss the uncertainties caused by
aK1 �1 GeV�, we take aK2 �1 GeV� � 0:115. FB!K� �q2� for
three typical aK1 �1 GeV�, i.e. aK1 �1 GeV� � 0:03, 0.05,
and 0.07, respectively, are shown in Fig. 4. FB!K� �q2�
decreases with the increment of aK1 . It can be found that
the uncertainty of the form factor caused by aK1 �1 GeV� 2
�0:03; 0:07	 is small; i.e. it is about 3% at q2 � 0 and
becomes even smaller for larger q2. Similarly, to discuss
the uncertainties caused by aK2 �1 GeV�, we fix

aK1 �1 GeV� � 0:05. Since the value of aK2 is less certain
than aK1 , we take three typical values of aK2 �1 GeV� with
broader separation to calculate FB!K� �q2�, i.e.
aK1 �1 GeV��0:05, 0.10, and 0.15, respectively. The results
are shown in Fig. 5. It can be found that the uncertainty of
the form factor caused by aK2 �1 GeV�2 �0:05;0:15	 is also
small; i.e. it is about 5% at q2 � 0 and becomes smaller for
larger q2. FB!K� �q2� increases with the increment of aK2 in
the lower energy region q2 < 10 GeV2 and decreases with
the increment of aK2 in the higher energy region q2 >
10 GeV2.

As a summary, more accurate values for m�b, aK1 , and aK2
shall be helpful to derive a more accurate result for the

TABLE I. Parameters for fB, where mb and fB are given in
GeV, and s0 and M2 in GeV2.

LO result NLO result


 
 
 s0 M2 fB s0 M2 fB
mb � 4:7 33.5 2.80 0.165 33.5 2.80 0.219
mb � 4:8 33.2 2.39 0.131 33.2 2.31 0.174
mb � 4:9 32.8 2.16 0.0997 32.8 2.02 0.132

FIG. 3 (color online). FB!K� �q2� as a function of q2 with
varying m�b. The solid, dashed, and dash-dot lines are for m�b �
4:7 GeV, 4.8 GeV, and 4.9 GeV, respectively, where
aK1 �1 GeV� � 0:05 GeV and aK2 �1 GeV� � 0:115 GeV.

FIG. 4 (color online). FB!K� �q2� as a function of q2 with
varying aK1 �1 GeV�, where aK2 �1 GeV� � 0:115. The solid,
dashed, and dash-dot lines are for aK1 �1 GeV� � 0:03, 0.05,
and 0.07, respectively.
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form factor. Our results favor a smaller aK2 to compare with
the form factor in the literature, e.g. aK2 �1 GeV� � 0:15.
And under such a region, the uncertainty from aK2 is small;
i.e. its uncertainty is less than 5% for aK2 �1 GeV� 2
�0:05; 0:15	. It can be found that, by varying aK1 �1 GeV� 2
�0:03; 0:07	 and aK2 �1 GeV� 2 �0:05; 0:15	, the kaonic
twist-4 wave functions’ contribution is about 6% of the
total contribution at q2 � 0. The uncertainty of aK1 shows
that the SUf�3�-breaking effect is small but it is compa-
rable to that of the higher twist structures’ contribution. So
the SUf�3�-breaking effect and the higher twists’ contri-
butions should be treated on an equal footing. Using the
chiral current in the correlator, as shown in Eq. (4), the
theoretical uncertainty can be remarkably reduced. And
our present LCSR results are consistent with those of
Ref. [3] within the large energy region q2 2
�0; 15 GeV2	, which is calculated with the correlator (19)
and includes one-loop radiative corrections to twist-2 and
twist-3 contributions together with the updated twist-3
wave functions. In other words, these two approaches are
equivalent to each other in some sense, while the chiral
current approach is simpler due to the elimination of the
more or less uncertain twist-3 contributions. For the higher
energy region q2 > 15 GeV2, the LCSR approach is no
longer reliable. Therefore, the lattice calculations would be
extremely useful to derive a more reliable estimation on the
high energy behaviors of the form factors.

C. SUf �3�-breaking effect of the form factor within the
LCSR

To have an overall estimation of the SUf�3�-breaking
effect, we make a comparison of the B! � and B! K
form factors: FB!�� �q2� and FB!K� �q2�. The formulas for

FB!�� �q2� can be conveniently obtained from that of
FB!K� �q2� by taking the limit MK ! 0. In doing the calcu-
lation for FB!�� �q2�, we directly use the Gegenbauer ex-
pansion for the pion twist-2 DA, because different from the
kaonic case, now the higher Gegenbauer terms’ contribu-
tions are quite small even in comparison to the twist-4
contributions; e.g. by taking a�4 �1 GeV� � �0:015 [3], our
numerical calculation shows that its absolute contribution
to the form factor is less than 0.5% in the whole allowable
energy region. We show a comparison of FB!K� �q2� and
FB!�� �q2� in Fig. 6 with the parameters taken to be m�b �
4:7 GeV, s0 � 33:5 GeV2, fLO

B � 0:165 GeV, fNLO
B �

0:219 GeV, aK1 �1 GeV��0:05, and a�=K2 �1 GeV��0:115.
Second, by varying m�b 2 �4:7; 4:9	 GeV, aK1 �1 GeV� 2

�0:03; 0:07	, and a�=K2 �1 GeV� 2 �0:05; 0:15	, we obtain
FB!�� �0� 2 �0:239; 0:294	 and FB!K� �0� 2 �0:273; 0:349	.

Then we obtain FB!K� �0�

FB!�� �0�
� 1:16� 0:03, which favors a

small SUf�3�-breaking effect and is consistent with the
PQCD estimation 1:13� 0:02 [8], the QCD sum rule
estimations, e.g. �FB!K� �0�=FB!�� �0�	  1:16 [3],4

1:08�0:19
�0:17 [34], and 1:36�0:12

�0:09 [14], respectively, and a re-
cently relativistic treatment that is based on the study of the
Dyson-Schwinger equations in QCD, i.e.
�FB!K� �0�=FB!�� �0�	 � 1:23 [35].

D. Consistent analysis of the form factor within the
large and the intermediate energy regions

Recently, Ref. [8] gave a calculation of the B! K
transition form factor up to O�1=m2

b� in the large recoil
region within the PQCD approach [8], where the B-meson
wave functions �B and ��B that include the three-Fock
states’ contributions are adopted, and the transverse mo-
mentum dependence for both the hard scattering part and
the nonperturbative wave function, the Sudakov effects,
and the threshold effects are included to regulate the end-
point singularity and to derive a more reliable PQCD
result. Furthermore, the uncertainties for the PQCD calcu-
lation of the B! K transition form factor have been care-
fully studied in Ref. [8]. So we shall adopt the PQCD
results of Ref. [8] for our discussion. We only need to
change the twist-2 kaon wave function �K used there to
the present one as shown in Eq. (10).

We show the LCSR results together with the PQCD
results in Fig. 7. In drawing the figure, we take
aK1 �1 GeV� � 0:07, aK2 �1 GeV� � 0:05, and m�b �
4:8 GeV. And the uncertainties of these parameters cause
about�10% errors for the LCSR calculation, while for the
PQCD results, we should also consider the uncertainties
from the B-meson wave functions, i.e. the values of the two
typical parameters �� and 
, and we take �� 2 �0:50; 0:55	

FIG. 5 (color online). FB!K� �q2� as a function of q2 with
varying aK2 �1 GeV�, where aK1 �1 GeV� � 0:05. The solid,
dashed, and dash-dot lines are for aK2 �1 GeV� � 0:05, 0.10,
and 0.15, respectively.

4To estimate the ratio �FB!K� �0�=FB!�� �0�	 from Ref. [3], we
take aK1 �1 GeV� � 0:05� 0:02.
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and 
 2 �0:25; 0:30	 [8]. It can be found that the PQCD
results can match with the LCSR results for the small q2

region, e.g. q2 < 10 GeV2. Then by combining the PQCD
results with the LCSR results, we can obtain a consistent
analysis of the form factor within the large and the inter-
mediate energy regions. Inversely, if the PQCD approach
must be consistent with the LCSR approach, then we can

obtain some constraints on the undetermined parameters
within both approaches. For example, according to the
QCD LCSR calculation, the form factor FB!K� �q2� in-
creases with the increment of the b-quark mass, and then
the value of mb cannot be too large or too small5; i.e. if
allowing the discrepancy between the LCSR result and the
PQCD results to be less than 15%, then m�b should be
around the value of 4:8� 0:1 GeV.

V. SUMMARY

In this paper, we have calculated the B! K transition
form factor by using the chiral current approach under
the LCSR framework, where the SUf�3�-breaking effects
have been considered and the twist-2 contribution is calcu-
lated up to next-to-leading order. It is found that our
present LCSR results are consistent with those of
Ref. [3] within the large energy region q2 2
�0; 15 GeV2	, which is calculated with the conventional
correlator (19) and includes one-loop radiative corrections
to twist-2 and twist-3 contributions together with the up-
dated twist-3 wave functions. And our present adopted
LCSR approach with a chiral current is simpler due to
the elimination of the more or less uncertain twist-3
contributions.

The uncertainties of the LCSR approach have been
discussed; in particular, we have found that the second
Gegenbauer moment aK2 prefers asymptoticlike, smaller
values. By varying the parameters within the reasonable
regions m�b 2 �4:7; 4:9	 GeV, aK1 �1 GeV� 2 �0:03; 0:07	,
and a�=K2 �1 GeV� 2 �0:05; 0:15	, we obtain FB!�� �0� �
0:267� 0:026 and FB!K� �0� � 0:311� 0:038, which are
consistent with the PQCD and the QCD sum rule estima-

tions in the literature. Consequently, we obtain FB!K� �0�

FB!�� �0�
�

1:16� 0:03, which favors a small SUf�3�-breaking
effect. Also, it has been shown that one can do a consistent
analysis of the B! K transition form factor in the
large and intermediate energy regions by combining the
QCD LCSR result with the PQCD result. The PQCD
approach can be applied to calculate the B! K transition
form factor in the large recoil regions, while the QCD
LCSR can be applied to intermediate energy regions.
Combining the PQCD results with the QCD LCSR, we
can give a reasonable explanation for the form factor in
the low and intermediate energy regions. Furthermore,
the lattice estimation will help us to understand the
form factors’ behaviors in even higher momentum trans-
fer regions, e.g. q2 > 15 GeV2. So, we suggest such a
lattice calculation can be helpful. Then by comparing the
results of these three approaches, the B! K transition
form factor can be determined in the whole kinematic
region.

FIG. 6 (color online). Comparison of FB!K� �q2� and FB!�� �q2�,
where m�b � 4:7 GeV, s0 � 33:5 GeV2, fLO

B � 0:165 GeV,
fNLO
B � 0:219 GeV, aK1 �1 GeV� � 0:05, and a�=K2 �1 GeV� �

0:115. The solid and dashed lines are for FB!K� �q2� and
FB!�� �q2�, respectively.

FIG. 7 (color online). LCSR and PQCD results for FB!K� �q2�.
The solid line is for our LCSR result, and the dash-dot line is for
the LCSR result of Ref. [3] with aK1 �1 GeV� � 0:07 and
aK2 �1 GeV� � 0:05. The shaded band is the PQCD result with
�� 2 �0:50; 0:55	 and 
 2 �0:25; 0:30	, where the dashed line is
for the center values �� � 0:525 and 
 � 0:275, the upper edge
of the band is for �� � 0:50 and 
 � 0:30, and the lower edge of
the band is for �� � 0:55 and 
 � 0:25.

5Another restriction on mb is from the experimental value [33]
on fB.
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