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So far, the infrared behavior of the gluon and ghost propagator based on the Gribov-Zwanziger
approach predicted a positivity violating gluon propagator vanishing at zero momentum, and an infrared
enhanced ghost propagator. However, recent data based on huge lattices have revealed a positivity
violating gluon propagator which turns out to attain a finite nonvanishing value very close to zero
momentum. At the same time the ghost propagator does not seem to be infrared enhanced anymore. We
point out that these new features can be accounted for by yet unexploited dynamical effects within the
Gribov-Zwanziger approach, leading to an infrared behavior in qualitatively good agreement with the new
data.
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I. INTRODUCTION

During the past few years, much attention has been
devoted to the study of the gluon and ghost propagator,
including their low energy behavior where Yang-Mills
gauge theories are confining. As a consequence the gluon
cannot be considered as a free particle anymore. Because
of the lack of an explicit knowledge of the physical degrees
of freedom, it still remains highly useful to study the gluon
and ghost propagator in order to probe the nonperturbative
infrared regime. Let us only mention that the gluon propa-
gator, for example, finds an important use in phenomeno-
logical studies, see e.g. [1]. In the past, a good agreement
between the lattice data and the analytical results arising
from the Gribov-Zwanziger action in the Landau gauge
were found: (1) an infrared suppressed and positivity vio-
lating gluon propagator vanishing at zero momentum,
(2) an infrared enhanced ghost propagator. We recall that
the Gribov-Zwanziger action was constructed to take into
account the existence of gauge copies [2,3]. However, very
recent lattice data obtained at large volumes [4,5], which
allows one to get very close to zero momentum, now give
evidence of a hitherto unexpected behavior in the deep
infrared: (1) an infrared suppressed and positivity violating
gluon propagator nonvanishing at zero momentum, (2) a
ghost propagator essentially behaving like 1=p2 at low
momentum, which is clearly not enhanced. To our knowl-
edge, none of the current theoretical approaches exhibit all
such features [6–10]. In this paper we propose a dynamical
mechanism within the Gribov-Zwanziger approach that
could account for the new lattice results.

II. THE GRIBOV-ZWANZIGER ACTION

We first give a short overview of the action constructed
by Zwanziger [3] which implements the restriction to the
Gribov region � in Euclidean Yang-Mills theories in the
Landau gauge. We recall that this restriction to � can be
implemented by adding the nonlocal horizon function to
the original Yang-Mills action,

 SYM � SLandau � �
4g2

Z
d4xfabcAb��M

�1�adfdecAe�;

(1)

where Mab � �@��@��ab � gfacbAc�� is the Faddeev-
Popov operator, SYM � 1=4

R
d4xF��F�� and SLandau �R

d4x�ba@�A
a
� � �ca@�D

ab
� c

b� stands for the gauge fixing
and the ghost part. However, it is unclear how to handle
consistently such a nonlocal action at the quantum level, so
we are obliged to add extra fields � �’ac� ; ’

ac
� ; �!ac

� ;!
ac
� � in

order to localize this action. Doing so, the Gribov-
Zwanziger action reads [3,10]
 

S � S0 � �2g
Z
d4x

�
fabcAa�’bc� � fabcAa� �’bc�

�
4

g
�N2 � 1��2

�
; (2)

with

 S0 � SYM �
Z
d4x�ba@�A

a
� � �ca@��D�c�

a�

�
Z
d4x� �’ai @��D�’i�

a � �!a
i @��D�!i�

a

� g�@� �!a
i �f

abm�D�c�
b’mi �; (3)

whereby � �’ac� ; ’
ac
� � are a pair of complex conjugate bo-

sonic fields, whereas � �!ac
� ;!ac

� � are anticommuting.
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Because of a global U�f� symmetry, f � 4�N2 � 1�, with
respect to the composite index i � ��; c� of the additional
fields � �’ac� ; ’ac� ; �!ac

� ;!ac
� �, we introduced a notational

shorthand,

 � �’ac� ; ’ac� ; �!ac
� ;!ac

� � � � �’ai ; ’
a
i ; �!a

i ; !
a
i �: (4)

The dimensional parameter � is not free, being determined
by the gap equation (horizon condition) @�=@� � 0,
which ensures the restriction to the Gribov region. � is
the quantum effective action obtained from (2).

As it has been shown in [3,10], the action (2) is renor-
malizable to all orders. To prove this by the method of
algebraic renormalization [11], we embed this action into a
larger one which contains more symmetries. This action
turns out to be given by [10]

 � � S0 � Ss � Sext; (5)

with S0 given in (3) and
 

Ss � s
Z
d4x��Uai

� �D�’i�
a � Vai� �D� �!i�

a �Uai
�V

ai
� �;

Sext �
Z
d4x

�
�Ka

��D�c�a �
1

2
gLafabccbcc

�
: (6)

We introduced new sourcesMai
� , Vai� ,Uai

� ,Nai
� ,Ka

�, and La,
which are necessary to analyze the renormalization of the
corresponding composite field operators in a Becchi-
Rouet-Stora-Tyutin (BRST) invariant fashion. The BRST
operator s acts on the fields and sources appearing in the
action as follows

 sAa� � ��D�c�
a; sca � 1

2gf
abccbcc; s �ca � ba;

sba � 0; s’ai � !a
i ; s!a

i � 0; s �!a
i � �’ai ;

s �’ai � 0; sUai
� � Mai

� ; sMai
� � 0;

sVai� � Nai
� ; sNai

� � 0; sKa
� � 0; sLa � 0;

(7)

whereby the BRST operator s is nilpotent, s2 � 0. One can
easily see that the action � is indeed BRST invariant.
Henceforth, the action � displays a greater number of
symmetries, encoded in the following Ward identities
[3,10].

(i) For the U�f� invariance mentioned before we have
 

Uij� � 0;

Uij �
Z
d4x

�
’ai

�
�’aj

� �’aj
�
� �’ai

�!a
i
�
�!a

j

� �!a
j
�
� �!a

i

�
: (8)

(ii) The Slavnov-Taylor identity reads

 

S��� � 0;

S��� �
Z
d4x

�
��

�Ka
�

��

�Aa�
�
��

�La
��

�ca
� ba

��

� �ca

� �’ai
��

� �!a
i
�!a

i
��

�’ai
�Mai

�
��

�Uai
�

� Nai
�
��

�Vai�

�
: (9)

(iii) The Landau gauge condition and the antighost
equation are given by

 

��

�ba
� @�A

a
�; (10)

 

��

� �ca
� @�

��

�Ka
�
� 0: (11)

(iv) The ghost Ward identity:
 

Ga� � �a
cl;

Ga �
Z
d4x

�
�
�ca
� gfabc

�
�cb

�
�bc
� ’bi

�
�!c

i

� �!b
i
�
� �’ci

� Vbi�
�

�Nci
�
�Ubi

�
�

�Mci
�

��
;

�a
cl � g

Z
d4xfabc�Kb

�Ac� � Lbcc�: (12)

The term �a
cl denotes a classical breaking as it is

linear in the quantum fields.
(v) The linearly broken local constraints:

 

��

� �’ai
� @�

��

�Mai
�
� gfabcAb�Vci� ; (13)

 

��

�!ai
� @�

��

�Nai
�
� gfabc �!bi ��

�bc
� gfabcAb�U

ci
�;

(14)

 

��

� �!ai
� @�

��

�Uai
�
� gfabcVbi�

��

�Kc
�

� �gfabcAb�N
ci
� ; (15)

 

��

�’ai
� @�

��

�Vai�
� gfabc �’bi

��

�bc
� gfabc �!bi ��

� �cc

� gfabcUbi
�
��

�Kc
�
� gfabcAb�M

ci
�: (16)

(vi) The exact Rij symmetry:
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Rij� � 0;

Rij �
Z
d4x

�
’ai

�
�!a

j
� �!a

j
�
� �’ai

� Vai�
�

�Naj
�

�Uaj
�

�
�Mai

�

�
: (17)

According to the algebraic renormalization procedure [11],
Ward identities induce constraints on the most general
allowed counterterm �c at the quantum level. Once �c is
found, one can check if it can be reabsorbed in the original
starting action by a suitable renormalization of fields,
sources and parameters, thereby establishing the renorma-
lizability. One can show [10] that �c does not depend on
the Lagrange multiplier ba, and that the antighost �ca and
the i-valued fields ’ai , !a

i , �’ai , �!a
i can enter only through

the combinations
 

~Ka
� � Ka

� � @� �ca � gfabc ~Ubi
�’

ci � gfabcVbi� �!ci;

~Uai
� � Uai

� � @� �!ai; ~Vai� � Vai� � @�’
ai;

~Nai
� � Nai

� � @�!ai; ~Mai
� � Vai� � @� �’ai:

(18)

Imposing the constraints, the most general counterterm
yields,
 

�c � a0SYM � a1

Z
d4x

�
Aa�

�SYM

�Aa�
� ~Ka

�@�c
a

� ~Vai� ~Mai
� � ~Uai

�
~Nai
�

�
(19)

with a0, a1 two arbitrary parameters. It then turns out that
�c can be reabsorbed into the starting action (5) by a
multiplicative renormalization [3,10]. At the end, we give
the sources the following physical values
 

Mab
��jphys � Vab��jphys � �2�ab���;

Uai
� jphys � Nai

� jphys � Ka
�jphys � Lajphys � 0;

(20)

in order to recover the physical action (2).

III. INCLUSION OF A NEW DYNAMICAL EFFECT

In a sense, the fields � �’ac� ; ’
ac
� ; �!ac

� ;!
ac
� � introduced to

localize the horizon function appearing in (1), will corre-
spond to the nonlocal dynamics. Once these fields are
present, they will quite evidently develop their own dy-
namics at the quantum level, which might include further
nonperturbative effects, not yet accounted for. These ef-
fects can induce important additional changes in the infra-
red region. More precisely, looking at the A’-coupling
present at tree level in the action (2), a nontrivial effect
in the ’-sector will get immediately translated into the
gluon sector. We shall now explore the effects of a dynami-

cal mass generation for the ’-fields. This can be done by
introducing the local composite operator �’’ into the ac-
tion (2). Since the horizon condition is in fact equivalent
with giving a particular value to a dimension 2
A’-condensate [3], more precisely hgfabcAa��’bc� �
�’bc� �i � �2d�N2 � 1��2, it does seem to be reasonably
fair to consider a possible �’’-condensation. Remarkably,
it turns out that this is possible while preserving the re-
normalizability and BRST invariance. In order to do so, we
try to enlarge the action � by adding a massive term of the
form J �’ai ’

a
i , with J a new source. First of all, for renor-

malization purposes, we have to add this term in a BRST
invariant way. Second, in analogy with [10], we will also
need a term / J2, indispensable to kill potential novel
divergences / J2 in the generating functional. We thus
consider the following extended action:

 �0 � �� S �’’; (21)

 S �’’ �
Z
d4x

�
s��J �!a

i ’
a
i � � �

J2

2

�

�
Z
d4x

�
�J� �’ai ’

a
i � �!a

i !
a
i � � �

J2

2

�
; (22)

with � a new dimensionless quantity and J a new source
invariant under the BRST transformation, sJ � 0. We
underline that the final mass operator, �’’� �!!, is
BRST invariant. Now, it can be nicely checked that all
the Ward identities of the previous section are maintained,
up to breaking terms linear in the source J, which are
irrelevant for the renormalizability analysis. The final out-
put is that the new action (21) enjoys multiplicative renor-
malizability [12].

An interesting feature is that the anomalous dimension
of the mass J is not an independent quantity, as it is related
to the running of the gauge coupling and of the gluon field
[12].

We mention already that we will be able to prove that
this new parameter � is in fact redundant. We postpone this
to a forthcoming larger paper [12], since the aim of this
paper is merely to illustrate the relevance of the introduced
mass operator.

Summarizing, the BRST invariant mass operator �’’�
�!! fits quite naturally into the theory: it is renormalizable

to all orders and, moreover, it does not introduce any new
renormalization constants into the theory.

IV. THE MODIFIED GLUON AND GHOST
PROPAGATOR

Finally, we come to the main purpose of this paper. We
shall have a look at the effect on the propagators in the
presence of the mass operator �’’� �!!.
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A. The gluon propagator

In order to calculate the gluon propagator we only need
the quadratic part of the action �0. We also replace the
source J with the more conventional mass notation M2, so
that

 �00 �
Z
d4x

�
1

4
�@�Aa� � @�Aa��2 �

1

2�
�@�Aa��2

� �’ab� @2’ab� � �2g�fabcAa�’bc� � fabcAa� �’bc� �

�M2 �’ab� ’
ab
�

�
� . . . ;

where the limit �! 0 is understood in order to recover the
Landau gauge. The ‘‘. . .’’ stand for the constant term
�d�N2 � 1��4 and other terms in the ghost and!, �! fields
irrelevant for the calculation of the gluon propagator. Next,
we integrate out ’ and �’, yielding
 

�00 �
Z
d4x

1

2
Aa��ab

��A
b
� � . . . ;

�ab
�� �

��
�@2 �

2g2N�4

@2 �M2

�
��� � @�@�

�
1

�
� 1

��
�ab:

Taking the inverse of �ab
�� and converting it into momen-

tum space, we find the following gluon propagator

 D ab
���p� �

p2 �M2

p4 �M2p2 � 2g2N�4|������������������{z������������������}
D�p�

P���p��ab; (23)

where P���p� � ��� �
p�p�
p2 . From this expression we

make three observations: (1) D�p� enjoys infrared sup-
pression, (2) D�p� displays a positivity violation,
(3) D�0� / M2, so the gluon propagator does not vanish
at the origin, which is clearly a different result due to the
novel mass term proportional to �’’� �!!.

B. The ghost propagator

Let us now turn to the ghost propagator. We first derive
the gap equation for the Gribov parameter �, useful for the
calculation of this propagator at one loop. The part of the
one loop effective action ��1� relevant for this gap equation
reads
 

��1�� � �d�N2 � 1��4 �
�N2 � 1�

2
�d� 1�

�
Z ddp

�2��d
ln
�
p4 � p2 2Ng2�4

p2 �M2

�
:

Minimizing ��1�� with respect to � and setting d � 4 leads
to the following gap equation:

 

4

3g2N
�
Z d4p

�2��4
1

p4 �M2p2 � 2g2N�4 : (24)

We are now ready to compute the ghost propagator at one

loop order, as depicted in Fig. 1. The corresponding ana-
lytical representation reads

 G ab�k� � �ab
1

k2

1

1� �
; (25)

with

 � � Ng2
k�k�
k2

Z d4q

�2��4
1

�k� q�2

�
q2 �M2

q4 �M2q2 � 2g2N�4 P���q�:

If we take a closer look at the integral appearing in �, we
can invoke the gap equation (24) in order to simplify �1�
��. By virtue of

 Ng2
k�k�
k2

Z d4q

�2��4
1

q4 �M2q2 � 2g2N�4

�
��� �

q�q�
q2

�

� Ng2
k�k�
k2 �

3

4
���

Z d4q

�2��4
1

q4 �M2q2 � 2g2N�4

� 1;

we find

 1� � � Ng2
k�k�
k2

Z d4q

�2��4

�
k2 � 2k � q�M2

�k� q�2

�

�
1

q4 �M2q2 � 2g2N�4 P���q�: (26)

The last expression reveals that the ghost propagator will
not be enhanced at k2 � 0. Indeed, if we expand �1� �� in
the region around k2 � 0, we see

 1� � � Ng2
k�k�
k2

Z d4q

�2��4
�M2

q2

P���q�

q4 �M2q2 � 2g2N�4

�O�k2�

� �
3

4
g2M2 1

8�2

ln�
M2�

��������������������
M4�8g2N�4
p

M2�
��������������������
M4�8g2N�4
p �

2
������������������������������
M4 � 8g2N�4

p �O�k2�:

(27)

We conclude that the ghost propagator keeps displaying a
1=k2 behavior for k2 � 0. It becomes apparent now that,
without the introduction of the new BRST invariant mass
term, the Gribov-Zwanziger approach would predict a 1=k4

instead of a 1=k2 behavior.

+

FIG. 1. The one loop corrected ghost propagator.
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V. CONCLUSION

In this paper, we have pointed out that the new lattice
data for the gluon and ghost propagator have a simple
understanding within the Gribov-Zwanziger approach.
This is due to the introduction of a multiplicatively renor-
malizable BRST invariant mass operator �’’� �!!, which
fits into the theory in a very natural way. We hope that the
theoretical framework presented here will stimulate further
investigations, allowing a deeper understanding of the
propagators in the low momentum region. We end by

noticing that it would be interesting to find out what the
analogous effects in the maximal Abelian gauge might be
and also compare those with available lattice data [13].
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