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The continuation of the Liouville conformal field theory to c � 1 is considered. The viability of an
interpretation involving a timelike boson which is the conformal factor for two-dimensional asymptoti-
cally de Sitter geometries is examined. The conformal bootstrap leads to a three-point function with a
unique analytic factor which is the same as that which appears along with the fusion coefficients in the
minimal models. A corresponding nonanalytic factor produces a well-defined metric on fields only when
the central charge is restricted to those of the topological minimal models, and when the conformal
dimensions satisfy h > �c� 1�=24. However, the theories considered here have a continuous spectrum
which excludes the degenerate representations appearing in the minimal models. The c � 1 theory has
been investigated previously using similar techniques, and is identical to a nonrational conformal field
theory (CFT) which arises as a limit of unitary minimal models. When coupled to unitary matter fields, the
nonunitary theories with c � �2 produce string amplitudes which are similar to those of the minimal
string.
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I. INTRODUCTION

The Liouville conformal field theory (for reviews and
early work see [1–5]) has been widely investigated for well
over two decades, although it was some time before a well-
defined three-point function was written down [6–8].
Since then there has been very substantial progress in
understanding Liouville theory on both closed and open
surfaces [9–14]. However, it has been relatively recently
[15–17] that the bulk theory has been shown to constitute a
rigorously defined prototype (in the sense of [18]) for
unitary nonrational conformal field theories. Some of the
advances in understanding Liouville theory are due to the
fact that it shares many properties with the minimal models
[19,20]. These are rational theories with c < 1 and, par-
ticularly for the unitary family, are perhaps the most com-
pletely understood of all conformal field theories (CFTs).
The coupling of the minimal models to Liouville theory
has been considered [21–28] as an interesting string model
which is closely associated with two-dimensional gravity.
One somewhat problematic feature of this model, shared
by all unitary models coupled to the minimal models, is
that the conformal dimensions of the Liouville operators
which screen minimal model fields are both discrete and
bounded from above. Furthermore, a related theory involv-
ing a timelike Liouville field provides a seemingly more
tractable spacetime interpretation for string amplitudes, as
well as an interesting model of two-dimensional asymp-
totically de Sitter cosmologies. For these and other reasons,
efforts have been made [29–33] to define a nonrational
counterpart to Liouville theory for c � 1 through the ana-
lytic continuation of correlation functions.

One interesting example of a nonrational CFT that is
related to Liouville theory is the c � 1 model of [34]

which appears as the p!1 limit of the unitary �p;p�1�
minimal models. It was later shown in [32] that this model
results from the continuation of Liouville theory to c � 1.
This work also included a discussion of the related theories
for c < 1. The present work uses some of the techniques of
[32] to treat these theories in more detail. The result has
been that nonrational conformal field theories arising from
a continuation of Liouville theory appear only at the cen-
tral charges of the topological minimal models. These are
given by

 c � 13� 6�q�1 � q�; (1)

where q is a positive integer. Unlike the c � 1 theory of
[34], for q > 1 these theories are necessarily nonunitary.
However, they share many features with this model, most
significantly that only nondegenerate Virasoro representa-
tions appear in the spectrum of fields. Furthermore, in
order to define a diagonal (Mobius invariant) metric on
fields, these theories also require a specification of the
identity operator through the derivative of the continued
dimension zero field. This procedure produces a spectrum
of fields which appears to be restricted to h > �c� 1�=24,
a range for which a timelike interpretation of the continued
Liouville boson is difficult to elucidate. The precise corre-
spondence of these theories to the topological minimal
models is an interesting matter that will not be addressed
here.

The order of topics covered in these notes is as follows.
In Sec. II a short review of Liouville field theory is given,
along with some discussion of the zero-mode picture. In
Sec. III a discussion of the continuation of the Liouville
boson to timelike signature is presented, along with known
results about the spectrum of normalizable states in the
corresponding quantum mechanics. In Sec. IV some con-
ventions are established and a somewhat detailed review is*w-mcelgin@uchicago.edu
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given of the derivation of the shift relation of the Liouville
three-point function through the imposition of crossing
symmetry on four-point correlators. In Sec. V the unique
(up to vertex operator rescalings) solution of the shift
relations is given for c � 25, and a corresponding function
for c � 1 is considered which arises from the continuation
of the Liouville shift relations. As discussed in [26], this
function is closely related to the minimal model three-point
function, but does not produce the correct fusion coeffi-
cients and turns out not to respect Mobius invariance. In
Sec. VI the continuation of the Liouville three-point func-
tion to c � 1 is derived. The analytic solution to the shift
relations for c � 1 given in Sec. V appears along with a
nonanalytic factor previously introduced in [32] for c � 1.
This expression constitutes the main research result of
these notes. This nonanalytic factor is then seen to produce
a diagonal two-point function only for the central charges
of the topological minimal models (1), and for primary
fields of conformal dimension h > �c� 1�=24. In Sec. VII
a short discussion of string amplitudes involving c � 25
and c � 1 Liouville three-point functions is given. These
amplitudes include the vertex operator scalings (‘‘leg fac-
tors’’) of the minimal string as well as the nonanalytic
factor associated with the nonrational models considered
in these notes. Finally, in Sec. VIII it is argued that there
does not appear to be a sensible interpretation of the
correlators presented here in terms of an interacting time-
like boson. Also discussed is the interesting fact that the
central charges (1) which lead to well-defined amplitudes
are also those for which the dual potential of the coulomb-
gas treatment of the c � 1 CFT vanishes.

II. LIOUVILLE FIELD THEORY

The Liouville conformal field theory on closed surfaces
is motivated by the following action:

 SL��	�b;�� �
1

4�

Z
d2�

���
g
p
��r��2 �QR�

� 4��e2b��: (2)

The central charge of the theory is c � 1� 6Q2, and � is
taken to be real and strictly positive throughout these notes.
For the interaction to be a marginal perturbation of the
linear dilaton CFT it is required that Q � b� b�1. Note
that the action satisfies the relation

 SL��	�b;�� � SL��� ln�=2b	�b; 1� �Q� ln�=2b;

(3)

where � is the Euler number of the surface. As discussed
below, this leads to the KPZ scaling relation [35] on
correlation functions of primary vertex operators.
Defining UL � �e2b�, it turns out that crossing symmetry
of the Liouville CFT requires the introduction of the fol-
lowing ‘‘dual’’ interaction:

 

~U L � ~�e2�=b; (4)

where � and ~� are related by

 �����b2��1=b � �� ~���b�2��b: (5)

Here ��x� � ��x�=��1� x�. That UL and ~UL in (4) are
marginal (h � �h � 1) follows from the fact that for the
linear dilaton stress tensor

 T � �@�@��Q@2�; (6)

the conformal dimension of e2a� is hL�a� � hL�Q� a� �
a�Q� a�. The duality symmetry �! ~� and b! b�1 is
an exact symmetry of Liouville correlation functions.
Because of the form of ~���; b�, the interaction ~UL also
preserves the relation (3).

The Liouville CFT on the sphere is characterized by the
three-point correlation function
 

hVa3
�z3�Va2

�z2�Va1
�z1�i

�
CL�a3; a2; a1�

�z12 �z12�
h1�h2�h3�z23 �z23�

h2�h3�h1�z31 �z31�
h3�h1�h2

: (7)

Here hj � �hj � aj�Q� aj� is the conformal dimension of
the primary vertex operator Vaj . Crossing symmetry and
the truncated operator product expansions of the level-two
degenerate primary operators V�b=2 and V�b�1=2 lead to
difference equations which, for real b, produce a unique
solution [6–8] for CL�a3; a2; a1�:

 CL�a3; a2; a1� � �����b
2�b2�1�b2���Q�â�=b



�b�b�

�b�â�Q�

Y
j

�b�2aj�

�b�â� 2aj�
: (8)

Here â �
P
jaj and �b�a� � �b�Q� a� � �b�1�a� is an

entire function with zeros at a � �nb�m=b and a �
Q� nb�m=b, with n and m non-negative integers. For
the strip 0< a<Q, �b�a� has the following integral
representation

 ln�b�a� �
Z 1

0

dt
t

�
�Q=2� a�2e�2t

�
sinh2��Q=2� a�t	
sinh�bt� sinh�t=b�

�
: (9)

In fact, �b�a� can be analytically continued to the entire
complex b2 plane except for the negative real axis, a point
relevant to the timelike continuation we would like to
consider below. Furthermore, �b�a� satisfies

 �b�a� b� � ��ba�b�1�2ba��b�a�;

�b�a� b
�1� � ��a=b�b�2a=b�1��b�a�:

(10)

These relations allow the following reflection symmetry to
be derived from the three-point function

 Va � RL�a�VQ�a: (11)
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Here RL�a� satisfies RL�a�RL�Q� a� � 1, and is given by

 RL�a� � �����b
2���Q�2a�=b ��2ab� b2�

b2��2� 2a=b� b�2�
:

(12)

Note that (11) is written as a relation between vertex
operators rather than simply as a symmetry of the three-
point function since it also holds for all correlators on
surfaces of arbitrary genus, including in the boundary
theory [9–14]. Thus there is a single primary vertex op-
erator for a given conformal dimension [35], and the
(perturbative) vertex operator with h � �h � a�Q� a�
may be written in terms of exponentiated free fields as

 Va � e2a� � RL�a�e2�Q�a��: (13)

From the form of the dual cosmological constant ~���; b�,
it may be seen that

 

@ ~�
@�
� b�2 ~�=� � RL�b� (14)

and that the form of the dual potential (4) is consistent with
the reflection property:

 

@
@�

UL �
@
@�

~UL � Vb: (15)

The operator equation of motion then reads

 � 2r2��QR� 8��bVb � 0: (16)

Also implied by the form of Va is the KPZ scaling relation:

 hVan . . .Va1
i� � �

�Q�
P
j

aj�=b

hVan . . .Va1
i��1: (17)

For particular values of the charges, it is possible to com-
pute the correlation functions perturbatively in � and ~� as
follows
 

residue �hVan�zn� . . .Va1
�z1�i�	

�
X1
q;p�0

��1��q�p�

q!p!

Z
d2xq . . .d2x1

Z
d2yp . . . d2y1


 hVan�zn� . . .Va1
�z1�UL�xq� . . .UL�x1� ~UL�yp� . . .


 ~UL�y1�i�iQ: (18)

The correlator h. . .i�iQ is that for the linear dilaton CFTand
vanishes unless the sum of the charges (coefficients of 2i�)
in a given product of exponentials equals �iQ. This is a
significant restriction on the charges which allow a pertur-
bative computation of the correlators. However, such a
calculation precisely reproduces the residues of all of the
poles in (8).

The reflection property (11) is related to normalizability
of the primary vertex operators in the sense that, as for
solutions in the zero-mode quantum mechanics, there is a
single vertex operator per conformal dimension. There is a
further restriction on the spectrum of normalizable vertex

operators, also seen in the zero-mode quantum mechanics,
which arises from the two-point function. Defining 2aj �
Q� ipj, the two-point function takes the form

 hVa2
�z2�Va1

�z1�i � lim
a3!0
hVa3
�z3�Va2

�z2�Va1
�z1�i

�
2���p1 � p2� � RL�a1�2���p1 � p2�

�z12 �z12�
2h1

:

(19)

Use has been made here of the identities (10), one conse-
quence of which is �0b�0� � �b�b�. The charges of the
normalizable vertex operators are thus of the form 2aj �
Q� ip, with Im�p� � 0 and Re�p�> 0, as allowed by
(11). These normalizable operators, which satisfy h �
�Q2 � p2�=4 � Q2=4, comprise the spectrum of states of
the spacelike Liouville CFT. In particular, factorization of
correlators of normalizable operators involves only this
spectrum as intermediate states. With this choice for the
spectrum, the three-point function (8) has been shown [15–
17] to give rise to a well-defined nonrational unitary CFT.

Liouville quantum mechanics
The above picture can be made more clear by examining

the zero-mode quantum mechanics associated with the
action (2). Taking p2 � 4h�Q2, the following zero-
mode wave equation applies to solutions  p associated
with primary fields of dimension h:

 

�
�

@2

@�2 � 4��e2b�
�
 p��� � p2 p���: (20)

The solutions are the Bessel functions

 I �ip=b; eb�
������������������
4��=b2

q
� ’ eip�

���=b2�ip=2b

��1� ip=b�
; (21)

where the behavior in the region �! �1 has been

shown. Defining x � eb�
������������������
4��=b2

p
, as �! 1 these so-

lutions have the asymptotic form

 I �ip=b; x� �
e�b�=2�������

2�
p �4��=b2��1=4�ex � ie�p�=be�x�:

(22)

Only the linear combination

 K �ip=b; x� � i
�
2

I��ip=b; x� � I��ip=b; x�
sinh��p=b�

(23)

vanishes at large� (see Fig. 1). This choice corresponds to
the reflection property (11) in the CFT. In particular, taking
2a � Q� ip, (12) may be written as

 RL�a� � ������b
2���ip=b

��1� ip=b�
��1� ip=b�

��1� ipb�
��1� ipb�

;

(24)

which for p of O�1� and small b corresponds with the
reflection coefficient associated with the behavior of the
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K function as �! �1 (see (25) below). For real p it may
be seen that RL�a� is a pure phase, as expected for a
completely reflecting potential. Furthermore, only for
real p is the K function normalizable, and thus the zero-
mode picture reproduces the spectrum implied by the two-
point function (19).

To see that the zero-mode quantum mechanics exhibits
the behavior of the three-point function (8), we define the
wave functions

 ��p;�� �
2���=b2��ip=2b

���ip=b�
K�ip=b; x�

’ eip� �
��ip=b�

���ip=b�
���=b2��ip=be�ip�; (25)

where the behavior as �! �1 is shown. As �! 1,
��p;�� has the asymptotic form

 

��p;�� �
�������
2�
p ���=b2��ip=2b

���ip=b�
�4��=b2��1=4


 e�b�=2 exp��eb�
������������������
4��=b2

q
�: (26)

Defining

 2a1 � Q� ibp̂; 2a2 � Q� ibk̂; 2a3 � 2bŝ;

(27)

the zero-mode analog of the structure constant is given by

 CL0�a3; a2; a1� �
Z
d���bp̂;����bk̂;��e2bŝ�: (28)

After performing the integral it is found that

 

CL0�a3; a2; a1� �
�1=b����=b2���ŝ�i�p̂�k̂�=2�

���ip̂����ik̂���2ŝ�


 j��ŝ� i�p̂� k̂�=2�j2


 j��ŝ� i�p̂� k̂�=2�j2: (29)

Using the asymptotic form of �b�bx̂� for small b

 �b�bx̂� ��b�b�b
�1�x̂����x̂���1 (30)

the exact Liouville structure constant (8) with the charges
(27) coincides with (29) for small b

 CL�a3; a2; a1� ’ CL0�a3; a2; a1�: (31)

Taking the limit ŝ! 0 for small b, the expression for the
two-point function (19) is recovered from the zero-mode
three-point function (29)

 lim
ŝ!0

CL0�a3; a2; a1� � 2���p� k� � ���=b2��ip=b



��ip=b�

���ip=b�
2���p� k�; (32)

where the substitutions p � bp̂ and k � bk̂ have been
made.

III. TIMELIKE LIOUVILLE QUANTUM
MECHANICS

At least naively, a continuation of Liouville theory to
timelike signature can be affected by defining � � i’ and
b � �i�. This leads to a timelike analog [36–38] of the
Liouville action (2) which has the form

 ST�’	��; 	� �
1

4�

Z
d2�

���
g
p
���r’�2 ��R’

� 4�	e2�’�: (33)

Here 	 has been substituted for �, and we have defined
� � �iQ � 1=�� �. Choosing the branch b ������������������������
�c� 1�=24

p
�

�������������������������
�c� 25�=24

p
, this leads to � 2 �0; 1	 �

R for central charge c � 1� 6�2 � 1. Taking a � �i
,
exponential operators e2a� continue to operators e2
’ in
the timelike theory with conformal dimension h � 
���

�. Besides the change in signature, ST differs from SL of
(2) in at least two other significant ways. First, the term
QR� in (2) implies that the region of strong string cou-
pling appears as �! 1, whereas the term ��R’ in (33)
implies that strong string coupling appears as ’! �1.
Related to this is the difference between gS�� � g��e2a�

and gT�� � g��e
2�’ when interpreted as metrics of a two-

dimensional quantum gravity. The spacelike Liouville
equations of motion

 � 2r2��QR� 8��be2b� � 0 (34)

imply that gS��, for a choice of world sheet metric g�� such
that R�g	 � 0, describes a space of constant negative cur-

FIG. 1 (color online). The figure at the left above shows the
complex a plane in spacelike Liouville quantum mechanics, with
the spectrum of normalized states shown as a vertical line in
blue. There is a continuum of states for p 2 R�, where 2a �
Q� ip. The figure at the right is a plot of the potential
exp�2b�̂� �Q2=2 for the unit mass Schrödinger equation cor-
responding to (20) with energy 2h, where the substitution
2b�̂ � 2b�� ln�2��� has been made. Also shown is a plot
of the solution K�ip=b; exp�b�̂�

����������
2=b2

p
� for p � 10b, where h �

�Q2 � p2�=4. The choice b � 0:3 has been made in both figures.
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vature. That is, it describes a locally anti-de Sitter geome-
try:

 R�gS	 � e�2b��R�g	 � 2br2�� � �8��b2: (35)

Conversely, (33) implies that gT�� describes a space of
constant positive curvature; that is, a locally de Sitter
geometry [31,39] with R�gT	 � 8�	�2. Furthermore, the
geometric interpretation implies that strong string coupling
appears at large scale for the spacelike theory, a regime that
the field cannot fully explore due to the form of the
potential. For the timelike theory, strong string coupling
appears at a small spatial scale, a regime that is accessible
to the field when coupled to unitary matter which is in a
state that is sufficiently excited to overcome the negative
Casimir energy of the matter fields.

To attempt to make sense of the CFT correlation func-
tions it is helpful to consider the zero-mode quantum
mechanics of (33). After the continuation of (20) using
� � i’, b � �i�, and p � i!, the timelike zero-mode
Schrödinger equation reads

 

�
�

@2

@’2 � 4�	e2�’
�
 !�’� � !2 !�’�: (36)

The sign convention p � i! has been chosen to produce
eip� � e�i!’. Note that the operator e2
’ with 2
 �
��� i! has conformal dimension h � ���2 �!2�=4.
To find the solutions to (36) it is easiest to recognize that
we may continue the solutions to (20). Using x �

eb�
������������������
4��=b2

p
from above, and defining y � �ix �

e�’
������������������
4�	=�2

p
, the Bessel J functions appear as a result

of the continuation

 I �ip=b; x� � I��i!=�; iy� � e��!=2�J��i!=�; y�:

(37)

The Bessel J functions have the following ’! �1 be-
havior

 J �i!=�; e�’
������������������
4�	=�2

q
� ’ ei!’

��	=�2�i!=2�

��1� i!=��
: (38)

As ’! 1 these solutions have the asymptotic form
 

J�i!=�; y� �
e��’=2��������

2�i
p �4�	=�2��1=4


 �e!�=2�eiy � ie�!�=2�e�iy�: (39)

For the spacelike theory, the normalizable solutions to the
wave equation form a complete orthogonal set. In particu-
lar, the normalization of K�ip; x� (23) is given by
 Z 1

0

dx
x

K�ip; x�K�ik; x� �
�
2p

�
sinh��p�

���p� k�

� ��p� k��; (40)

where both p and k are real. In the timelike case, the

normalizable solutions form an overcomplete set, as may
be seen from

 

Z 1
0

dy
y

J�s; y�J�t; y� �
1

s� t
sin���s� t�=2�

��s� t�=2
; (41)

which is convergent for Re�s� t�> 0. Note that solutions
with �s� t�=2 2 Z�0 are orthogonal. As expected from
the asymptotic form of the solutions, a pole appears at s �
�t. The nonorthogonality of solutions of different energies
is associated with the fact that a classical particle will reach
’! 1 in finite conformal time. The choice of a self-
adjoint Hamiltonian will distinguish a particular orthogo-
nal set of solutions with real energy via boundary condi-
tions at ’! 1.

Before considering how the requirement of self-
adjointness of the Hamiltonian restricts the spectrum of
states for timelike Liouville, a brief review of the relevant
general operator theory is provided here. Consider an
operator A on a Hilbert space H which is defined on
some dense domain D�A� �H . Then there exists a
unique adjoint A
 with domain D�A
� �D�A� which
satisfies hA
gjhi � hgjAhi for all h 2D�A� and g 2
D�A
�. An extension B of A is an operator with domain
D�B� �D�A� such that Bh � Ah for all h 2D�A�. It
may be seen that

 D �A
� �D�B
� �D�B� �D�A�: (42)

An operator S is symmetric if hSgjhi � hgjShi for all h 2
D�S� and g 2D�S� �D�S
�. An operator H is self-
adjoint if it is symmetric and D�H� �D�H
�. Given a
symmetric operator S, the conditions for it to possess a
self-adjoint extension H may be explained by starting with
the following significant fact about symmetric operators

 D �S
� �D�S� � Ker�S
 � i� � Ker�S
 � i�: (43)

It may be seen that Ran�S� i� is a closed subspace of H
with orthogonal complement Ker�S
 � i�. Thus, given the
decomposition H � Ran�S� i� � Ker�S
 � i�, it follows
that

 �S
 � i� � �S� i��� 2i�� � �S
 � i���� ���;

(44)

where  2D�S
�, � 2D�S�, and �� 2 Ker�S
 � i�.
Thus �� �  ��� �� 2 Ker�S
 � i�, which is equiva-
lent to (43). It turns out that hS
gjhi � hgjS
hi for all h 2
D�S
� and g 2D�S
� if and only if �� � U��, where U
is a unitary transformation. This imposes

 dimKer�S
 � i� � dimKer�S
 � i� (45)

as a sufficient condition for a symmetric operator S to
possess a family of inequivalent self-adjoint extensions.
Given a particular U, a self-adjoint extension withH � H


and D�H� �D�H
� may be constructed as
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D�H� � f � �� �� � ��j�

2D�S�; �� 2 K�; �� � U�� 2 K�g; (46)

where the abbreviation K� � Ker�S
 � i� has been made.
Given the form of the kinetic term in (2), a sufficient

condition for the spacelike differential operator of (20) to
be given by a symmetric operator �S;D�S�� is

 D �S� � f 2H jS 2H ; lim
�!�1

 ���

� 0; lim
�!�1

@� ��� � 0g: (47)

Of course, replacing � with ’, the timelike theory shares
this condition. Note that this implies that there are no
boundary conditions on D�S
� � f 2H jS
 2H g.
An examination of the subspaces Ker�S
 � i� determines
the dimensionality of the space of self-adjoint extensions
of the naive zero-mode Hamiltonians of the respective
Liouville theories. For the spacelike theory, the four solu-
tions of S
 � p2=b2 � �i are given by I��ie�i�=4; x�,
where � � �1 indexes the two solutions of (20). It may
be seen from the �! �1 behavior in (21) and (22) that
none of these solutions are normalizable. Thus
dimKer�S
 � i� � 0, and S has a unique self-adjoint ex-
tensionH for the spacelike theory. Note that in this case the
spectrum is purely continuous as expressed in (40). For the
timelike theory (36), the four solutions of S
 � !2=�2 �

�i are J��ie�i�=4; y�, where again � � �1. Given the
integral (41), it may be seen that the only normalizable
solutions are of the form

  ��y� �
�

�

sinh��=
���
2
p
�

�
1=2

J��ie�i�=4; y�; (48)

where we have taken k �k � 1 (see Fig. 2). Thus
dimKer�S
 � i� � 1, and the operator S for the timelike
theory possesses a one parameter family of self-adjoint
extensions D��H�. The unitary operator required in (46)
is given by U� � � exp�2�i�� �.

Perhaps the simplest way to determine the spectrum
associated with the parameter � is to note from (41) that
there is a discrete orthonormal set of solutions with imagi-
nary !��; n� � �2i��n� �� given by

 ��
n�y� �

�������������������
4�n� ��

p
J�2�n� ��; y�: (49)

Here we take n 2 Z�0 and � 2 �0; 1	. For real !, a solu-
tion corresponding to conformal dimension h � ��!2 �
�2�=4 is given by

 ��
!�y� � A�!J�i!=�; y� � B�!J��i!=�; y�: (50)

Imposing that ��
n and ��

! are orthogonal leads to the
condition

 A�! sinh��!=2�� �i�� � B�! sinh��!=2�� �i��:

(51)

Choosing

 B�! �
�

!=�
sinh��!=��

�
1=2

(52)

the solutions ��
!�y� are given the continuum normalization

 

Z 1
0

dy
y

���
!1
�y���

!2
�y� � ��!2 �!1�; (53)

where we have implicitly taken !j > 0. It may be shown
that this basis is complete, that is

 

X1
n�0

���
n�y1��

�
n�y2� �

Z 1
0
d! ���

!�y1��
�
!�y2�

� ��’1 � ’2�; (54)

where, as above, y � e�’
������������������
4�	=�2

p
. Note that, as for the

discrete states with h >��2=4, the condition of self-
adjointness of the Hamiltonian requires that there is a
single continuum normalized state for each h <��2=4.
The zero-mode three-point function associated with the
solutions ��

n and ��
! is treated in [37]. It is clear from

the behavior of the solutions that these amplitudes do not
follow from the continuation of the Liouville three-point
function (29). In Sec. VI the continuation of the Liouville
CFT to c � 1 will be treated and an interpretation of the
correlators in terms of a spacelike boson will be given. As
will be discussed below, there does not appear to exist a
CFT corresponding to the timelike model treated in this
section.

FIG. 2 (color online). The figure at the left above shows the
complex 
 plane in timelike Liouville quantum mechanics, with
the spectrum of normalized states shown as a vertical line and a
set of discrete points in blue. For each � 2 �0; 1	, which corre-
sponds to a particular self-adjoint extension of the Hamiltonian,
there is a continuum of states (50) with ! 2 R�, where 2
 �
��� i!. In addition, there is a discrete set of states (49) with
i! � 2��n� �� for n 2 Z�0. The figure at the right is a plot of
the potential � exp�2�’̂� ��2=2 for the unit mass Schrödinger
equation corresponding to (36) with energy �2h, where the
substitution 2�’̂ � 2�’� ln�2�	� has been made. Also shown
is a plot of the discrete solution J�2�n� ��, exp��’̂�

�����������
2=�2

p
� for

� � 0:6 and n � 3, for which h � ���2 �!2�=4>��2=4.
Not shown is an example of the continuum of solutions (50)
corresponding to h <��2=4 for this value of �. The choice
� � 0:3 has been made in both figures.
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IV. CONFORMAL BOOTSTRAP: SHIFT
RELATIONS

The existence of degenerate Virasoro representations
permits the derivation of analytic shift relations which
lead to unique three-point and two-point functions for
primary fields in Liouville theory. This procedure, which
makes use of the crossing symmetry of the four-point
correlator, and the assumption of one primary vertex op-
erator per conformal dimension, is an example of what is
often referred to as the conformal bootstrap [18,19]. The
conformal Ward identities, and the factorization that is
utilized in the bootstrap, then allow all correlation func-
tions on the sphere to be computed from the two-point and
three-point amplitudes. Below a z-frame primary vertex
operator will be denoted by V�z�a �z; �z�, with a condensed
form V�z�a � V�z�a �0; 0� for operators at the origin. The three-
point amplitude for primary fields is characterized by the
numbers

 CL�a3; a2; a1� � hV
�u�
a3
V�w�a2

V�z�a1
i: (55)

Here z-frame radial ordering is implicit with the frames
related by z � 1� w � 1=u. Symmetry under exchange
of the charges fajg arises from Mobius symmetry (in this
case permutation of the z, w, and u frames). The two-point
function is similarly defined by

 GL�a2; a1� � hV
�u�
a2
V�z�a1
i: (56)

Before proceeding to the bootstrap, it is necessary to adopt
some conventions and make an assumption about the na-
ture of the spectrum. Here the primaries are taken to satisfy
a reflection relation Va � RL�a�VQ�a, which implies
RL�a�RL�Q� a� � 1. As above, h � �h � a�Q� a�,
with c � 1� 6Q2 and Q � 1=b� b. For the moment,
the branch b 2 �0; 1� � R is chosen with c > 25, along
with values for a such that h is real. Given the identifica-
tion 2a � Q� ip, elements of the spectrum S will be
taken to correspond to p 2 R�. The two-point function
then takes the following general form

 GL�a2; a1� � RL�a1�DL�Q� a1�2���p1 � p2�

�DL�a1�2���p1 � p2�: (57)

Here DL�a� may be seen to satisfy RL�a�DL�Q� a� �
RL�Q� a�DL�a�. Mobius invariance implies that the
four-point function is characterized by the cross-ratio � �
�z12z34�=�z13z24� as follows

 G a4a3a2a1
��; ��� � hV�u�a4

V�w�a3
V�z�a2
��; ���V�z�a1

i

� hV�u�a4
V�w�a1

V�w�a2
��; ���V�z�a3

i

� hV�u�a1
V�w�a3

V�u�a2
��; ���V�z�a4

i: (58)

This leads to the crossing symmetry relation

 G a4a3a2a1
��; ��� � Ga4a1a2a3

�1� �; 1� ���

� �� ����2h2Ga1a3a2a4
�1=�; 1= ���: (59)

The four-point function is expected to factorize as
 

Ga4a3a2a1
��; ��� �

Z
S�fajg�

daCL�a4; a3; a�DL�a�
�1


 CL�a; a2; a1�jF a4a3a2a1
�aj��j2: (60)

Here the integral extends over a domain S�fajg�, which
depends on the charges and may include discrete contribu-
tions. However, if all of the charges are in the spectrum
(aj 2 S), then S�fajg� � S. That is, taking 2a � Q� ip,
the integral is over the contour p 2 R�. If some charges
are outside S, the amplitude may be defined through
analytic continuation, with discrete contributions appear-
ing as poles cross the contour of integration. The s-channel
conformal blocks F a4a3a2a1

�aj�� are holomorphic in � and
are determined entirely by conformal invariance. They are
related to the t-channel conformal blocks by a fusing
matrix F as follows
 

F a4a3a2a1
�aj�� �

Z
S�fajg�

dâF�a3a2
a4a1
	�a; â�


F a4a1a2a3
�âj1� ��: (61)

It is conventional in Liouville theory to use vertex
operator rescalings Va ! f�a�Va to set DL�a� � RL�a�.
This leads to RL�a�DL�Q� a� � 1, which brings the
two-point function (57) to the form

 GL�a2; a1� � 2���p1 � p2� � RL�a1�2���p1 � p2�:

(62)

Under rescaling,

 DL�a� ! �f�a��
2DL�a�; RL�a� !

f�a�
f�Q� a�

RL�a�:

(63)

The choice DL�a� � RL�a� thus restricts further rescalings
to have f�a�f�Q� a� � 1. In addition, it is convenient to
scale the a � 0 operator so that it corresponds to the
identity (V0 � 1). In this case GL�a2; a1� � CL�0; a2; a1�,
and further vertex operator rescalings are restricted to have
f�0� � 1.

Derivation of the shift relations for c > 25
In general the integrals in (60) and (61) are over an

infinite number of discretely and continuously indexed
Virasoro representations. However, among the non-
normalizable operators in Liouville theory are a discrete
set of degenerate primary fields for which these expansions
are truncated to a finite number of terms. In particular, for
the vertex operators Va�m;n�, where

 2a�m; n� � ��n� 1�b� �m� 1�b�1; m; n 2 Z>0

(64)
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there exists a null descendant at level mn. In the case of
a�1; 2� � �b=2, the assumption of the decoupling of this
null descendant results in

 �L�2 � b
�2L2

�1�V�b=2 � 0: (65)

This may be shown to imply that the three-point amplitude
CL�a1;�b=2; a3� vanishes unless a3 � a1 � b=2, and that
the factorization of the four-point function (60) is a sum of
two terms. Specifically, the vanishing (65) of the null
vector at level 2 in a four-point function with degenerate
primary Va2

� V�b=2 results in the differential equation
 �
�

1

b2

d2

d�2 �

�
1

�
�

1

1� �

�
d
d�
�
h1

�2 �
h3

�1� ��2

�
�h1 � h2 � h3 � h4�

��1� ��

�
Ga4a3a2a1

��; ��� � 0: (66)

Here h2 � h��b=2� � �1=2� 3b2=4. The truncated op-
erator product expansion (OPE) for V��1=2�b results in the
factorization
 

Ga4a3a2a1
��; ��� �

X
a�a1�b=2

CL�a4; a3; a�


 CL�Q� a;�b=2; a1�


 jF a4a3a2a1
�aj��j2; (67)

where the normalization RL�Q� a� � DL�a�
�1 has been

chosen as in (62). The differential equation (66) then
implies that the conformal blocks in (67) are expressed in
terms of hypergeometric functions
 

F a4a3a2a1
�a1 � b=2j�� � ���h�a1�b=2��h1�h2


 �1� ��h�a3�b=2��h3�h2


 F�
�; ��;	�j��; (68)

where, defining 2aj � Q� 
j, we have

 2
� � 1� b�
1 � 
3 � 
4�;

2�� � 1� b�
1 � 
3 � 
4�; 	� � 1� b
1:
(69)

Taking s, t � �1, and defining

 F st � F
�
a3�b=2
a4 a1

�
�a1 � sb=2; a3 � tb=2� (70)

it may be seen that the elements of the fusing matrix (61)
are given by

 F�� �
��	����	� � 
� � ���
��	� � 
����	� � ���

(71)

and

 F�� �
��	����
� � �� � 	��

��
�������
: (72)

This computation requires the identities

 

F�
;�;	j�� �
��	���	� 
� ��
��	� 
���	� ��

F�
;�;
� �� 	

� 1j1� �� �
��	���
� �� 	�

��
�����


 �1� ��	�
��F�	� 
;

	� �;	� 
� �� 1j1� �� (73)

and

 F�
;�;	j�� � �1� ��	�
��F�	� 
; 	� �;	j��:

(74)

It is helpful to introduce the definitions

 F � � F a4a1a2a3
�a3 � b=2j1� �� (75)

and

 C��a� � residue �CL�Q� �a� b=2�;�b=2; a�	; (76)

where a sometimes useful relation is

 C��a� �
RL�a�

RL�a� b=2�
C��Q� a�: (77)

Imposing the crossing symmetry relation (59), the fusion
relation (61) leads to
 X
s��

CL�a4; a3; a1 � sb=2�Cs�a1�jFs�F� � Fs�F�j2

�
X
t��

CL�a4; a1; a3 � tb=2�Ct�a3�jF tj
2: (78)

The vanishing of cross terms in the right side of (78)
yields

 

CL�a4; a3; a1� b=2�C��a1�

CL�a4; a3; a1� b=2�C��a1�
� �

F�� �F��
F�� �F��

�
��	����
����	� �
��
��	���������	� ����

:

(79)

To solve for the shift relations it is probably most straight-
forward [40] to introduce a set of vertex operators V̂a
which satisfy R̂L�a� � �1 and D̂L�a� � RL�0�. This
choice, which preserves V̂0 � V0 � 1, is given by

 V̂ a �

�
RL�0�
RL�a�

�
1=2
Va: (80)

It should be noted that this rescaling preserves the form of
the left-hand side of (79), with Ĉ��a� defined for V̂a as in
(76). It will be seen below that, for real b 2 �0; 1	 � R, the
sign in V̂a � �V̂Q�a depends only on the central charge
and not on the charge a. Choosing a4 � �b=2 and a3 �
a1 � a, in this normalization we find [41]
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�
Ĉ��a�

Ĉ��a�

�
2
�

�
ĈL��b=2; a; a� b=2�

ĈL��b=2; a; a� b=2�

�
2

�
��2ab� b2���2� 2ab� 2b2�

��2ab���2� 2ab� b2�
: (81)

It should be noted that the preceding argument depends
only on the conformal dimensions hj � aj�Q� aj� of the
operators. Thus [42]

 Ĉ L�a3; a2; a1jb� � ĈL�a3; a2; a1jb
�1� (82)

since the explicit dependence of the three-point function on
b is only through Q � b�1 � b. Plugging (81) back into
(79), renaming a4 ! a2, and taking a1 ! a1 � b=2, leads
to the following shift relation for the R̂L�a� � �1 normal-
ization

 

ĈL�a3;a2;a1�b�

ĈL�a3;a2;a1�
�

�
��2a1b���2a1b�b2�

��2�2a1b���2�2a1b�b
2�

�
1=2



��âb�2a1b�b

2���2� âb�b2�

��âb�2a2b���âb�2a3b�
;

(83)

where, as above, â �
P
jaj. From (64), there exists a

primary vertex operator with a�2; 1� � �b�1=2 which
also has a null descendant at level 2, thus producing the
differential equation (66) with b! b�1 and h2 �
h��b�1=2�. The associated truncated operator product
expansion implies a shift relation for ĈL�a1; a2; a3jb�
which follows from (83) by taking b! b�1.

V. SHIFT RELATIONS TO CORRELATORS

It may be seen that the shift relation (83) has the solution
 

ĈL�a3; a2; a1� � AL�b
2�1=b�b���Q�â�

�b�b�
�b�â�Q�



Y
j

gL�aj�
�b�2aj�

�b�â� 2aj�
; (84)

where

 g2
L�a� �

��2� 2a=b� b�2����b2�

��2ab� b2���2� b�2�
: (85)

The number AL corresponds to the overall scale of the
three-point function that is left undetermined by the boot-
strap. Under reflection we have

 R̂ L�a� � sign
�
b�2���b2�

��2� b�2�

�
� ��1��b

�2	�1; (86)

where �b�2	 is the largest integer less than b�2, and it has
been assumed that b 2 �0; 1	. We would now like to use
(80) to return to the set of vertex operators Va �
RL�a�VQ�a, and choose RL�a� to bring the shift relation

(83) to a form which is analytic in fajg and b. However,
here and below the (identity preserving) vertex operator
rescaling Va ! Aa=QL Va is implemented. Choosing

 RL�a� � AL
b�2��2ab� b2�

��2� 2a=b� b�2�
(87)

the three-point function CL takes the following form

 CL�a3; a2; a1� � AL�b
2�b�1�b���Q�â�



�b�b�

�b�â�Q�

Y
j

�b�2aj�

�b�â� 2aj�
: (88)

The shift relation for the Va operators is given by

 

CL�a3; a2; a1 � bjb�
CL�a3; a2; a1jb�

� HL�a3; a2; a1jb�; (89)

where

 HL�a3; a2; a1jb� � b�4��2a1b���2a1b� b
2�



��âb� 2a1b� b2���2� âb� b2�

��âb� 2a2b���âb� 2a3b�
:

(90)

Using the property of the three-point function (82) that
CL�a3; a2; a1jb� � CL�a3; a2; a1jb�1�, the solution to the
shift relation (89) and its b! b�1 counterpart is unique up
to an aj-independent rescaling. Uniqueness follows from
the fact that the ratio of any other solution to that of (88)
must be periodic in both b and b�1, and thus must be
independent of aj for real (in general nonrational) b.

Setting AL������b2��Q=b and rescaling Va ! A�a=QL Va
produces the conventional normalization of the three-point
function CL (8) and reflection coefficient RL�a� (12) in
Liouville theory [43]. Rescaling the result (81) produces

 

C��a�
C��a�

� �
��

���b2�

��2ab� b2 � 1�

��2ab�
; (91)

where C��a� are defined as in (76). The expression (91)
may be seen to also result from a perturbative calculation
as in (18). We may also define the dual expression

 

~C��a� � CL�Q� �a� b�1=2�;�b�1=2; a�: (92)

Taking b! b�1 in (81) and defining ~� as in (5) produces

 

~C��a�
~C��a�

� �
� ~�

���b�2�

��2ab�1 � b�2 � 1�

��2ab�1�
: (93)

After the introduction of the ‘‘self-dual’’ potential in (4),
this may also be seen to be the perturbative result. If the
expressions (91) and (93) are computed perturbatively,
they may be plugged into (79) to derive the shift relations.
However, crossing symmetry still requires the identifica-
tion (5).

Solution to the shift relations for c � 1
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While the expression (88) is, up to the factor AL, the
unique solution to (89) for real b, for complex b there are
solutions related to CL by a doubly periodic function of b
and b�1. We expect a timelike Liouville theory to be
related to the spacelike theory by � � ib and 
j � iaj.
It turns out that the expression (88) is not analytic for real�
and thus a naive continuation of Liouville correlators to
timelike signature is not possible. However it is possible to
find a unique solution to the shift equations (89) for real �.
That is, using � � �iQ � ��1 � �, there is a correlator
[44] which satisfies

 

CM�
3; 
2; 
1 � �j��
CM�
3; 
2; 
1j��

� HM�
3; 
2; 
1j��; (94)

where

 HM�
3; 
2; 
1j�� � HL��i
3;�i
2;�i
1j � i��:

(95)

Given (94) and the relation given by �! ���1, CM is
given by
 

CM�
3; 
2; 
1� � AM��2���1��������
̂�



����� 
̂���

�����



Y
j

����� �
̂� 2
j��

����� 2
j�
; (96)

where 
̂ �
P
j
j and AM is the scale undetermined by the

shift relations. The associated primaries, which will be
denoted by W
, satisfy W0 � 1 and

 W
 � RM�
�W���
; (97)

where

 RM�
� � AM
��2���2
�� �2�

��2� 2
=�� ��2�
: (98)

To demonstrate that (96) leads to (94) and (98) requires
���
� � ����

�1 � �� 
�. Note in this regard that
hM�
� � hM���� 
� � 
��� 
�.

Considering the three-point function (96), with 2
j �
2iaj � ��� pj, the expression analogous to (62) is given
by

 GM�
2; 
1� � CM�0; 
2; 
1�

� AM��
2���1����p�

�2
����F��p��F��p��

����� p1������ p2�
;

(99)

where p� � �p1 � p2�=2, and where F��k� � F���k� is
given by

 F��k� �
����� k�

�����

����� k�

�����
: (100)

Note that no delta functions appear inGM�
2; 
1�, and thus
it does not in general vanish for primaries of different
conformal dimensions. It should be recognized that while
(96) satisfies the same analytic shift relation (94) as the
Liouville expression (88), the conformal bootstrap deriva-
tion of these relations based on the factorization of the
four-point function (60) relies on a diagonal two-point
function (57). Thus there is no reason to expect (96) to
correspond to a conformal field theory for general charges
f
jg. However, examining the diagonal terms

 GM�
;
� � RM�
� and GM�
;��� 
� � 1 (101)

the similarity to (62) is obvious. This suggests a sphere
partition function normalized as

 h1i � RM�0� � AM
��2���2�

��2� ��2�
: (102)

This expression vanishes for finite AM for the topological
minimal models with ��2 � q 2 Z>1, but in the �! 1
limit we have h1i � AM.

Comments on the minimal model correlators
As discussed below, the three-point function of the �p; q�

minimal models may be computed from (96). The minimal
models have rational �2 � p=qwith q > p > 1 and have a
field content comprised of degenerate representations with
primary charges

 2
�m; n� � ��n� 1��� �m� 1���1: (103)

Here m and n are restricted to 1 � m< p and 1 � n < q,
with fields identified under the reflection �m; n� ! �p�
m; q� n�. Choosing AM � ��	����2���=� leads to an
expression forCM which is very similar to the conventional
Liouville expression (8), and a perturbative calculation as
in (18) leads to the minimal model amplitudes. For the
�p; q� minimal models the perturbative result may be seen
by defining the vertex operators in terms of the spacelike
boson � � i’ as follows

 W
 � e�2i
� � RM�
�e
2i���
��: (104)

As for the Liouville case, defining UM � 	e�2i��, there is
a dual potential

 

~UM � ~	e2i�=�; (105)

where

 ��	����2��1=� � ��~	�����2����: (106)

The perturbative result for the minimal models may be
derived from
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hW
n�zn� . . .W
1
�z1�i	 �

X1
q;p�0

��1��q�p�

q!p!

Z
d2xq . . . d2x1



Z
d2yp . . . d2y1hW
n�zn� . . .


W
1
�z1�UM�xq� . . .UM�x1�


 ~UM�yp� . . . ~UM�y1�i�: (107)

As for (18), the correlator h. . .i� is that for the spacelike
linear dilaton CFT and vanishes unless the sum of the
charges (coefficients of 2i�) in a given product of expo-
nentials equals �. As discussed below, the expression
(107) must be augmented by the minimal model fusion
rules to produce consistent CFT amplitudes.

To relate the expression (96), when evaluated at the
charges (103), to the structure constants of the minimal
model CFT, it is helpful to define rescaled vertex operators
Ŵ
 for which R̂M�
� � �1. As for the Liouville case (80)
these are defined by

 Ŵ 
 �

�
RM�0�
RM�
�

�
1=2
W
 (108)

which preserves the normalization Ŵ0 � W0 � 1. The
three-point function then takes the form

 ĈM�
3; 
2; 
1� � AM��
2�1=���������
̂�



����� 
̂���

�����

Y
j

gM�
j�



����� �
̂� 2
j��

����� 2
j�
; (109)

where

 g2
M�
j�� � g2

L��i
j � i��

�
��2� 2
=�� ��2����2�

���2
�� �2���2� ��2�
: (110)

The amplitude (109) leads to the reflection relation

 R̂M�
� � sign
�
��2���2�

��2� ��2�

�
� ��1���

�2	�1; (111)

where ���2	 is the largest integer less than ��2, and it has
been assumed that � 2 �0; 1	. With the choice h1i �
RM�0� � 1, (109) is the three-point function of the gener-
alized minimal model (GMM) introduced in [26]. For the
minimal models with �2 � p=q for q > p> 1, the rescal-
ing (108) with 
�m; n� as in (103) is nonsingular for 1 �
m< p and 1 � n < q. However, (108) diverges form � p
or n � q, and vanishes for m � 0 or n � 0. For the topo-
logical minimal models with q > p � 1, (108) is nonsin-
gular form 2 Z>0 and 1 � n < q. Furthermore, unlike the
terms in the numerator of the Liouville three-point function
(88), which vanish at the locations a�m; n� (64) of the
degenerate primaries, the denominator in the correspond-

ing GMM three-point function (96) does not have zeros at
the charges 
�m; n� of the minimal models.

We would like to explore whether

 

Ĉ�m3;n3�
�m2;n2��m1;n1�

� ĈM�
�m3; n3�; 
�m2; n2�;


�m1; n1��=h1i (112)

produces the operator product expansion of the minimal
models. As might be expected, using (102), it may be seen
that (112) is independent of the number AM. To relate (112)
to the (q > p > 1) minimal model structure constants, it is
sufficient to set nj � 1 and define the more general result
through analytic continuation [20,34]. In this case 2
j �
�mj � 1���1 satisfies hj � 
j��� 
j� � 0. From the
identities (10), for m 2 Z>0 it may be shown recursively
that

 ����� �m� 1���1� � ������
�m�1����2m�1���m�;

(113)

where

 ��m� �
Ym�1

j�1

��j��2�: (114)

Here ��m�, with ��1� � 1, is nonzero and finite for all
p >m � 1. Defining m� � �m1 �m2�=2, for m� 2 Z>0

and m� � 0, repeated use of (113) leads to

 Ĉ �1;1��m2;1��m1;1� �
�2��m��

��m��
�2�

g�m1;1�g�m2;1�

�4m�g2
�m�;1�



�2�m���2�m� � 1�

��m1���m2�
; (115)

where g�m;n� � gM�
�m; n�� has been defined. The expres-
sion (115) equals 1 when m1 � m2, and may be seen to
vanish when m1 � m2. It may also be shown that

 

����� �m�
1
2��

�1� � ���
1
2�
�1���m�1����2�m�1��1�


 �̂�m�; (116)

where m 2 Z>0, and

 �̂�m� �
Ym�1

j�1

�
��
j�

1

2

�
��2

�
: (117)

Again, the function �̂�m�, with �̂�1� � 1, is nonzero and
finite for all p >m � 1. For �2m� � 1�=2 2 Z>0 and
�2m� � 1�=2 � 0,
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 Ĉ �1;1��m2;1��m1;1� �
�2

�3��2

�2��m��

��m���2�

g�m1;1�g�m2;1�

�4m�g2
�m�;1�



�̂2�m� �

1
2��̂

2�m� �
1
2�

��m1���m2�



�4
��

1
2�
�1�

�4
����

: (118)

It may be seen that (118) does not in general vanish for
m1 � m2. Zeros appear in (109) at the following values of
the charges
 

jm̂� n̂p=qj � �2m� 1� � �2n� 1�p=q;

m; n 2 Z>0; (119)

where m̂ �
P
jmj. Other zeros appear when one of the

charges is reflected via �mj; nj� ! �p�mj; q� nj�. This
replaces jm̂� n̂p=qj in (119) by jm̂j � n̂jp=qj, where
m̂j � m̂� 2mj. As mentioned in [26], the zeros in the
function (109) form a proper subset of the zeros imposed
by the minimal model fusion rules. The latter may be
written as

 F �m3;n3�
�m2;n2��m1;n1�

� Nn3
n2n1
�q�Nm3

m2m1
�p�

� Nq�n3
n2n1
�q�Np�m3

m2m1
�p�;

(120)

where

 N n3
n2n1
�q� �

8<
:

1: jn2 � n1j< n3 <min�n2 � n1; 2q� n2 � n1�;
P
j
nj odd

0: otherwise
: (121)

The minimal model OPE is then given by
 

Ŵ�w�
�m2;n2�

Ŵ�z�
�m1;n1�

�
Xp�1

m3�1

Xq�1

n3�1

F�m3;n3�
�m2;n2��m1;n1�


 Ĉ�m3;n3�
�m2;n2��m1;n1�

�Ŵ�z�
�m3;n3�

	; (122)

where, as above, the operators are at the origin of the
frames z � 1� w � 1=u, and �Ŵ�m;n�	 denotes the con-
formal family of the primary Ŵ�m;n� � Ŵ
�m;n�. The non-
zero result (118), and the need to impose the fusion rules by
hand in (122), demonstrate that the GMM three-point
function is not Mobius invariant, and thus does not give
rise to a consistent CFT. It is, however, the unique analytic
solution to the shift relation (94) and, as in (122), will be
present along with a nonanalytic coefficient in the c � 1
theories considered in the next section.

VI. CONTINUATION OF SPACELIKE
AMPLITUDES

As shown in the last section, the function CM (96) does
not by itself lead to a suitable three-point function unless
multiplied by a nonanalytic factor which, as in the case of
the minimal models, leads to a diagonal (Mobius invariant)
two-point function. The question then arises as to whether
the continuation of CL (88) to imaginary b produces such a
factor, and what ranges of central charges and momenta
lead to sensible theories. From the shift relations (89), (94),
and (95), the ratio of CL to CM must be related by a doubly
periodic function in each of the charges aj for Im�b2� � 0

 

CL�a3; a2; a1jb�
CM�ia3; ia2; ia1jib�

� b�1T�a3; a2; a1jb�: (123)

Here T�aj� � T�aj � b� � T�aj � b�1�may be computed

[26,32] from

 �b�a��ib�ib� ia� � ei��b
�1�b�2a�2=8e��i�=4 #1�ab

�1j��
#3�0j��

;

(124)

which is valid for Im���> 0, where � � b�2. Using
#1�0j�� � 0 and �0b�0� � �b�b�, it may also be shown that

 �b�b��ib�ib� � b�1ei��b
�1�b�2=8e��i�=4 #

0
1�0j��

#3�0j��
: (125)

Here the relations (10) and the conventions of [46] for the
# functions have been used. Since T is not independent of
aj, it follows that CM is not analytic for real b, where CL is

FIG. 3 (color online). The figure above shows the complex b2

plane. The black semicircular curve is the branch solution of the
equation c � 1� 6�b� 1=b�2 for which b 2 �0; 1	 for c � 25
and � � ib 2 �0; 1	 for c � 1. The blue half-line at right (b2 2
R�) is the domain on which CL is the unique analytic solution to
(89). The red half-line at left (b2 2 R�) is the domain on which
CM is the unique analytic solution to (94). Thus (95) requires that
CL and CM are nonanalytic on the red and blue half-lines,
respectively.
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the unique analytic solution to the shift equations.
Similarly, as shown in Fig. 3, this shows that CL is not
analytic for real � � ib. The function T in (123) is given
by
 

T�a3; a2; a1jb� � e�i��Q�2â�b�1 #01�0j��

#1��â�Q�b�1j��



Y
j

#1�2ajb�1j��

#1��â� 2aj�b�1j��
: (126)

This function may be seen to be analytic in the charges aj
for Im�b2�< 0. It is also antisymmetric under reflection in
each of its arguments [47]:

 

T�Q� aj�

T�aj�
� b2=�2 � �1: (127)

It is helpful in what follows to introduce a number of #1

function identities. In the conventions used here, the prod-
uct representation of #1�xj�� has the form
 

#1�xj�� � 2e�i�=4 sin��x�
Y1
n�1

�1� e2�in���1� e2�i�n��x��


 �1� e2�i�n��x��; (128)

which leads to

 # 01�0j�� � 2��3��� � 2�e�i�=4
Y1
n�1

�1� e2�in��3: (129)

The #1 function satisfies the quasiperiodicities

 #1�x� 1j�� � �#1�xj�� � #1��xj��; (130)

 #1�x� �j�� � �e
�2�i�x��=2�#1�xj�� (131)

and possesses the following behavior under modular trans-
formations

 #1�xj�� 1� � e�i=4#1�xj��; (132)

 #1�x=�j � 1=�� � ���i��1=2e�ix
2=�#1�xj��: (133)

Defining x̂ �
P3
j�1 xj, it may be shown that

 

#1�2x�
Y
j

#1�2xj� � #1�x̂� x�
Y
j

#1�x̂� 2xj � x�

� #1�x̂� x�
Y
j

#1�x̂� 2xj � x�:

(134)

Here the identification #1�x� � #1�xj�� has been made. A
consequence of this identity is

 

#01�0�
Y
j

#1�2xj� � �
�
#01�x̂�
#1�x̂�

�
X
k

#01�x̂� 2xk�
#1�x̂� 2xk�

�


 #1�x̂�
Y
j

#1�x̂� 2xj�: (135)

We would now like to examine the factor T (126) in the
limit Im�b�2� ! 0�. While #1�xj�� is extremely singular
in this limit, it will be shown below that for �2 � p=qwith
�p; q� coprime integers which satisfy q � p � 1, the non-
analytic factor T produces nontrivial amplitudes for CL.
The corresponding central charges

 c � 13� 6�p=q� q=p� (136)

include those of the minimal models. It will further be
shown that Mobius invariant amplitudes are produced only
for c � 13� 6�q�1 � q� of the topological minimal mod-
els. These latter models involve degenerate representations
with primary charges as in (103):

 2
�m; n� � ��n� 1�=
���
q
p
� �m� 1�

���
q
p

(137)

but with the restrictionm 2 Z>0 and 1 � n < q. While the
central charges (136) are rational, the factor T may be seen
to vanish for the degenerate charges 
�m; n�, and the
amplitude given by CL for imaginary b through (123) has
a spectrum which does not include these conformal dimen-
sions. The treatment here follows that of [32] closely,
where the c � 1 case was considered. For conformal di-
mensions h > �c� 1�=24 � 0, it was found in [32] that
(123) is equivalent to the three-point function of the p!
1 limit of unitary (p; p� 1) minimal models considered
in [34]. This theory involves a continuous set of primary
fields which excludes the c � 1 degenerate primaries with
h � n2=4 for n 2 Z. Taking xj � ajb�1 and making use
of (135) we have

 T � �
#01�0�
#1�x̂�

Y
j

#1�2xj�

#1�x̂� 2xj�
�
# 01�x̂�
#1�x̂�

�
X
j

# 01�x̂� 2xj�

#1�x̂� 2xj�
:

(138)

This may be written as

 T �
d
dx

ln
�

#1�x�Q
j
#1�x� 2xj�

���������x�x̂
: (139)

As mentioned above, while #1 exhibits the quasiperiodic-
ities of (130) and (131), the factor T in (139) is periodic
under xj ! xj � 1 and xj ! xj � �. This may be seen
from

 

#01�x� 1�

#1�x� 1�
�
#01�x�
#1�x�

and
# 01�x� ��
#1�x� ��

�
# 01�x�
#1�x�

� 2�i

(140)

or, equivalently, from the fact that CM and CL satisfy
identical shift relations (89), (94), and (95) under aj !
aj � b and aj ! aj � b�1. This implies that the limit
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Im�b�2� � �! 0� can only lead to a nontrivial three-
point function for the choice ��b�2��r� i� with r a
rational number. Otherwise the real periodicities of T
would not have rational ratio in the limit in which #1

degenerates, and (139) would have to be a constant. This
creates a problem since CM does not by itself lead to a
diagonal two-point function. This fact is consistent with
CM being the unique analytic solution to the shift equations
for �� ib2R and leads to the expectation that CL is a
wildly discontinuous function of the central charge for c�
1.

Correlators for h > �c� 1�=24
Since for real conformal dimensions the associated mo-

menta must be either real or imaginary, it is useful to
express the charges as 2aj � Q� ikj. This leads to

 2xj � 2ajb
�1 � 2
j�

�1 � 1� q=p� kj
���������
q=p

q
; (141)

where the limit � � ib!
���������
p=q

p
has been taken. As dis-

cussed below, it does not appear that a sensible two-point
function exists for the case of imaginary kj, and thus the
three-point function for h < �c� 1�=24 will not be treated
in these notes. As discussed in [32], for hj > �c� 1�=24
(pj 2 R), the choice (p � 1, q � 1) leads to the following
periodic sawtooth function:

 D 1�x� � lim
�!0

�
2�

#01�xj��
#1�xj��

� 1=2� �x� �x	�: (142)

Here �x	 is the largest integer less than x 2 R. From (140)
it may be seen that this is also the result for the (� � �q�
i�) topological minimal models. For the general �p; q� case
this is modified to

 D p�x� � lim
�!0

�
2�

# 01�xj � q=p� i��
#1�xj � q=p� i��

� �1=2� �px� �px	��=p: (143)

Note that this expression is independent of q. The general
result for Dp may be seen to follow from the various #1

function identities given above, and from the relation

 

#01�xj��
#1�xj��

� � cot��x� � 4�
X1
n�1

sin�2�nx�
exp��2�in�� � 1

:

(144)

It is evident that Dp�x� 1=p� �Dp�x�, and

 

@Dp

@x
�x� � �1�

X
n2Z

��px� n�: (145)

Thus for xj 2 R we may write

 lim
�!0

�
2�

T �Dp�x̂� �
X
j

Dp�x̂� 2xj�

� p�1��1� �px̂	 �
X
j

�p�x̂� 2xj�	�: (146)

Using ��x	 � ��x	 � 1, and defining k̂ �
P3
j�1 kj, we

find the following expression for a nonanalytic factor in
the three-point amplitude for real kj:
 

lim
�!0

�
2�

T � p�1

�
1� p� q�

�
1

2
�k̂

������
qp
p

�p� q�
�

�
X
j

�
1

2
��k̂� 2kj�

������
qp
p

� p� q�
��
: (147)

This may be seen to reduce in the case (p � 1, q � 1) to
the nonanalytic coefficient of the three-point function
given in [32], which reproduced the result of [34] in which
the c! 1 limit of unitary minimal models was considered.
To define the three-point function of the nonrational theory
considered here, the limit is taken such that A � AL=� is
finite. This leads to the following three-point function

 C�p;q��
3; 
2; 
1� � lim
�!0

CL��i
3;�i
2;�i
1j � i��;

(148)

 � 2�i
���������
q=p

q
AA�1

M CM�
3; 
2; 
1j��lim
�!0

�
2�

T: (149)

This results in
 

C�p;q��
3; 
2; 
1� � 2�ip�1
���������
q=p

q
A��1� �

������
qp
p


̂	

�
X
j

�
������
qp
p
�
̂� 2
j�	�


 ��q=p��q=p�p=q���1�
̂=��



����� 
̂���

�����



Y
j

����� �
̂� 2
j��

����� 2
j�
: (150)

Here, as above, � � ��1 � �,� � ib, and
j � iaj, with
b�2 � �q=p� i�. This expression, along with the restric-
tions imposed by Mobius invariance of the associated two-
point function on the spectrum and central charge, is the
main result of these notes.

The two-point function is expected to appear in the limit

3 ! 0. In this case
 

lim
�!0

�
2�

T � p�1��1� �
������
qp
p
�
1 � 
2�	

� �
������
qp
p
�
2 � 
1�	� � 0: (151)

This result, which follows since the identity is the primary
field of a degenerate representation, clearly does not give
rise to a suitable two-point function. The solution given in
[34] is to define

 1 � lim

!0

@
@


V�i
: (152)

Thus we define the metric on fields as
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G�p;q��
2; 
1� � lim
�!0

lim

!0

@
@


CL��i
;�i
2;�i
1j � i��

� 2�i
���������
q=p

q
AA�1

M GM�
2; 
1j��


 lim
�!0

�
2�

lim

!0

@
@


T: (153)

Computing the derivative of T, we find

 lim
�!0

�
2�

lim

!0

@
@


T��i
;�i
2;�i
1�

� 2
���������
q=p

q X
n2Z

���k�
������
qp
p

� n� � ��k�
������
qp
p

� n��;

(154)

where k� � �k1 � k2�=2 for kj 2 R as given in (141). The
periodic delta functions appearing in (154) would seem to
produce a metric on fields that is not Mobius invariant,
since fields of different conformal dimensions could have a
nonzero inner product. However, from (99),

 A�1
M GM�
2; 
1j�� � ��q=p��q=p�p=q���k�=�



�2
����F��k��F��k��

����� k1������ k2�
; (155)

where F��k� is given by (100). This leads to
 

F��k����k�
������
qp
p

� n� � ��k�
������
qp
p

� n�
����� n�=p�

�����



����� n�=p�

�����
: (156)

Thus for the topological minimal models (p � 1), the
zeros of the � functions impose

 F��k��
X
n2Z

��k�
���
q
p
� n� � ��k�

���
q
p
� (157)

and the corresponding metric on fields is in fact diagonal

 Gq�
2; 
1� � G�1;q��
2; 
1�

� 2i
���
q
p
A�2���k�� � Rq�
1�2���k���:

(158)

Here the reflection coefficient Rq�
� is given by [48]

 Rq�
� � �
���2
�� �2�

�2��2� 2
=�� ��2�

� �q
���2
=

���
q
p
� 1=q�

��2� 2

���
q
p
� q�

: (159)

However, for p > 1 the two-point function is not diagonal,
and thus operators of different conformal dimensions have
nonzero inner product. We will take this to mean that only
the nonrational theories with central charges

 c � 13� 6�q�1 � q� (160)

lead to well-defined conformal field theories. In the last
section some arguments suggesting why this might make
physical sense are put forward [49].

Status of the two-point function for h < �c� 1�=24
Consider the expression

 T �
# 01�x̂j��
#1�x̂j��

�
X
j

#01�x̂� 2xjj��

#1�x̂� 2xjj��
(161)

with

 2x1 � 2a1b
�1 � 1� �� i!1

���
q
p
; (162)

 2x2 � 2a2b
�1 � 1� �� i!2

���
q
p
; (163)

 2x3 � 2a3b
�1 � 2�

���
q
p
: (164)

Here � � �q� i�, and !j and � will be taken to be real.
Ultimately we will be interested in the �! 0 limit.
Defining 2!� � !1 �!2, and using the #1 function re-
lations given above we find T � T̂�!�� � T̂�!��, where

 T̂�!� �
#01�

���
q
p
��� i!�ji��

#1�
���
q
p
��� i!�ji��

�
#01�

���
q
p
��� i!�ji��

#1�
���
q
p
��� i!�ji��

:

(165)

This expression vanishes as �! 0, and thus does not lead
to a suitable two-point function. We thus consider the
derivative

 lim
x!0

d
dx

#01�x� iyji��
#1�x� iyji��

� �i
d
dy

# 01�iyji��
#1�iyji��

: (166)

Implementing the modular transformation,

 i�
#01�iyji��
#1�iyji��

� �
d
dy

ln�#1�y=�ji=��� � 2�y; (167)

we find
 

lim
�!0

d
d�

�T̂�!� � �
2���
q
p �

d2

d!2 ln�#1�!
���
q
p
=�ji=���

� 4�
���
q
p
: (168)

For � ’ 0 with ! 2 R we have
 

�
d
d!

ln�#1�!
���
q
p
=�ji=��� ’ �

d
d!

ln�sin��!
���
q
p
=���

� �
���
q
p

cot��!
���
q
p
=�� (169)

or

 lim
�!0

d
d�

�T̂�!� ’ �2�
d
d!

cot��!
���
q
p
=�� � 4�

���
q
p
:

(170)

This leads to
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 lim
�!0

d
d�

�T ’ 2�
�

���
q
p

�
�csc2��!�

���
q
p
=��

� csc2��!�
���
q
p
=���: (171)

It does not appear that this expression can serve as a metric
on fields, and thus the conclusion may be reached that the
spectrum does not include operators of conformal dimen-
sion h < �c� 1�=24. Whether there is a meaningful way to
introduce such operators as non-normalizable fields will
not be addressed here. Since the expression for Cq in (150)
is not analytic, it seems reasonable to conclude [50] that
only 
j 2 R lead to well-defined amplitudes.

VII. STRING AMPLITUDES

When combined with ghost contributions, the ampli-
tudes CL and Cq may be assembled into consistent string
correlators. Choosing a unit normalization for the ghost
amplitude, the corresponding three-point function is con-
stant on the sphere and is given by
 

~C�
3; 
2; 
1� � Cq�
3; 
2; 
1�CL��� 
3;

�� 
2; �� 
1j��: (172)

Here
j 2 R and� � 1=
���
q
p

. The combined central charge
of the Liouville theory and its continued counterpart com-
pensates for that of the ghost central charge:

 1� 6�1=�� ��2 � 1� 6�1=�� ��2 � 26: (173)

Similarly, the combined conformal dimension of a
Liouville operator with charge �� 
 and a continued
operator of charge 
 compensates for that of the ghost
vertex operator:

 ��� 
��1=�� 
� � 
�1=�� �� 
� � 1: (174)

From the expressions for CL (88) and Cq (148) we obtain
the following simple result:
 

~C�
3; 
2; 
1� � 2�iAq�4��1� �
���
q
p

̂	

�
X
j

�
���
q
p
�
̂� 2
j�	�



Y
j

��1=q� 2
j=
���
q
p
�: (175)

Here the constant AL has been absorbed into A, and all of
the � functions have cancelled from the expression. It
should be noted that if Cq were replaced by CM as in the
minimal gravity of [26], only factors which depend on the
normalization of vertex operators appear in the analogous
string amplitude.

VIII. INTERPRETATION AND CONCLUSION

An interpretation of the models considered here in terms
of an interacting timelike boson associated with asymptoti-
cally de Sitter cosmologies appears problematic. This is

since the spectrum of primary fields does not correspond to
the normalizable states of the timelike Liouville quantum
mechanics treated in Sec. III and in [36,37]. This is further
complicated by the fact that there do not appear to be
normalizable states for conformal dimensions h < �c�
1�=24. In the c � 1 treatment of [32], fields with these
conformal dimensions are taken to be normalizable for a
timelike boson since the arguments of the corresponding
exponential operators are imaginary. Similarly, fields with
h > �c� 1�=24 are taken to be normalizable for a space-
like boson. Through the state-operator correspondence this
is also a reasonable interpretation in the case of c < 1.
Having said this, it should be noted that the exponential
fields only give the asymptotic form of the wave functions
of the interacting theories, and the timelike zero-mode
picture certainly leads to normalizable states with asymp-
totically decaying real exponentials for h > �c� 1�=24.

However, there are reasons to suspect that the theories
considered here may admit interpretations relevant to two-
dimensional gravity. One of the problems with such an
interpretation for generic central charge is the existence of
a dual potential that appears in the Coulomb-gas compu-
tation of correlators. In Liouville theory such a potential
(4� ~�e2�=b) also appears as the alternative dimension one
operator to the canonical Liouville potential (4��e2b�),
with the respective cosmological constants being fixed
with respect to one another by crossing symmetry (5).
Both of these potentials admit a region of field space at
weak string coupling (�! �1) for which a free field
theory appears. For the c � 1 timelike theory, the canoni-
cal potential (4�	e2�’) vanishes in the region of strong
string coupling (’ � �i�! �1). For small matter con-
formal dimensions in a string model, a large Casimir
energy prevents the field from exploring this domain.
However, for sufficient matter energy it is possible for
the dual potential (4�~	e�2’=�) to grow large. In the two-

FIG. 4 (color online). The figure at the left is the coefficient of
the dual potential � ~�e2�=b as a function of b�2 for the choice
�� � 1 in Liouville theory. Here the real part is shown in blue
and the (vanishing) imaginary part is shown in red. It may be
seen that the dual potential is not bounded from below for all
c � 25, despite the assumption of a single vertex operator per
conformal dimension utilized in the conformal bootstrap. The
figure at the right is the corresponding coefficient of the dual
potential �~	e�2’=� as a function of ��2 for the choice �	 � 1
in the continuation of Liouville theory to c � 1. In this case the
dual potential is complex and vanishes at the central charges c �
13� 6�q�1 � q� for q 2 Z� of the topological minimal models.
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dimensional gravity interpretation this is associated with
small spatial scale in collapsing asymptotically de Sitter
geometries. If the dual potential is nonzero, a free field
treatment at small spatial scale is not available. It turns out
that the dual cosmological constant in the timelike theory,
which is also fixed with respect to the canonical cosmo-
logical constant (106), vanishes precisely for the central
charges (1) of the nonrational theories considered here (see
Fig. 4). These are also the only central charges for which
the dual cosmological constant is real. Whatever the space-
time interpretation, this is at least suggestive of a more
tractable family of nonrational theories than might be
expected at generic central charge.

It should be said that the language of the preceding two
paragraphs is largely heuristic in nature. The status of the
dual potentials in the respective CFTs is well defined from
a mathematical standpoint, but their physical significance

is not apparent [51]. Furthermore, as opposed to the con-
tinuation of the Liouville charges, the timelike rotation of
the Liouville boson certainly warrants skepticism. Putting
these interpretational issues aside, it does appear that the
CFTs discussed here are closely associated with the non-
rational c � 1 model of [32,34]. The extent to which these
theories have physical significance is a question for further
investigation.
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