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Based on the trace anomaly for the energy-momentum tensor, an effective theory for the thermody-
namics of the deconfining phase, and by assuming the asymptotic behavior to be determined by one-loop
perturbation theory, we compute the nonperturbative beta function for the fundamental coupling g in
SU(2) and SU(3) Yang-Mills theory. With increasing temperature we observe a very rapid approach to the
perturbative running. The Landau pole is nonperturbatively screened.
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I. INTRODUCTION

Knowledge on the resolution dependence (running) of
the fundamental coupling in Yang-Mills theories was first
obtained within a perturbative setting [1]. This is important
because the perturbative renormalizability of these theories
[2] (see also [3]) states that (apart from a wave-function
renormalization) the coupling remains the only parameter
of the theory in the process of successive perturbative
elimination of quantum fluctuations. The proof of the
perturbative renormalizability of Yang-Mills theories be-
longs to the deepest and most far-reaching theoretical
results of the last century. As a consequence, the notion
of asymptotic freedom was established for the strong in-
teractions governed by the gauge group SU(3) [1]. The
asymptotic freedom of quantum chromodynamics allows
for a controlled small-coupling expansion of correlation
functions around the conformal limit which takes place at
an infinitely large resolution.

Nonperturbative investigations on the running of the
gauge coupling have been carried out in the framework
of the exact renormalization group equation (ERGE) and
the approach via the Dyson-Schwinger equations; see [4,5]
and references therein. As it seems, these results indicate
that the perturbatively derived Landau pole is regularized
by nonperturbative effects. The purpose of the present
article is to reinvestigate this issue in an independent way.

On the one hand, we use a nonperturbative approach to
SU(2) and SU(3) Yang-Mills thermodynamics [6], which
predicts for the deconfining phase the existence of a
unique, maximal resolution in terms of the modulus
j�j�T� of an emergent, adjoint Higgs field.1 On the other
hand, we combine it with a nonperturbative definition of
the gauge-coupling evolution via the trace anomaly for the
energy-momentum tensor at finite temperature. This al-
lows for an extraction of the nonperturbative rate of change

of the fundamental coupling g under a variation of tem-
perature: the beta function.

As a boundary condition we require that the high-
temperature behavior of the beta function is in accord
with the perturbative situation. The so-extracted law gov-
erning the running of the coupling is in agreement with that
obtained in one-loop perturbation theory (when setting the
renormalization scale equal to temperature) except just
above the critical temperature.

The article is organized as follows. In Sec. II we briefly
review the trace anomaly for the energy-momentum tensor
and discuss its validity at finite temperature. Based on the
trace anomaly and an effective theory for the thermody-
namics of the deconfining phase, the derivation of the
nonperturbative evolution equation for the fundamental
coupling in dependence of temperature is performed for
SU(2) and SU(3) pure Yang-Mills theories in Sec. III. We
discuss the high-temperature limit to make contact with
perturbation theory and subsequently solve the evolution
equations. In Sec. IV we summarize and discuss our
results.

II. TRACE ANOMALY

The trace anomaly for the energy-momentum tensor
���, which is considered an operator identity, reads [7,8]

 ��� �
��g�
2g

Fa��F
a
��; (1)

where Fa�� � @�Aa� � @�Aa� � gfabcAb�Ac� is the field
strength appearing in the fundamental Lagrangian of the
Yang-Mills theory, LYM � �

1
4 �F

a
���

2, fabc are the struc-
ture constants of the Lie algebra, and � is given by the
right-hand side of the evolution equation for the funda-
mental gauge coupling g:

 �@�g � ��g�: (2)

In Eq. (2) the mass scale � refers to the resolution that is
applied to the process at which the strength of the coupling

1The spatially infinitely extended thermalized Yang-Mills
system can be considered as an extended vertex which self-
consistently picks its own scale of maximal resolution [6].

PHYSICAL REVIEW D 77, 065022 (2008)

1550-7998=2008=77(6)=065022(6) 065022-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.065022


g is extracted. In contrast to the chiral anomaly [7], which
is not renormalized because of its topological nature, the
trace anomaly exhibits two resolution-dependent factors:
the � function divided by g and the average of Fa��Fa��.

When solving ��g� � �@�g � �bg
3 (b � 11N

48�2 , valid
at one-loop order and zero temperature) a Landau pole
� � �L, which roughly is identified with the Yang-Mills
scale � (�L ��), occurs:

 �L � �0 exp
�
�

1

2bg2
0

�
: (3)

Equation (3) then implies the well-known form for the
running coupling:

 g2��� �
g2

0

1� 2b ln���0
�
�

1

2b ln� ��L
�
: (4)

Let us now turn to the case of finite temperature: We work
in a flat Euclidean spacetime with time � constrained as
0 � � � 1=T. In [9] the one-loop zero-temperature expres-
sion in Eq. (3) was used to argue for the validity2 of Eq. (1)
when taking a thermal average.

Performing a thermal average over Eq. (1), we obtain

 �� 3p �
��g�
2g
hFa��Fa;��iT; (5)

where � and p describe the energy density and the pressure
of the thermalized Yang-Mills system. Notice that in
Eq. (5) two scales enter: the temperature T, at which the
thermal averages are calculated, and the scale �, which is
the resolution at which ��g� � �@�g is evaluated [10,11].
In our approach [6,12,13] the scales � and T are not
independent but are functionally related.

III. NONPERTURBATIVE � FUNCTION

A. Effective SU(2) Yang-Mills thermodynamics

We now turn to the effective theory for SU(2) thermo-
dynamics in the deconfining phase. There are topologically
trivial, coarse-grained gauge fields a� entering in the
effective field strength Ga

�� � @��a
a
�� � @��a

a
�� �

e"abcab�ac� [to be distinguished from the fundamental field
strength Fa�� in LYM � �

1
4 �F

a
���

2], and there is an inert,
adjoint scalar field �, which together with a pure-gauge
configuration represents the thermal ground state emerging
from a spatial average over interacting calorons and anti-
calorons of topological charge modulus jQj � 1. The ef-

fective coupling e is temperature dependent (to be
distinguished from the fundamental coupling g). The de-
pendence e � e�T� follows from thermodynamical self-
consistency (see below). The effective Lagrangian for the
description of SU(2)-Yang-Mills thermodynamics in the
deconfining phase (T > Tc � 	c�=2�, 	c � 13:87) and
in unitary gauge reads [6,13]
 

Lu:g:
dec-eff �

1

4
�Ga;��

E �a�	�2 � 2e�T�2j�j2��a�1�� �2 � �a
�2�
� �2�

�
2�6

E

j�j2
: (6)

The modulus of the adjoint scalar field j�j depends on the

Yang-Mills scale � and on temperature T as j�j �
�������
�3

2�T

q
.

The length j�j�1 is the minimal length down to which the
thermalized system looks spatially homogeneous. In other
words, the spatial average over interacting calorons and
anticalorons self-consistently saturates below this length
scale. The quantum fluctuations a�1;2�� are massive in a
temperature dependent way, m2 � m�T�2 � 4e2j�j2,
while the gauge mode a�3�� stays massless [dynamical
gauge symmetry breaking: SU�2� ! U�1�].

We work with the following dimensionless quantities:

 �� �
�

T4 ; �p �
p

T4 ; 	 �
2�T

�
;

a�	� �
m�T�
T
� 2

e�T�
T
j�j;

(7)

where � and p are the energy density and the pressure due
to the Lagrangian (6), and the function a � a�	� is intro-
duced for later use.

The energy density and pressure, � and p, are the sum of
three contributions,

 � � �3 � �1;2 � �gs; p � p3 � p1;2 � pgs; (8)

where the subscript 1,2 is understood as a sum over the two
massive modes a�1;2�� , the subscript 3 refers to the massless
mode a�3�� , and the subscript gs labels the ground-state
contribution. When expressing �� and �p as functions of
the dimensionless temperature 	, one obtains at one loop
(accurate at the 0.1% level [6,14])

 �� 3 � 2
�2

30
; ��1;2 �

3

�2

Z 1
0
dx
x2

����������������
x2 � a2
p

e
����������
x2�a2
p

� 1
;

��3gs �
2�2��4

	3 ;

(9)

 

��3 � 2
�2

90
;

�p1;2 � �
3

�2

Z 1
0
x2dx ln�1� e�

����������
x2�a2
p

�;

�pgs � � ��gs:

(10)

2The grand canonical potential density, �
V � �P, must be

expressible as �4f��=T�, where f is a dimensionless function
of its dimensionless argument. Taking the derivative of �

V with
respect to the exponent in Eq. (3), the thermal average over both
sides of Eq. (1) appears with the one-loop level expression for �.
The authors of [9] then claim that there is no difficulty to extend
this result to an arbitrary order in perturbation theory. Here we
will consider the one-loop situation only.
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Imposing the validity of the thermodynamical Legendre
transformation

 � � T
dP
dT
� P, �� � 	

d �p
d	
� 3 �p (11)

and substituting the expressions (9) and (10) into (11), we
arrive at the following differential equation for a � a�	�:

 1 � �
6	3

�2��6

�
	
da
d	
� a

�
aD�a�; (12)

 D�a� �
Z 1

0
dx

x2����������������
x2 � a2
p

1

e
����������
x2�a2
p

� 1
; a�	in� � 0:

(13)

For a sufficiently large initial value 	in the solution for a�	�
is independent of 	in: A low-temperature attractor with a
logarithmic pole at 	c � 13:87 is seen to exist. The effec-
tive coupling is given as e � e�	� � a�	�	3=2=4�, and
exhibits a plateau e �

���
8
p
� for 	
 	c. In fact,

 a�	� �
8
���
2
p
�2

	3=2
(14)

is a solution of the differential equation (12) for a� 1,
that is, for 	
 	c. For plots and the discussion of the
thermodynamical quantities, we refer to [6], and for the
discussion of the linear growth of h���iT , to [15].

B. Nonperturbative running coupling g�T�: SU(2) case

We now use the effective Lagrangian (6) to evaluate the
two relevant elements of the trace-anomaly equation

 �� 3p �
��g�
2g
hFa��Fa;��iT: (15)

Namely,
(i) �� 3p is evaluated from Eqs. (9) and (10).
(ii) The expectation value hFa��Fa;��iT is the average

action density in Euclidean space (a possible defi-
nition of the gluon condensate as discussed in
[13,16]).

We evaluate the average action density by utilizing the
effective Lagrangian (6), considering that the part of the
fundamental field strength Fa��, which enters the ground-
state physics described by the effective theory,3 suffers a
wave-function renormalization. We have

 hLYMiT �
1
4hF

a
��F

a;��iT � f2�g�hLu:g:
dec-effiT � f2�g��gs

(16)

with �gs � 	4 ��gs � 4��3T. The function f�g� will be
fixed by requiring that for 	
 	c the fundamental cou-
pling g runs in agreement with perturbation theory.

Within the effective theory we can relate the natural (not
externally imposed) resolution scale � to temperature T.

We have � � j�j �
�������
�3

2�T

q
[6,12,13]. That is, the thermal-

ized Yang-Mills system acts like a spatially extended ver-
tex being probed with a self-consistently adjusting
resolution j�j as soon as a temperature T is provided.
Fluctuations that would be resolved at �> j�j are inte-
grated out in the effective theory. Thus we have

 ��g� � �@�g � �2T@Tg � �2�T�g�; (17)

where �T�g� � T@Tg. Notice that ��g� � �@�g is a posi-
tive quantity: In fact, the trace anomaly �� 3p and
hFa��F

a;��iT are both positive. The fact that the resolution
� � j�j decreases for increasing T generates a negative
�T�g� in accord with asymptotic freedom (T 
 Tc).

Taking into account Eqs. (15)–(17), we have

 h�	� �
�� 3p

4�gs
� �

�T�g�
g

f2�g�: (18)

The function h�	� (see also [15]) is plotted in Fig. 1. Notice
that h approaches the value 3

2 for 	
 	c, thus implying
that h���iT � �� 3p � 6�gs � 24��3T for T 
 Tc.
This simple high-T behavior allows one to determine the
function f�g� analytically if we assume that all nonpertur-
bative and higher-loop effects governing the function h�	�
solely reside in the beta function �T and that the function
f�g� is thus determined by one-loop perturbation theory.
We require that the perturbative result �T�g� � �bg3

(b � 11N
48�2 , N � 2) holds for g� 1 (or T 
 Tc). Then

Eq. (18) implies that

0 2 4 6 8 10
1

1.1

1.2

1.3

1.4

λ/λc

h(
λ)

FIG. 1. The function h�	�, defined in Eq. (18), plotted for the
SU(2) (gray curve) and for the SU(3) (black curve) Yang-Mills
theories.

3On the one hand, it is straightforward to show that on-shell
excitations do not contribute to the thermal average hLdec-effiT in
Eq. (6) at the one-loop level. On the other hand, in the effective
theory quantum fluctuations make a negligible contribution as
compared to that of the ground state [6].
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 f�g� �

������
3

2b

s
1

g
: (19)

The evolution equation (18) for g � g�	� is recast as

 �T�g� � �
2

3
bh�	�g3 , @	g � �

2

3
b
h�	�
	

g3: (20)

From the behavior of h�	� we can immediately infer two
interesting properties:

(a) The function h�	� ’ 3
2 for 	 > 5	c. That is, the

perturbative equation �T�g� � �bg3 is valid all
the way down to 5	c. The range of validity of the
perturbative treatment for the determination of g�	�
is thus even larger than one would naively think.
Indeed, as we will see later, the perturbative solution
is very similar to the nonperturbative one, even
down to temperatures �1:2Tc.

(b) The function h�	� slowly decreases for decreasing
temperatures, thus effectively lowering the coeffi-
cient b in the perturbative beta function. Therefore a
mild screening of the perturbative Landau pole
occurs.

To solve Eq. (20) an initial condition must be specified.
As discussed in the previous subsection, the effective
coupling constant e�	� shows a logarithmic pole at the
critical temperature 	c � 13:87. We therefore impose
that the fundamental coupling g�	� also diverges at the
deconfining temperature. In this way the solution g � g�	�
is uniquely fixed. Figure 2 shows this solution and the
perturbative solution gP�	� of Eq. (4) (by setting � �
T). The boundary condition for gP�	� is determined by
imposing that g and gP coincide at large values of 	. In
practice, we can set g�	 � 10	c� � gP�	 � 10	c� (an-
other choice of the matching at high T clearly would
lead to very similar results). Notice that in Fig. 2 the
perturbative Landau pole is to the right of 	c. Also, the

nonperturbative coupling g is screened as compared to gP:
g�	� is always below gP�	�.

C. Nonperturbative running coupling g�T�: SU(3) case

Here the effective thermodynamic description follows
the same lines as in the SU(2) case (see [6]). We only report
on some relevant formulas and briefly discuss their con-
sequences. The modulus of the scalar field � is exactly the
same. As shown in [6], out of the eight coarse-grained
gauge modes, four acquire a massm1 � ej�j (contributing
to � and p by �1 and p1), two acquire a mass m2 � 2ej�j
(�2 and p2), and two stay massless (�3 and p3). Explicitly,
we have (a � m1=T)

 �� 3 � 4
�2

30
; ��1 �

6

�2

Z 1
0
dx
x2

����������������
x2 � a2
p

e
����������
x2�a2
p

� 1
; (21)

 �� 2 �
3

�2

Z 1
0
dx
x2

����������������������
x2 � �2a�2

p
e
��������������
x2��2a�2
p

� 1
; ��gs �

2�2��4

	3 ;

(22)

 �p 3 � 4
�2

90
; �p1 � �

6

�2

Z 1
0
dxx2 ln�1� e�

����������
x2�a2
p

�;

(23)

 

�p2 � �
3

�2

Z 1
0
dxx2 ln�1� e�

��������������
x2��2a�2
p

�; �pgs � � ��gs:

(24)

Thermodynamical self-consistency, Eq. (11), implies that

 1 � �
12	3

�2��6

�
	
da
d	
� a

�
�aD�a� � 2aD�2a��: (25)

The asymptotic solution to Eq. (25) reads a�	� �
8��
3
p �2	�3=2, and the effective coupling reaches a plateau

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

λ/λc

λ)
g(

FIG. 2. The running of the nonperturbative g�	� (solid line)
and that of the perturbative counterpart gP�	� (dotted line) for
the SU(2) case.

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

λ/λc

λ)
g(

FIG. 3. The running of the nonperturbative coupling g�	�
(solid line) and the perturbative counterpart gP�	� (dotted line)
in the SU(3) case.
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value of e � 4��
3
p � for 	
 	c. The value for 	c, where the

effective coupling e possesses a logarithmic pole, is 	c �
9:475 [6]. The asymptotic value of the function h�	�,
defined in (18), is 3=2 just like in the SU(2) case. The
function h�	� is plotted in Fig. 1, and an analogous behav-
ior to the SU(2) curve is evident.

Equations (19) and (20) hold for b � 11N
48�2 , N � 3. The

qualitative discussion is very similar to the SU(2) case. The
nonperturbative and the perturbative solutions are plotted
in Fig. 3, where a screening of the perturbative Landau pole
is observed. The similarity of the SU(2) and SU(3) cases is
remarkable.

IV. SUMMARY AND CONCLUSIONS

We have computed the beta function for the fundamental
coupling in SU(2) and SU(3) Yang-Mills theories by ap-
pealing to the trace anomaly for the energy-momentum
tensor and an effective theory for the thermodynamics of
the deconfining phase. The latter involves an adjoint scalar
field � which emerges upon a coarse-graining process
performed over interacting calorons and anticalorons [6]
and which, together with a pure-gauge configuration, rep-
resents the thermal ground state for the system. In contrast
to earlier (perturbative) investigations, where a separate
dependence of the coupling on the resolution � and tem-
perature T was employed [10,11], the effective theory
dictates the relevant� at a given T in terms of the modulus
of the scalar field j�j. Therefore T and � are no longer
independent variables, but they are functionally related:
� �

j�j �
�������
�3

2�T

q
where � is the Yang-Mills scale. The beta

function, defined by the rate of change of the fundamental
coupling g when varying the resolution scale �, thus also
relates to the rate of change �T of g when varying T. This

enables a comparison with the one-loop, zero-temperature
perturbative prediction (obtained by setting � � T), pro-
vided that we can assume that all higher-loop and non-
perturbative effects are contained in �T , while the wave-
function renormalization is determined by one-loop per-
turbation theory. We also have assumed that for asymptoti-
cally large temperatures the full beta function exhibits the
perturbative one-loop behavior.

Remarkably, already for temperatures slightly greater
than the critical temperature, we observe the behavior of
�T as predicted by one-loop perturbation theory [1].
Deviations become apparent only for smaller temperature,
say below 1:5Tc. The nonperturbative effects generate a
screening of the perturbative Landau pole: The nonpertur-
bative pole is slightly shifted to the left of the perturbative
Landau pole for both SU(2) and SU(3).

The fact that in our study the perturbative solution is
valid up to temperatures slightly above Tc relies on the
properties of the function h�	� � ��3p

4�gs
as plotted in Fig. 1

(	 � 2�
T and �gs is the explicit contribution of the ground

state to the energy density). At high T the asymptotic
behavior is h�	� ’ 3=2, and the perturbative evolution
equation is recovered. In the context of the present paper,
the very presence of the nonperturbative ground state is
ultimately responsible for this simple asymptotic behavior
of h�	�. Notice that the asymptotic behavior for h�	�
implies that �� 3p � 6�gs � 24��3T. Thus the trace
anomaly grows linearly with temperature for sufficiently
high T (see also [15,17,18]).
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