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We investigate the influence of the asymmetric quark matter (�u � �d � �s) on the mass of the
quasiparticles and the phase diagram of the chiral quark model parametrized at the one-loop level of the
renormalized theory, using the optimized perturbation theory for the resummation of the perturbative
series. The effect of various chemical potentials introduced in the grand canonical ensemble is inves-
tigated with the method of relativistic many-body theory. The temperature dependence of the topological
susceptibility is estimated with the help of the Witten-Veneziano mass formula.
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I. INTRODUCTION

The study of a system of particles at finite density and
temperature is phenomenologically interesting because in
heavy ion collision experiments the initial state is such that
the chemical potentials �B, �I, and �Y (conjugate to the
baryon charge, third component of the isospin, and hyper-
charge, respectively) are nonvanishing, although the last
two are much smaller than the first one. Assuming thermal
equilibrium, thermal models show that the strangeness
chemical potential in central Si� Au collisions at the
Brookhaven AGS experiment was 20%–25% of the bar-
yonic chemical potential for which the best fit gives �B �
540 MeV [1]. For central Pb� Pb collisions at CERN SPS
experiments, the value of the strangeness chemical poten-
tial was �25%–30% and that of the isospin chemical
potential �2%–5% of the value of �B estimated to be
around 233–266 MeV [2,3]. The compressed baryonic
matter experiment at FAIR in Darmstadt will explore
regions of the QCD phase diagram with moderate tem-
perature up to values of the baryonic density which are
comparable with those in the core of neutron stars [4].

In many-body theory chemical potential is introduced to
any conserved charge. In heavy ion collision experiments
the baryon number, isospin, and hypercharge can be con-
sidered conserved due to the short time elapsed between
the formation of the fireball and its freeze-out, during
which only the strong interactions play an important role,
the electroweak interactions being negligible. It is expected
that in the very early stage of the fireball’s evolution
strangeness is abundantly produced in the deconfined
phase through gluon-gluon fusion [5], while in the had-
ronic phase in the vicinity of the transition multimesonic

reactions will play an important role in the fast redistrib-
ution of strange quarks [6].

The influence of the isospin chemical potential on the
chiral phase transition is currently actively investigated
because this effect can in principle be tested experimen-
tally. As noticed in [7], using different isotopes of an
element in heavy ion collision experiments will vary �I
keeping �B constant. Moreover, the system with real �I
represents no extra difficulty in lattice field theory com-
pared to the introduction of �B. For two flavors the simu-
lations at �B � 0 and �I � 0 are not even affected by the
sign problem [8]. For�I � 0 a generic result coming from
effective models of the strongly interacting matter without
the U�1�A anomaly appeared to be the splitting in the �B-T
plane of the first order transition line into two transition
lines. This effect was observed in a random matrix model
[9], Nambu-Jona-Lasinio model [10], and strong coupling
limit of the staggered lattice QCD [11], all with two flavors
and in the three-flavor ladder QCD [12]. This would imply
the existence of not only the two phases having h �uui � 0,
h �ddi � 0, and h �uui � h �ddi � 0, respectively, but also of a
phase with h �uui � 0 and h �ddi � 0. It was shown in [13,14]
that the structure with two transition lines and critical end
points ceases to exist for a sufficiently strong U�1�A break-
ing, above which the two strongly coupled condensates
vanish simultaneously. In a hadron resonance gas model it
was found that at fixed baryon chemical potential the
pseudocritical temperature of the transition between the
hadronic phase and the quark-gluon plasma phase is low-
ered as either the isospin or the strangeness chemical
potential is increased [15].

Because of their phenomenological implications, it is
natural to study to what extent these results are present in
another low energy effective model, the chiral quark
model, widely used for studying the chiral behavior of
strongly interacting matter. In the past few years we have
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investigated the thermodynamics of this model for two and
three quark flavors at �B � 0 and �B � 0, while leaving
�I � �Y � 0 [16–19]. As a continuation of these previous
studies, in this paper we consider the influence of the
chemical potentials on the chiral phase transition up to
high values of the isospin chemical potential above which
the condensation of pseudoscalar mesons occurs. The pion
and kaon condensation phase, which is beyond the scope of
our present investigation, was studied both with lattice
methods and using effective theories [20–26].

The paper is organized as follows. In Sec. II we present
the model, its one-loop parametrization, and the introduc-
tion of the chemical potentials. The variation of the loca-
tion of the critical end point in the presence of�I and�Y is
studied in Sec. III. There we investigate also the tempera-
ture and density dependence of the one-loop pole masses of
the pseudoscalar mesons. We conclude in Sec. IV.

II. THE SU�3�L � SU�3�R SYMMETRIC CHIRAL
QUARK MODEL

The Lagrangian of the model containing explicit sym-
metry breaking terms is
 

L � 1
2 Tr�@�M

y@�M�m2
0M
yM� � f1�Tr�MyM��2

� f2Tr�MyM�2 � g�det�M� � det�My�� � �0�0

� �3�3 � �8�8 � � �i@6 � gFM5� : (1)

The constituent quarks are contained in the field  : � �
� �u; �d; �s�. The two 3� 3 complex matrices are defined in
terms of the scalar �i and pseudoscalar �i fields as M �
1��
2
p
P8
i�0��i � i�i��i and M5 �

1
2

P8
i�0��i � i�5�i��i,

with �i: i � 1 . . . 8 the Gell-Mann matrices and �0 :���
2
3

q
1. The fields with well defined quantum numbers are

obtained with a block-diagonal transformation f� � T�ifi,
f 2 f�;�g, where T � diag�1; 	; 1; 	; 	; 1� and

 	 �
1���
2
p

1 �i
1 i

� �
:

As � goes from 0 to 8, the components of the scalar and
pseudoscalar fields go through �0, a�0 , a�0 , �3, 
�, 
�, 
0,
�
0, �8 and �0, ��, ��, �3; K�, K�, K0, �K0, �8, respec-
tively. The physical fields �0 (neutral pion), �, and �0

mesons in the pseudoscalar sector and a0
0 (neutral a0), �,

and f0 in the scalar sector are obtained as linear combina-
tions of the corresponding fields in the two mixing 0, 3, 8
sectors.

In this paper we investigate the pattern of symmetry
breaking realized in nature, with the SU�3�A �U�1�A �
SU�3�V symmetry completely broken; that is, the isospin
SU�2�V is also broken. In addition to the spontaneous
symmetry breaking, explicit breaking is also considered
with the introduction of external fields for all the diagonal

generators of the scalar sector. This results in having three
nonvanishing condensates in the broken symmetry phase:
v� � h��i, for � � 0, 3, 8. The condensates determine the
tree-level scalar and pseudoscalar masses:

 m2
S;� � m2

0�� � 6 ~G��v� � 4 ~F���v�v�;

m2
P;� � m2

0�� � 6 ~G��v� � 4 ~H�;��v�v�:
(2)

The tensors appearing above arise after the evaluation of
the trace in (1) and the transformation of the fields to the
basis with good quantum numbers. The connection be-
tween these coupling tensors and the original ones appear-
ing in (1) which can be found in [27,28] is given by

 

~G�� �
X8

i;j;k�0

GijkT
�1
i� T

�1
j T

�1
k� ;

~H�;�� �
X8

i;j;k;l�0

Hij;klT�1
i� T

�1
j T

�1
k� T

�1
l� ;

~F��� �
X8

i;j;k;l�0

FijklT�1
i� T

�1
j T

�1
k� T

�1
l� :

(3)

The transformations preserve the symmetry structure of the
tensors; that is, ~G�� and ~F��� are completely symmet-
ric, and ~H�;�� is symmetric upon the interchange of two
indices which are on the same side of the comma.

The tree-level mass square matrices are not diagonal in
the 0, 3, 8 subspace, but since they are real and symmetric,
diagonalization is achieved with an orthogonal transforma-
tion. The tree-level orthogonal matrices in the scalar and
pseudoscalar sectors are denoted with OS and OP, respec-
tively. Denoting the eigenvalues of the pseudoscalar and
the scalar 3� 3 mass matrices in the 0, 3, 8 sector with
�P;fmin;mid;maxg and �S;fmin;mid;maxg, the tree-level masses of
the mesons are as follows:

 

m2
�� � m2

�� � m2
P;12; m2

a�0
� m2

a�0
� m2

S;12;

m2
�0 � �P;min; m2

a0
0
� �S;mid;

m2
K� � m2

K� � m2
P;45; m2


� � m2

� � m2

S;45;

m2
K0 � m2

�K0 � m2
P;67; m2


0 � m2
�
0 � m2

S;67;

m2
� � �P;mid; m2

� � �S;min;

m2
�0 � �P;max; m2

f0
� �S;max:

(4)

Note that some of the tree-level masses of scalars and
pseudoscalars coincide. As we will see, the introduction
of isospin and hypercharge chemical potentials distin-
guishes between the particles, and as a result all the one-
loop pole masses will be different for �I;�Y � 0.
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The tree-level fermion masses are

 Mu �
gF������
12
p �

���
2
p
v0 �

���
3
p
v3 � v8�;

Md �
gF������
12
p �

���
2
p
v0 �

���
3
p
v3 � v8�;

Ms �
gF������
12
p �

���
2
p
v0 � 2v8�:

(5)

The evolution of the condensates with the temperature
or/and the chemical potentials is determined by the three
equations of state

 0 �
�
@L
@�0

�

� m2v0 �
c

2
���
6
p �2v2

0 � v
2
3 � v

2
8� �

1

3
�3f1 � f2�v

3
0 � �f1 � f2��v2

3 � v
2
8�v0 �

f2

3
���
2
p �3v2

3 � v
2
8�v8 � "0

�
X

f2f�;�g
��1;2;4...7

t0f;�hf
y
�f�i � 3

X
�2f0;3;8g

��OT
SS0OS���h����i � �OT

PP0OP���h����i	 �
gF���

6
p Nc�h �uui � h �ddi � h �ssi�; (6)

 0 �
�
@L
@�3

�

�

�
m2 �

c���
3
p v8 �

c���
6
p v0 �

�
f1 �

f2

2

�
�v2

3 � v
2
8� � �f1 � f2�v

2
0 �

���
2
p
f2v0v8

�
v3 � �3 �

X
f2f�;�g
��1;2;4...7

t3f;�hf
y
�f�i

� 3
X

�2f0;3;8g

��OT
SS3OS���h����i � �OT

PP3OP���h����i	 �
gF
2
Nc�h �uui � h �ddi�; (7)

 0 �
�
@L
@�8

�

� m2v8 �
c���
6
p v0v8 �

c

2
���
3
p �v2

8 � v
2
3� �

�
f1 �

f2

2

�
�v2

8 � v
2
3�v8 �

f2���
2
p �v2

3 � v
2
8�v0 � �f1 � f2�v

2
0v8 � "8

�
X

f2f�;�g
��1;2;4...7

t8f;�hf
y
�f�i � 3

X
�2f0;3;8g

��OT
SS8OS���h����i � �O

T
PP8OP���h����i	 �

gF
2
���
3
p Nc�h �uui � h �ddi � 2h �ssi�; (8)

where in the mixing sector �� stands for �, a0
0, f0 and

similarly �� denotes �0, �, �0 as � � 0, 3, 8, respectively.
fy� denotes the antiparticle of f�; that is, e.g. for f � � and
� � 1 one has �1 � a�0 and �y1 � a�0 . In this notation
hf�� f�i � TB �mf��, h �qqi � �4mqT


F �mq�, where TB �mf��

and TF �mq� stand for the bosonic and the fermionic tadpole
integrals, respectively. These integrals are given in
Appendix B of [19]. The coefficients t�f;� are listed in
Table I. In the mixing sector, that is for � � 0, 3, 8, the
3� 3 matrices read

 S� � ~G0 �
4
3v0

~F�0 �
4
3v3

~F�3 �
4
3v8

~F�8;

P� � ~G0 �
4
3v0

~H�0 �
4
3v3

~H�3 �
4
3v8

~H�8;
(9)

with the definition � ~G��� 
 ~G��, � ~F���� 
 ~F���,
and � ~H���� 
 ~H�;��. All the indices run through 0, 3,
or 8.

A. One-loop parametrization of the model at zero
temperature and density

One has some freedom in choosing the set of equations
which determines the 13 parameters of the model, namely,
m2

0, f1, f2, g, gF, v0, v3, v8, �0, �3, �8 and lf, lb. These last
two parameters are the fermionic and bosonic renormal-
ization scales. For the parametrization we follow the

TABLE I. The t�f;� coefficients appearing in the equations of
state (6)–(8). The summation index � goes over 0, 3, 8.

� t��;� � t��;�

a�0 3 ~G�21 � 4 ~H�21�v� �� 3 ~G�21 � 4 ~F�21�v�

a�0 3 ~G�12 � 4 ~H�12�v� �� 3 ~G�12 � 4 ~F�12�v�


� 3 ~G�54 � 4 ~H�54�v� K� 3 ~G�54 � 4 ~F�54�v�


� 3 ~G�45 � 4 ~H�45�v� K� 3 ~G�45 � 4 ~F�45�v�

�
0 3 ~G�76 � 4 ~H�76�v�
�K0 3 ~G�76 � 4 ~F�76�v�


0 3 ~G�67 � 4 ~H�67�v� K0 3 ~G�67 � 4 ~F�67�v�
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method described in [19] where the renormalization of the
model was also discussed. The only difference in the
present case is the appearance of v3 and �3. Since at zero
temperature and densities the effect of isospin breaking is
small, we use the same values for lf and lb as in [19] where
these were determined by minimizing the deviation of the
predicted mass spectrum from the physical one. The ex-
ternal fields are determined from the equations of state (6)–
(8) once the remaining 8 parameters are known.

In order to avoid the appearance of negative propagator
mass squares in the one-loop finite temperature calcula-
tions in the broken symmetry phase, we use the optimized
perturbation theory of Ref. [29]. This amounts to replacing
the mass parameter �m2

0 in the Lagrangian with an effec-
tive, eventually temperature-dependent, mass parameter
m2:

 Lmass �
1
2m

2TrMyM� 1
2�m

2
0 �m

2�TrMyM


 1
2m

2TrMyM� 1
2�m

2TrMyM: (10)

The counterterm �m2 is taken into account first at the one-
loop level, while m2 will replace m2

0 in all the tree-level
masses and is determined using the criterion of fastest
apparent convergence (FAC). We have chosen to imple-
ment this criterion by requiring that for �� the one-loop
mass calculated at vanishing external momentum stays
equal to the tree-level mass (M�� � m��). We have
checked that imposing this equation for the neutral pion
rather than the charged one results in no significant
changes in the parameters. We note here that we were
forced to use the definition M2

�� � �iG
�1�p � 0� instead

of defining the one-loop mass as the pole of the propagator
because in this latter case the solution to the gap equation,
to be presented below, ceases to exist above a certain
temperature, in accordance with previous investigations
using the optimized perturbation theory [18,29].

As described in detail in [19], with the application of
FAC one can eliminate the effective mass parameter m2 in
favor of the tree-level pion mass m2

�� in all the other tree-
level masses of the propagators used to calculate the one-
loop self-energies:
 

m2 � m2
�� �

c���
6
p v0 �

c���
3
p v8 �

���
2
p

3
f2v0v8 �

�
f1 �

f2

3

�
v2

0

�

�
f1 �

3f2

2

�
v2

3 �

�
f1 �

f2

6

�
v2

8: (11)

In this way one obtains the following gap equation:
 

m2
�� � �m

2
0 �

c���
6
p v0 �

c���
3
p v8 �

���
2
p

3
f2v0v8

�

�
f1 �

f2

3

�
v2

0 �

�
f1 �

3f2

2

�
v2

3 �

�
f1 �

f2

6

�
v2

8

� Re����p
2 � 0; m2

i �m
2
����; (12)

where ��� denotes the self-energy of �� shown diagram-
matically in Fig. 1. Equation (12) is the first from a set of
four coupled nonlinear equations which determines m2

0, f1,
f2, g, if one knows gF, v0, v3, v8. Two further equations of
the set are given by the one-loop equation for the � andK�

pole masses:

FIG. 1. Diagrammatic representation of the one-loop pseudoscalar self-energies used for the parametrization. The label associated to
the line denotes the propagating particle.
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 M2
� � �m2

0 � �
~OT
P�M

2
tree � Re�0;3;8�p2 � M2

��� ~OP	22;

(13)

 

M2
K� � �m

2
0 �

c���
6
p v0 �

c
2
v3 �

c

2
���
3
p v8 �

f2���
6
p v0v3

�
f2

3
���
2
p v0v8 �

2f2���
3
p v3v8 �

�
f1 �

f2

3

�
v2

0

�

�
f1 �

f2

2

�
v2

3 �

�
f1 �

7f2

6

�
v2

8

� Re�K��p
2 � M2

K��; (14)

where M2
tree is the tree-level mass squared matrix of the

mixing sector without the mass parameter m2, the orthogo-
nal matrix ~OP diagonalizes the expression in the round
bracket, and �0;3;8 is the self-energy matrix of the pseudo-
scalar mixing sector. This matrix is determined numeri-
cally. The last equation in the set is the FAC criterion for
the kaon, which requires Re�K��p

2 � M2
K�� ��m2 � 0.

The parameters gF, v0, v3, v8 are determined as follows.
A linear combination of v0 and v8 is determined by the
tree-level partially conserved axial-vector current relation
for the pion decay constant (see the Appendix of [28])

 f� :� d11ava �

���
2

3

s
v0 �

1���
3
p v8: (15)

One can see from (5) that the same linear combination
enters the expression of the average mass of the two light
constituent quarks, so that the Yukawa coupling is given by
gF � �Mu �Md�=f�. Another linear combination of v0

and v8 appears in the expression of Ms in (5) which
together with the partially conserved axial-vector current
relation (15) determines v0 and v8:

 v0 �

���
2

3

s
f�

�
1�

Ms

Mu �Md

�
;

v8 �
1���
3
p f�

�
1�

2Ms

Mu �Md

�
:

(16)

The remaining parameter, v3, is obtained by requiring that
the difference between the tree-level masses of �� and �0

equals the physical value (�m�):

 � �OT
PM

2
treeOP	11 � ��m��

2: (17)

This equation has two roots for v3, a negative and a
positive one. The positive root would give mK0 <mK� for
the kaon masses. Since the opposite relation holds in
nature, we choose the negative solution which is the physi-
cally valid one.

We use the following values for the physical quantities:
m�� � 139:57 MeV, �m� � 4:594 MeV, MK� �
493:677 MeV, M� � 547:8 MeV, f� � 93 MeV, �Mu �

Md�=2 � 313 MeV,Ms � 530 MeV, and in addition lb �

520 MeV and lf � 1210 MeV for the two renormalization
scales.

B. Introduction of the chemical potentials

The introduction of the chemical potential for a system
with a set of conserved charge operators is reviewed below.
For vanishing external fields the Lagrangian (1) is invariant
under the following global vector transformations:

 M ! e�i�GGMei�GG � M� i�G�G;M	 �O��2
G�;

 ! e�i�GG �  � i�G �O��2
G�;

(18)

whereG denotes the representation of the baryon (B), third
component of the isospin (I), and hypercharge (Y) opera-
tors which are related to the diagonal generators as B �
1��
6
p �0, I � 1

2�3, and Y � 1��
3
p �8. The coefficients in front of

the diagonal matrices are chosen to obtain the right quan-
tum numbers when applying the operators on the quark
fields. The consequence of this symmetry is the existence
of conserved Noether vector-currents
 

JG� � �
�L

��@�M�ij
i�G;M	ji �

�L

��@�My�ij
i�G;My	ji

�
�L

��@� i�
iGij j: (19)

The conserved charge is defined as QG �
R
d3xJG0 �x�. In

terms of particle number operators the conserved baryon,
isospin, and hypercharges read as

 QB � 1
3�Nu � Nd � Ns � N �u � N �d � N�s�; (20)

 

QI � 1
2�Nu � N �u � Nd � N �d � N
� � N
� � N �
0 � N
0

� NK� � NK� � N �K0 � NK0� � Na�0 � Na�0
� N�� � N�� ; (21)

 QY � 1
3�Nu � N �u � Nd � N �d � 2Ns � 2N�s� � N
�

� N
� � N
0 � N �
0 � NK� � NK� � NK0 � N �K0 :

(22)

Note the different sign of NK0 , N �K0 , N
0 , N �
0 in QI relative
to QY . This is because the particles K0, �K0, 
0, �
0 fall into
different doublets from the point of view of the I3 and Y
quantum numbers: K0, K� and K�, �K0 form an I3 doublet
while K0, K� and K�, �K0 form a Y doublet (likewise for
scalars).

The statistical density matrix of the system is given by

 � � exp���H ��GQG�	; (23)

withG going over B, I, Y in the summation over this index.
Using (20)–(22) one can rewrite (23) by regrouping the
terms in the exponent according to different number op-
erators and obtain � � exp���H ��iNi�	; where i goes
over all the particles with I3; Y � 0 to which the following
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chemical potentials were introduced in terms of �B, �I,
�Y:

 

�u � �� �u �
1
3�B �

1
2�I �

1
3�Y;

�d � �� �d �
1
3�B �

1
2�I �

1
3�Y;

�s � ���s �
1
3�B �

2
3�Y;

�a�0
� ��� � ��a�0

� ���� � �I;

�
� � �K� � ��
� � ��K� �
1
2�I ��Y;

�
0 � �K0 � �� �
0 � �� �K0 � �1
2�I ��Y:

(24)

The particles with I3 � Y � 0 (�0, �, �0, a0
0, �, and f0)

do not contribute to the conserved charges, and in conse-
quence no chemical potential is introduced for them. By
looking at (24) one can see that different members of a
given multiplet (e.g. �� and ��) acquire a different com-
bination of the baryon, isospin, and hypercharge chemical
potentials, which means that the chemical potentials re-
move completely the degeneracy between the members of
the multiplets which we observe in the vacuum, both at the
tree and one-loop level. We have to keep track of the effect
of 21 individually different particles, which makes things
more complicated than in previous studies of this model.

The effect of the chemical potentials is taken into ac-
count through the propagators which are introduced using
the definition familiar from the theory of many-body sys-
tems. The relativistic formalism was developed in [30] and
is reviewed in the Appendix, where the calculation of the
self-energy using the finite-density Green’s function is also
sketched.

In order to see explicitly that the particle and its anti-
particle reflect differently the presence of a finite-density
medium, we give here the tree-level propagators ofK� and
K�:

 GK��k� �
i

2Ek

�
1� nK��Ek�

k0 � Ek � i�
�

nK��Ek�

k0 � Ek � i�

�
1� nK��Ek�

k0 � Ek � i�
�

nK��Ek�

k0 � Ek � i�

�
;

GK��k� �
i

2Ek

�
1� nK��Ek�

k0 � Ek � i�
�

nK��Ek�

k0 � Ek � i�

�
1� nK��Ek�

k0 � Ek � i�
�

nK��Ek�

k0 � Ek � i�

�
;

(25)

where nK��Ek� �
1

e�Ek��K�
�
�1

and Ek �
���������������������
k2 �m2

K�

q
. The

interpretation of the terms on the right-hand side of (25) is
as follows (from left to right): addition of a particle,
removal of a particle, addition of an antiparticle, removal
of an antiparticle. Note that in the propagator of the K� the
particle is K� and the antiparticle is K�, while in the
propagator of the K� the particle is K� and the antiparticle
is K�.

For all the other scalar and pseudoscalar fields the
propagators can be written analogously using the chemical
potentials defined in (24). For the fermions the propagators
are given in the Appendix.

III. THERMODYNAMICS OF THE MODEL AT
FINITE DENSITY

A. The influence of �I and �Y on the CEP

With the parameters fixed in the previous section, we
can solve the model at finite temperature and density using
the formalism described in Sec. II B and in the Appendix.
One calculates the 1-loop integrals entering the finite tem-
perature and density version of the equations which deter-
mine the state of the system: the three equations of state
(6)–(8) and the gap equation for m�� (12). The relevant
integrals are given in the Appendix. An observed smooth
variation of the order parameters with the intensive pa-
rameter (T, or �B;I;Y) indicates an analytic crossover type
transition. A first order phase transition is signaled by the
multivaluedness of either one of the three condensates in a
given range of variation of the intensive parameter. The
point where by varying some parameter(s) the nature of the
phase transition changes from crossover to first order one
corresponds to a second order phase transition.

The critical end point (CEP) is a second order phase-
transition point on the �B-T plane where by increasing �B
the phase transition as a function of T changes
from crossover to first order (�I and�Y are kept constant).
At vanishing �I and �Y the CEP is located in the point
�T;�B�CEP � �63:08; 960:8� MeV. The pseudocritical
temperature at vanishing chemical potentials is
Tc��B;I;Y � 0� � 157:98 MeV.

Here it is important to note that, with the explicit isospin
breaking taken into account, these values have significantly
changed with respect to those obtained without isospin
breaking at all (neither explicit nor spontaneous):
�T;�B�CEP � �74:83; 895:38� MeV and Tc��B;I;Y � 0� �
154:84 MeV [19]. At first sight this is surprising since we
have seen that at T � � � 0 the effect of the explicit
symmetry breaking is minimal. The difference is due to
the behavior of the v3 with the temperature. Without ex-
plicit isospin symmetry breaking v3 is identically zero for
�I � 0. When �3 � 0, one can see by looking at the
reference curve of Fig. 2 that with increasing temperature
v3 is decreasing significantly compared to its T � 0 value
and reaches a minimum around the phase-transition point
where the influence of v3 becomes the strongest. The left-
hand panel of Fig. 2 shows that the baryochemical potential
magnifies this effect, implying that approaching the CEP
the influence of v3 is even stronger. According to our
conjecture made in [19] that a smoother crossover at �B �
0 will require a larger value of �B to turn the phase
transition in T into a first order one, implying a larger
value of �B;CEP, we can expect that the larger value of
�B;CEP in the case of the explicit isospin breaking com-
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pared to the case in which the isospin breaking is absent
corresponds to a higher value of the width of the chiral
susceptibility �Tc�x��. Indeed, by looking at Fig. 3 one
can see that in the case with explicit isospin symmetry
breaking �Tc�x�� increased by �20%, approaching the
value of �Tc�� �  � � 28�5��1� MeV at �I � 0. This value
was obtained on the lattice in Ref. [31] after the extrapo-
lation in the continuum limit was done, though in this
lattice investigation the effect of isospin breaking was not
taken into account. It would be interesting to see whether a
similar effect is produced on lattice when mu � md.

Varying �I and �Y the location of the CEP in the �B-T
plane changes. Figure 4 shows the surfaces swept by the
two coordinates of the CEP as functions of�I and�Y . One
can see that�Y has practically no influence on TCEP, which
decreases very slowly, while with its increase �B;CEP sig-
nificantly decreases. The increase of �I pushes the CEP
toward higher values of �B;CEP and lower values of TCEP.
This behavior is in accordance with what was previously
written on the influence of v3 on the CEP at �I � 0, since
by looking at the left-hand side of Fig. 2 one sees that at
finite �I the isospin condensate v3 increases even more
with the temperature.

One can gain intuition on the way the chemical poten-
tials �I and �Y influence the coordinates of the CEP by
attempting a simple interpretation of our results in terms of
generalized Clausius-Clapeyron equations applied to our
system. The particle number and entropy densities of the
two coexisting phases will be determined assuming an
ideal gas of the quasiparticle degrees of freedom, which
differ only in their respective masses on the two sides of the
phase coexisting curves. The Clausius-Clapeyron equa-
tions successfully describe the slopes of phase coexistence
curves of strong matter as functions of various chemical
potentials and quark masses [11,32,33]. They are derived
from the Gibbs-Duhem relation which connects the varia-
tion of the intensive thermodynamical parameters of a
macroscopic system:

 dp � sdT � nBd�B � nId�I � nYd�Y: (26)

Here nB, nY , nI are the particle number densities, and s is
the entropy density. Keeping the pressure plus any other
two intensive parameters constant one finds the following
set of conditions for the phase coexistence when one varies
the remaining two intensive parameters along the coexis-
tence ‘‘surface’’:

 

dT
d�B

���������Y;�I

� �
�nB
�s

;
dT
d�Y

���������B;�I

� �
�nY
�s

;

dT
d�I

���������B;�Y

� �
�nI
�s

;
d�B

d�Y

��������T;�I

� �
�nY
�nB

;

d�B

d�I

��������T;�Y

� �
�nI
�nB

:

(27)
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FIG. 3. The width of the peak of the chiral susceptibility
�Tc�x�� as a function of the isospin chemical potential with
(without) explicit symmetry breaking external field �3 � 0
(�3 � 0). In the chiral quark model � � dx=d�x where x ���������

2=3
p

�v0 � v8� is the nonstrange condensate, �x �
��������
2=3

p
��0 �

�8�, and as shown in [19] � �  � x�.
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In the above equations � refers to the difference of the
values of a given extensive quantity in the symmetric and
broken symmetry phase. In the two coexisting phases the
relevant particle number and/or entropy densities (nG,G �
B; I; Y, and s) can be calculated from the partition function
using the formulas nG � TV�1@ lnZ=@�G and s �
V�1@�T lnZ�=@T. Our simplified picture of the composi-
tion of the two phases in terms of noninteracting mixtures
of 15 quasiparticles is given by
 

lnZ � V
X
i

�i�2si � 1�

�
Z d3p
�2��3

�!i � ln�1� �ie
��!i��i��

� ln�1� �ie
��!i��i��	; (28)

where i 2 ��, �0, K�, K0, �, �0, a�0 , a0
0, 
�, 
0, �, f0, u,

d, s and for fermions one has �i � Nc, �i � 1, and si �
1=2, while for bosons one has �i � �i � �1 and si � 0.

The energies !i �
������������������
p2 �m2

i

q
are calculated with help of

the tree-level mass expressions (4) after substituting into
them the order parameter values determined in our field
theoretical treatment for the two phases, that is, by solving
(6)–(8) and (12).

The simple model predicts that �nB, �nY , and �s are
always positive, while �nI is always negative. Moreover,
the following relations are obtained: �nB � �nY , �s >
�nB, and �s > j�nIj. The discontinuity of the particle
number densities is determined by the contributions of
essentially three quasiparticles: u, d, and ��. From our
simple and transparent model we get the sign and even the
magnitude of the shifts of the CEP in agreement with Fig. 4
with the single exception of d�I=dT. The ideal gas model
does not reproduce the value of this derivative obtained by
solving our model. We interpret this discrepancy as a result
of the strong coupling between the h �uui �

��������
2=3

p
v0 ���������

1=3
p

v8 � v3 and h �ddi �
��������
2=3

p
v0 �

��������
1=3

p
v8 � v3 con-

densates not captured by the ideal gas approximation. As
one can check also in [13], the strong coupling between
these condensates reduces the temperature of the CEP

when a finite �I is switched on. This is the same tendency
we found in our field theoretical calculation. For the other
three shifts it is the mass differences of the lightest quasi-
particles of the effective model which exert the strongest
influence on the variation of CEP position.

B. Quasiparticle masses

We turn to the study of the dependence of the tree-level
masses and the one-loop pole masses on the temperature
and the chemical potentials. The one-loop pole masses are
determined as the zeros of the real part of the correspond-
ing one-loop inverse propagators at vanishing spatial mo-
mentum. For example, the equation determining the one-
loop �� mass reads M2

�� � ReG�1
���p0 � M�� ;p � 0�. If

there is more than one solution to this type of equation,
then we follow that solution which in the vacuum lies
closer to the physical mass. Usually this solution is lost
as the temperature increases and some other solution is
found.

In Figs. 5(a) and 5(b) we see that the tree-level masses of
��, �0 and � clearly reflect the restoration of the SU�2�
symmetry at high temperature. This is not shown by the
masses of a�0 , a0

0 and �. We cannot go to higher values of
the temperature because at T ’ 252 MeV the nonstrange
condensate x decreases below the value of v3 and the tree-
level mass of the u quark turns into negative. At this
temperature there is still no sign for the tendency of the
SU�3� chiral partners to become degenerate.

In Fig. 5(c) we can see the dependence of the charged
and neutral pion masses on the isospin chemical potential.
The charged pions have by far the most significant depen-
dence on �I from all of the charged pseudoscalar mesons.
At T � �B � 0 the splitting between �� and �� is con-
trolled by the bubble diagram involving �� and ��,
respectively (see Fig. 1), and the splitting point is at �I ’
m�. One can see that at T � �B � 0 the mass of �0

depends mildly on �I. This dependence intensifies with
the increase of T and �B, but it remains true that the
dependence on �I is less strong than for the case of m�� .
It is interesting to note that for large values of �B, when
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�u=d > mu=d and the fermion bubble contributes to the
one-loop self-energies, the shape of the m����I� curves
changes:m�� starts to increase with�I, and the increase of
m�� with �I is slowed down and eventually turned over
into a decrease in a given interval of �I. Fig.5(d) shows
that the increase of the temperature has a similar effect as
�B in that it turns over the �I dependence of m�� with
respect to the behavior at T � �B � 0 starting at a low
value of �I.

In Fig. 6 we plot, both at the tree and at the one-loop
level a combination of the masses and the pion decay
constant � � �m2

� �m
2
�0 � 2m2

K�f
2
�=6, which through

the Witten-Veneziano mass formula [34,35]

 

2Nf
f2
�
�T � m2

� �m2
�0 � 2m2

K (29)

with Nf � 3, can be considered as an estimation of the
topological susceptibility �T�T�, which plays a crucial role
in the phenomenology of the U�1�A anomaly (see e.g.
[36,37] for recent studies in terms of effective descrip-
tions). In principle �T�T� can also be computed directly
in our model if the quantity corresponding to the topologi-
cal charge density QT of the QCD is extracted. This can be
done by comparing the four divergence of the singlet axial
vector current, which in QCD involves the U�1�A anomaly
term with the corresponding current of the chiral quark

model. Since the determinant term of Eq. (1) breaks the
U�1�A symmetry, the correspondence is QT � g�det�M� �
det�My�� � gIm detM.

The decrease with T of the estimated �T�T� seen in
Fig. 6 does not mean the restoration of the U�1�A symme-
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try, since through f��T�, �T�T� is dominated by the resto-
ration of the chiral symmetry. In view of (29) this can be
also seen on the inserted figure of Fig. 6. However, the fact
that at T � 0 the estimated �T�T� is so close to the value
obtained on the lattice in [38] and the curve itself stays
within 10% of the lattice points could imply that the
effective restoration of the U�1�A symmetry, if contained
in the lattice data,1 could be implemented in an effective
description based on the chiral quark model. In the Nambu-
Jona-Lasinio model the lattice result on �T�T� [38] is
converted into the temperature dependence of the strength
of the determinant term by fitting it with the explicit
formula of the susceptibility calculated in [39].

IV. CONCLUSIONS

In this paper we studied the influence of the isospin and
hypercharge chemical potentials on the �B-T chiral phase
diagram of the three flavored chiral constituent quark
model with explicitly broken SU�3�L � SU�3�R symmetry.
The model was parametrized at the one-loop level, and
optimized perturbation theory was used for the resumma-
tion of the perturbative series. Only one CEP is found for
both spontaneous and explicit isospin breaking. In the
latter case, based on the width of the peak of the chiral
susceptibility, the crossover transition at �B;I;Y � 0 is
found to be weaker than in the former case. Compared to
the case without isospin breaking, in the case with explicit
isospin breaking, the location of the CEP moves to a higher
value of �B and a lower value of T. For �I � �Y � 0 the
coordinates of the CEP are �T;�B�CEP � �63:08;
960:8� MeV. This value of �B;CEP is about 3 times larger
than the value found on the lattice [40] and increases
(decreases) linearly with �I (�Y), while TCEP is two-fifths
of the lattice value and decreases slightly with the increase
of �Y and significantly with the increase of �I. Using an
ideal gas picture and the generalized Clausius-Clapeyron
equations we could interpret semiquantitatively with one
exception the influence of �Y and �I chemical potentials
on the CEP as resulting from the quasiparticle masses. We
also studied the dependence of the charged and neutral
one-loop pion masses on the isospin chemical potential at
different values of the temperature and the baryon chemi-
cal potential. As a continuation of the present study, it
would be interesting to investigate at what value of the
�I do the charged pions condensate.
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APPENDIX: THE FORMALISM OF RELATIVISTIC
MANY-BODY THEORY FOR A SYSTEM AT FINITE

DENSITY AND TEMPERATURE

We review below the method of relativistic many-body
theory developed in [30] for the perturbative calculation of
the self-energy at finite temperature and density.

First we present the derivation of the tree-level Green’s
functions for K�, K�, which depends both on the isospin
and hypercharge chemical potentials. The field operators
K��x� and K��x� are written in terms of creation and
annihilation operators a��p�, b��p� and a�p�, b�p�, re-
spectively, as
 

K��x� �
Z d3p

�2��3=2

1���������
2Ep

p �a��p�eipx�b�p�e�ipx�
��������p0�Ep

;

K��x� �
Z d3p

�2��3=2

1���������
2Ep

p �b��p�eipx�a�p�e�ipx�
��������p0�Ep

;

(A1)

where Ep �
���������������������
p2 �m2

K�

q
. This means that a��p� creates a

K� particle, b��p� creates a K� particle, etc. The opera-
tors have the usual nonzero commutators

 �a�p�; a��k�	 � �b�p�; b��k�	 � ��p� k�: (A2)

The two point functions for K� and K� are defined as
 

GK��y� x� :� hTK��y�K��x�i

� ��y0 � x0�hK
��y�K��x�i

���x0 � y0�hK
��x�K��y�i;

GK��y� x� :� hTK��y�K��x�i

� ��y0 � x0�hK
��y�K��x�i

���x0 � y0�hK��x�K��y�i;

(A3)

where the average is to be taken over a grand canonical
ensemble; that is, for an operator O one has

 hOi �
Tr�e�HO	

Tre�H
; (A4)

with H � H ��iQi. We make this distinction between
K� and K� propagators because the particle and its anti-
particle feel differently the presence of the dense medium,
resulting in a different mass dependence on the chemical
potential. In our case this difference in the mass manifests
itself first at one-loop level.

Substituting (A1) into (A3), taking only the noninteract-
ing part of the Hamiltonian H, with the help of the com-
mutator relations given in (A2) and the Campbell-Baker-

1Restoration of U�1�A symmetry requires that �T�T� decreases
faster than f��T� with the increase of T so that �T�T�=f2

��T� !
0.
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Hausdorff relation one evaluates the expectation values
obtaining

 ha��p�a�q�i � ��p� q�nK��Ep�;

hb��p�b�q�i � ��p� q� �nK��Ep�;
(A5)

where nK��Ep� �
1

e�Ep��K�
�
�1

, �nK��Ep� �
1

e�Ep��K�
�
�1

.

Note, that �nK��Ep� � nK��Ep�. Using (A5) and the
Fourier representation of ��t� in (A3) one obtains in
momentum space the K� and K� propagators given in
(25).

Next, we calculate a one-loop bosonic bubble appearing
in Fig. 1. With the standard rules of the perturbation theory,

using the conventions of [41] the �� self-energy is given
by

 

�i����y; x� � �4�3 ~G2� � 4 ~H2;��v��

� �3 ~G10�0 � 4 ~H10;�0�0v�0 �

�G�0�
�y; x�G��0��

�y; x�: (A6)

The first nonmixing bubble graph in the diagrammatic
representation of ��� given in Fig. 1 is obtained with the
choice  � 4, 0 � 5 implying � � 7, �0 � 6. Using that
~G156 � ~G247 and ~H15;6� � ~H24;7� the contribution of this
graph is

The labels in the graph denote the field operators, e.g. on
the left-hand side �� creates a �� particle.

Going to momentum space one has
 

�K� �
0

�� �p� � �4iV2
��K�
0

Z d4k

�2��4
GK��k�G �
0�p� k�

� 4V2
��K�
0I


B �p;mK� ; �K� ; m �
0 ; � �
0�; (A8)

where the vertex is V��K�
0 � 4� c��
2
p � f2��

3
p v0 �

���
2
p
f2�

v8��
3
p �

v3�	, and GK��k� 
 GK�K��k�.
Generally, at finite chemical potentials and temperature

for a bosonic bubble diagram one calculates at vanishing
spatial external momentum (p � 0) an integral of the form
 

IB �p0; m1; �1; m2; �2�

� �i
Z d4k

�2��4
G1�k�G2�p� k�

��������p�0

�
Z d3k
�2��3

1

4E1E2

�
1� n1 � n2

p0 � E1 � E2
�

n1 � �n2

p0 � E1 � E2

�
�n1 � n2

p0 � E1 � E2
�

1� �n1 � �n2

p0 � E1 � E2

�
; (A9)

where for the propagators one uses a form similar to that in
(25) and to arrive at the second equality one performs a
contour integration in the complex energy plane. The

distribution functions ni 
 ni�Ei� with Ei �
������������������
k2 �m2

i

q
contain the chemical potential for particle or antiparticle
which is created by the fields of the vertex in the left-hand
side.

We rewrite the integral (A9) as

 

IB �p0; m1; �1; m2; �2�

� I�;T�0
B �p0; m1; m2� �

1

8�2p0

X2

i�1

P
Z 1
mi

dE
������������������
E2 �m2

i

q

�

�
ni�E�

p0ai � E
�

�ni�E�
p0ai � E

�
; (A10)

where the remaining integral is evaluated numerically and
P stands for principal value. The vacuum integral
I�;T�0
B �p0; m1; m2� is given by the expression (B4) of

[19], ni � 1=�exp��E��i�� � 1� is the Bose-Einstein
distribution and ai � �1� ��1�i�1�m2

1 �m
2
2�=p

2
0	=2.

For fermions the method is identical to that used for the
bosons. The fermion propagators for the constituent quarks
u, �u are defined as

 

Du�y� x� :� hTu�y� �u�x�i

� ��y0 � x0�hu�y� �u�x�i

���x0 � y0�h �u�x�u�y�i;

D �u�y� x� :� hT �u�y�u�x�i � ��y0 � x0�h �u�y�u�x�i

���x0 � y0�hu�x� �u�y�i;

(A11)

which in the momentum space read
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Du�k� �
i�k6 �mu�

2Ek

�
1� f�u �Ek�

k0 � Ek � i�
�

f�u �Ek�

k0 � Ek � i�

�
1� f�u �Ek�

k0 � Ek � i�
�

f�u �Ek�

k0 � Ek � i�

�
;

D �u�k� �
i�k6 �mu�

2Ek

�
1� f�u �Ek�

k0 � Ek � i�
�

f�u �Ek�

k0 � Ek � i�

�
1� f�u �Ek�

k0 � Ek � i�
�

f�u �Ek�

k0 � Ek � i�

�
;

(A12)

where f�u �Ep� �
1

e�Ep��u��1
and f�u �Ep� �

1
e�Ep��u��1

are
the distribution functions for u type quarks and antiquarks.

Then for the fermionic bubble appearing in the �� self-
energy (see Fig. 1) one has

 

�u �d
���p� � �

g2
F

2
NciTr

Z d4k

�2��4
�5D �d�k�Du�k� p�

�
g2
F

2
NcI


F �p;md;� �d; mu;�u�: (A13)

Similarly to Eq. (A9) in case of fermions we use the
integral:

 

IF �p0; m1; �1; �2; m2�

� �iTr
Z
k
�5D1�k��5D2�k� p�

��������p�0

�
Z d3k
�2��3

�
1

E1
�f�1 � f

�
1 � 1� �

1

E2
�f�2 � f

�
2 � 1�

�
� 2�p2

0 � �m1 �m2�
2�

�
Z d3k
�2��3

1

4E1E2

�
1� f�1 � f

�
2

p0 � E1 � E2
�

f�1 � f
�
2

p0 � E1 � E2
�

f�1 � f
�
2

p0 � E1 � E2
�

1� f�1 � f
�
2

p0 � E1 � E2

�
� �2T�;T�0

F �m1� � 2T�;T�0
F �m2� � 2�p2

0 � �m1 �m2�
2�I�;T�0

B �p0; m1; m2� � T
T�0
F �m1� � T

T�0
F �m2�

�
p2

0 � �m1 �m2�
2

4�2p0

X2

i�1

P
Z 1
mi

dE
������������������
E2 �m2

i

q �
f�i �E�
p0ai � E

�
f�i �E�
p0ai � E

�
; (A14)

where f�i � 1=�exp��E��i�� � 1� is the Fermi-Dirac distribution.
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Lett. B 582, 179 (2004).

[17] T. Herpay, A. Patkós, Zs. Szép, and P. Szépfalusy, Phys.
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