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Sterile neutrino with mass of several keV can be the cosmological dark matter, can explain the observed
velocities of pulsars, and can play an important role in the formation of the first stars. We describe the
production of sterile neutrinos in a model with an extended Higgs sector, in which the Majorana mass term
is generated by the vacuum expectation value of a gauge-singlet Higgs boson. In this model the relic
abundance of sterile neutrinos does not necessarily depend on their mixing angles, the free-streaming
length can be much smaller than in the case of warm dark matter produced by neutrino oscillations, and,
therefore, some of the previously quoted bounds do not apply. The presence of the gauge singlet in the
Higgs sector has important implications for the electroweak phase transition, baryogenesis, and the
upcoming experiments at the Large Hadron Collider and a Linear Collider.
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I. INTRODUCTION

The discovery of the neutrino masses can easily be
incorporated into the standard model (SM) by adding two
or more SU�3� � SU�2� � U�1� singlet fermions, often
called right-handed neutrinos, which are allowed to have
the Yukawa couplings to the Higgs boson and the standard,
left-handed neutrinos. The Yukawa couplings generate the
Dirac mass terms for the neutrinos after the spontaneous
symmetry breaking. In addition, the singlet fermions can
have some Majorana masses. The interplay between the
Dirac mass and the Majorana mass, known as the seesaw
mechanism [1], can accommodate the observed neutrino
masses for a variety of Majorana masses. If the Majorana
mass terms are large, the particles associated with the
singlet fields are very heavy. However, if one or more
Majorana masses are below the electroweak scale, the so-
called sterile neutrinos appear among the low-energy de-
grees of freedom. These new particles can be the cosmo-
logical dark matter [2–8], their production in a supernova
can explain the pulsar kicks [9] and can affect the super-
nova explosion in a variety of ways [10]; the same particles
can play an important role in the formation of the first stars
[11] and some other astrophysical phenomena [12].

The properties of the sterile dark matter, and, in particu-
lar, how warm or cold it is for a given mass, depend on the
production mechanism. One mechanism, which generates
a population of relic sterile neutrinos at the sub-GeV
temperature was proposed by Dodelson and Widrow
(DW) [2]. If the lepton asymmetry is negligible, this sce-
nario appears to be in conflict with a combination of the X-
ray bounds [13] and the Lyman-� bounds [14,15]. This
conclusion is based on the state-of-the-art calculations of
the sterile neutrino production in neutrino oscillations [3].
It is possible to evade this constraint if the lepton asym-
metry of the universe is greater than O�10�3� [4]. On the
other hand, some astronomical observations [16,17] point
to a non-negligible free-streaming length for dark matter,
which favors warm dark matter. Moreover, warm dark

matter can cause filamentary structure on small scales
[18], in contrast with cold dark matter. It is also possible
that the sterile neutrinos make up only a fraction of dark
matter [15], in which case they can still be responsible for
the observed velocities of pulsars [7,9].

The Dodelson-Widrow mechanism is not the only
mechanism by which sterile dark matter could be pro-
duced. The relic population of sterile neutrinos could be
generated in a variety of ways, for example, from their
coupling to the inflaton [6], the electroweak-singlet Higgs
boson [7], or the radion [8]. Whatever the production
history of sterile neutrinos might be at the high tempera-
ture, there is always some additional amount produced in
neutrino oscillations at some sub-GeV temperatures [2,3].
The two components can have very different momentum
distributions. Therefore, generically this form of dark mat-
ter is a mixed two-component dark matter, which can have
some very interesting observable consequences [19].

In this paper we concentrate on the possibility that the
relatively light Majorana mass could arise via the Higgs
mechanism in a model with an SU�2� � U�1�-singlet Higgs
boson coupled to the standard model Higgs boson [20], and
that the sterile neutrinos could be produced from the Higgs
decays at a temperature as high as 100 GeV [7]. We will
explore various scenarios for such production and the
implications for the electroweak phase transition. In par-
ticular, we will address the cooling and the redshifting of
dark matter, which have important implications for dark
matter profiles in halos [16,17], the small-scale structure
inferred from Lyman-� observations [14], and the velocity
dispersion in dwarf spheroids [16].

II. MAJORANA MASSES FROM AN EXTENDED
HIGGS SECTOR

Although the standard model was originally formulated
with massless neutrinos �i transforming as components of
the electroweak SU(2) doublets L� (� � 1, 2, 3), the
neutrino masses can be accommodated by a relatively
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minor modification. One adds several electroweak singlets
Na (a � 1; . . . ; n) to the standard model and builds a see-
saw Lagrangian [1]:

 L � LSM � i �Na@6 Na � y�aH
y �L�Na �

Ma

2
�Nc
aNa � H:c:

(1)

The neutrino mass eigenstates ��m�i (i � 1; . . . ; n� 3)
are linear combinations of the weak eigenstates f��; Nag.
They are obtained by diagonalizing the mass matrix:

 

0 y�ahHi
ya�hHi diagfM1; . . . ;Mng

� �
: (2)

As long as all ya�hHi � Ma, the eigenvalues of this matrix
split into two groups: the lighter states with masses of the
order of y2

a�hHi
2=Ma, and the heavier eigenstates with

masses of the order ofMa. As usual, we will call the former
active neutrinos and the latter sterile neutrinos. The mixing
angles in this case are of the order of �2

a� � y
2
a�hHi

2=M2
a.

The number n of the right-handed singlets is unknown,
although it is clear that n 	 2 is a necessary condition to
explain the results from the atmospheric and solar neutrino
experiments [21]. Theoretical considerations do not con-
strain the number n of sterile neutrinos. In particular, there
is no constraint based on the anomaly cancellation because
the sterile fermions do not couple to the gauge fields. The
experimental limits exist only for the larger mixing angles
[22]. The scale of the right-handed Majorana masses, Ma,
can vary over many orders of magnitude. It can be much
greater than the electroweak scale [1], or it may be as low
as a few eV [23]. It is also possible that some of the right-
handed Majorana masses are much larger than others. The
seesaw mechanism can explain the smallness of the neu-
trino masses even if the Yukawa couplings are of order one,
as long as the Majorana masses Ma are large enough.
However, the origin of the Yukawa couplings remains
unknown. If the Yukawa couplings arise as some topologi-
cal intersection numbers in string theory, they are generally
expected to be of order one [24], although very small
couplings are also possible [25]. However, if the Yukawa
couplings arise from the overlap of the wave functions of
fermions located on different branes in extra dimensions,
they can be exponentially suppressed and are expected to
be very small [26]. If one or more singlets have Majorana
masses below the electroweak scale, they can appear as
sterile neutrinos and can have important ramifications; for
example, dark matter can be made up of sterile neutrinos
with mass of several keV [2], and the same particle can be
responsible for the observed pulsar kicks [9].

Several recent papers have studied in detail one particu-
lar case, named �MSM [5], which corresponds to n � 3,
M1 � keV, and M2 
 M3 � 1–10 GeV. In this model, the
keV sterile neutrino serves as the dark matter particle (and
can explain the pulsar kicks), while the degenerate heavier

states, M2 
 M3, make the model amenable to leptogene-
sis by neutrino oscillations [27].

The possible role of keV sterile neutrinos in astrophysics
and cosmology, from dark matter to pulsar kicks, to early
star formation, makes the possibility of their existence very
intriguing. However, if the neutrino Majorana masses Ma
are below the electroweak scale, one should try to explain
the origin of this scale. The other fermions in the same
mass range acquire their masses from the Higgs mecha-
nism. Can the mass terms in Eq. (1) also arise from the
Higgs mechanism? The answer is yes; this requires an
extension of the Higgs sector by an SU(2) singlet field
coupled to the righted-handed fermions as in
Refs. [6,7,20]:

 L � LSM � i �Na@6 Na � y�aHy �L�Na �
fa
2
S �Nc

aNa

� V�H; S� � H:c: (3)

We will assume that S is a real scalar field to avoid the light
Nambu-Goldstone bosons associated with the breaking of
the lepton number U(1); the presence of such light bosons
would render the sterile neutrinos unstable, hence they
could not be dark matter (although they could still explain
the pulsar kicks [9]). If the singlet has very small mass and
a large VEV, it can be the inflaton [6]. We will not discuss
this interesting possibility here, but we will concentrate
instead on a singlet Higgs whose mass and VEVare both of
the order of 100 GeV, which, incidentally, is the require-
ment for the keV dark matter, as long as the mass and VEV
of S are of the same order of magnitude [7].

As soon as the SNN coupling is introduced in the
Lagrangian, there appears a new way in which the relic
population of sterile neutrinos can be produced, namely,
from the decays S! NN. This decay mechanism can
operate in addition to the neutrino oscillations mechanism
of Dodelson and Widrow [2], and one has to compare the
relative amounts produced by each of them. Another im-
portant issue is how cold the dark matter is if it is produced
predominantly from the Higgs decays. Since the produc-
tion occurs mainly at temperatures of the order of the
Higgs mass, T � 100 GeV, the reduction in the number
of degrees of freedom and the entropy production that
takes place as the universe cools down from T �
100 GeV causes the dark matter population to be diluted
and red shifted by a factor � 	 33 in the density and factor
�1=3 	 3:2 in the average momentum. These values reflect
only the standard model degrees of freedom, and any
additional new physics will make � even larger. The cor-
responding free-streaming length is shorter, and the
Lyman-alpha bounds become proportionately weaker [7].

In this paper we discuss the details of sterile dark matter
production in a model represented by the Lagrangian (3),
with the scalar potential
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 V�H; S� � ��2
HjHj

2 � 1
2�

2
SS

2 � 1
6�S

3 �!jHj2S

� �HjHj4 �
1
4�SS

4 � 2�HSjHj2S2: (4)

III. STERILE DARK MATTER: COLD OR WARM?

If dark matter has a nonzero free-streaming length, the
structure on small scales may be suppressed. Studies of
small-scale structure based on the observations of dwarf
spheroids [16] or Lyman-� forest data [14] can constrain
or measure the free-streaming length of the dark matter
particles, but the relation between this length and the
particle mass depends on the production mechanism. One
can approximately relate the free-streaming length to the
massms and the average momentum of the sterile neutrino:

 �FS 
 1:2 Mpc
�
keV

ms

��
hpsi

3:15T

�
T
1 keV

: (5)

This is a relatively good measure in many cases, although
in general one has to calculate the full power spectrum. The
observations of Lyman-� forest constrain the free-
streaming length to be less than 0.11 Mpc [14]. This bound
does not translate directly into a constraint on the mass
because the average momentum depends on the production
mechanism. For three scenarios usually discussed in the
literature,

 

�
hpsi

3:15T

�
T
keV

�

8><
>:

0:8–0:9; for DW

 0:6; for L � 0; resonance
& 0:2; for Tprod * 100 GeV:

(6)

Here DW stands for Dodelson-Widrow production mecha-
nism via nonresonant neutrino oscillations [2], ‘‘L � 0’’
refers to the Shi-Fuller production via the resonant neutrino
oscillations in the case when the lepton asymmetry is
relatively large [4], and ‘‘Tprod * 100 GeV’’ refers to the
production of sterile neutrinos at a temperature well above
the QCD scale, in which case the cooling and reduction of
the degrees of freedom causes the red shift in the popula-
tion of dark matter [7].

For the same mass, the sterile dark matter can be colder
or warmer, depending on the production mechanism. This
is clear from Eqs. (5) and (6), which, for a given cosmo-
logical scenario, relate the free-streaming length with the
mass. Therefore, we will pay close attention to the factors
that can affect the momentum distribution in each scenario.

There are several ways in which the population of dark
matter particles could have formed in our model:

(i) The bulk of sterile neutrinos could be produced from
neutrino oscillations. If the lepton asymmetry is
negligible, this scenario [2] appears to be in conflict
with a combination of the X-ray bounds [13] and the
Lyman-� bounds [15], although it is possible to
evade this constraint if the lepton asymmetry of the
universe is greater than O�10�3� [4]. It is possible
that the decays of additional, heavier sterile neutri-

nos, can introduce some additional entropy and con-
tribute to cooling of dark matter [28]. It is also
possible that the sterile neutrinos make up only a
fraction of dark matter [7,15], in which case they can
still be responsible for the observed velocities of
pulsars.

(ii) The bulk of sterile neutrinos could be produced from
decays of S bosons at temperatures of the order of the
S boson mass, T � 100 GeV. This scenario was
discussed in Ref. [7]. In this case, the Lyman-�
bounds on the sterile neutrino mass are considerably
weaker than in the former case.

(iii) The decays described above could happen before a
first-order phase transition, and the entropy release in
the transition could redshift the population of the
dark-matter particles. We have explored this possi-
bility in detail, as discussed below, but we have not
found a range of parameters in which the phase
transition could cool down the sterile dark matter
significantly.

(iv) S bosons could be so weakly coupled to the rest of
the Higgs sector that they would go out of equilib-
rium and decay out of equilibrium at some tempera-
ture T < 100 GeV. As discussed below, this scenario
can produce a sufficient amount of dark matter.

We will now discuss these possibilities in detail.

IV. PRODUCTION FROM THE HIGGS DECAYS IN
EQUILIBRIUM

The interactions of the singlet Higgs bosons with SM
particles have been studied by McDonald in Ref. [29],
where the S bosons were made stable by imposing a global
U(1) symmetry, which removed the odd power couplings,
and by setting �2

S < 0, which forced hSi � 0. In this case,
the coupling �HS controls the SS! XX annihilations, into
SM fermions and the W, Z bosons. We do not require S to
be stable. After S develops a VEV, other couplings also
contribute to the annihilations into SM particles. For each
of these processes the cross section for annihilation is:

 �ann � 10�2 �
2
HS

m2
S

(7)

At some temperature, these processes fail to keep the S
particles in equilibrium, and they freeze out at Tf � mS=rf .
For very small �HS & 10�6, S bosons never come into
equilibrium. A more detailed numerical calculation yields
the dependence of the freeze-out time parameter rf on �HS
shown in Fig. 1.

The cubic couplings contribute to the annihilation pro-
cesses through exchange of virtual S bosons. In fact, this
will be the dominant process that keeps S particles in
equilibrium, as long as �!

m2
S

* �HS, where mS is the S boson

mass. Comparing with Fig. 1, one can see that this process
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can keep S bosons in equilibrium down to rather low
temperatures, even if �, ! are well below the S mass.

Let us now assume that the �, ! and/or �HS are large
enough (exact limit for �HS to be defined below) to keep S
in equilibrium down to temperatures well below its mass.
One can make a rough estimate of the sterile neutrino
production by multiplying the S number density by the
S! NN decay rate � � f2mS=�16�� and by the time
available for the decay, 	�M0=2T2, at the latest tempera-
ture at which the thermal population of S is still significant,
namely T �mS. At lower temperatures, the S number
density is too small, much smaller than T3. One obtains
an approximate result

 

�
Ns
T3

���������T�mS

��
M0

T2

��������T�mS

�
f2

16�
M0

mS
; (8)

where M0 � �
45M2

PL

4�3g�
�1=2 � 1018 GeV is the reduced Planck

mass.
This simple estimate is in agreement with the solution of

the kinetic equation discussed below. Of course, this de-
scription breaks down if the S particles decouple and decay
at a much later time. We will come back to this possibility.
For now, let us assume that S particles maintain their
equilibrium populations down to temperatures at least a
factor of a few below their masses. The dark matter abun-
dance for sterile neutrinos from the decay of bosonic
particles in equilibrium was first computed for a model
in which the S field served as the inflaton with a potential
adjusted to have hSi � mS [6]. The results of this compu-
tation carry over to our case. Here we do not require S to be
the inflaton, and we take hSi �mS, as in Ref. [7]. As was
shown in Ref. [7], the choice hSi �mS, along with the
requirement that sterile neutrinos make up all the dark
matter, force the S boson mass and VEV to be right at
the electroweak scale, hSi �mS � 102 GeV, suggesting
that S may, indeed, be a part of the Higgs sector of the
extended standard model, and justifying some of our as-
sumptions regarding the Higgs potential.

Dark matter production from particle decays has been
considered in a number of papers [6,30]. Let us first con-
sider the decaying particle in equilibrium. As in the case of
the inflaton decay [6], the sterile neutrino distribution
function n�p; t� is found from the following kinetic equa-
tion:

 

@n
@t
�Hp

@n
@p
�

2mS�

p2

Z 1
p��m2

S=4p�
nSdE; (9)

where � � mSf2=16� is the partial width of the S boson
decay. It is assumed that the sterile neutrinos are never in-
quilibrium, and the inverse decays NN ! S can be ne-
glected, which is true for small Yukawa couplings f <
10�7. Transforming to the variables: r � mS

T , x � p
T , one

can rewrite Eq. (9):

 

@n
@r
�
f2

8�
M0

mS

r2

x2

Z 1
x��r2=4x�

nSjET�
d
: (10)

Since S and H mix, one has to consider the mixed mass
eigenstates in plasma. Both of them can decay into sterile
neutrinos. The SM Higgs is in thermal equilibrium due to
the coupling with the SM particles. For the temperature
range in which S is also in equilibrium, the distribution
functions of the two mass eigenstates will be

 nj �
1

eEj=T � 1
: (11)

Then Eq. (10) yields:
 

n��x; r� �
X2

j�1

f2
j

8�
M0

mj

� r3
j

3x2 ln�1� e�x��r
2
j =4x���1

�
8x2

3

Z 1��r2
j =4x2�

1

�z� 1�3=2dz
exz � 1

�
; (12)

where the subscript j � 1, 2 runs over the two Higgs mass
eigenstates and the superscript � denotes production from
decays of S bosons in equilibrium. (We will use �6 for the
case of S bosons decaying out of equilibrium.) In (12) the
first term is important when r & 1, while the second is the
dominant one for r * 1. The above solution was obtained
assuming fj, mj and the number of degrees of freedom g�
remain constant. This is not valid after the electroweak
phase transition takes place, since the Higgs mass eigen-
values and their mixing are different in the two vacua. If fj,
mj, or g� change at some points in the evolution of the
universe, the solution has to be adjusted to include the
contributions from all the periods corresponding to differ-
ent fj, mj, g�. Each of these contributions will still be
given by (12), for the appropriate values of the parameters
and taken over the respective time intervals.

This complication turns out to be irrelevant, since the
production rate of sterile neutrinos through each mode mj

exhibits a peak at rj ’ 2:3, which defines the production
temperature Tprod � mj=2:3. Most of the sterile neutrinos

10−6 10−5 10−4 10−3 10−2

1
3
5
7
9

11
13
15
17
19

rf

FIG. 1 (color online). The variation of the S boson freeze-out
parameter rf � mS=Tf with the coupling to SM particles �HS.
For numerical estimations we used mS � 200 GeV.
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are produced around that temperature, and by the time
when rj 
 10 the production of sterile neutrinos though
mj decays has practically been completed. More specifi-
cally, in the simplified casem1 � m2, f1 � f2,m1 decays
will dominate over m2 decays and the total abundance of
sterile neutrinos Ys � Ns=s at any later temperature will be

 Y�
s �r� �

45

32�5

f2

g��Tprod�

M0

m
y�r�; (13)

where

 y�r� �
1

3

Z 1
0
dx
�
r3 ln�1� e�x��r

2=4x���1

� 8x4
Z 1��r2=4x2�

1

�z� 1�3=2dz
exz � 1

�
(14)

and we have dropped the mass eigenstate index for sim-
plicity. The g��Tprod�

�1 factor in (13) designates the fact
that the sterile neutrino population will be diluted by

 � � g��Tprod�=g��0:1 MeV� (15)

as the universe cools down, due to the entropy release as
the effective degrees of freedom decrease. At r! 1, the
sterile neutrino abundance produced from in-equilibrium
decays takes the limiting value:

 Y�
s �1� �

27
�5�

32�4

f2

g��Tprod�

M0

m
: (16)

We require that the decays of S bosons occur in equi-
librium, that is Tf & m

10 . Then we get from Fig. 1, �HS *

5� 10�5, for � � ! � 0. However, if �, ! * 1 GeV S
bosons stay in equilibrium down to the desired tempera-
ture, regardless of �HS.

The momentum distribution in Eq. (12) is nonthermal.
Taking into account only the dominant decay mode, one
obtains (same as in Ref. [6]) the momentum distribution of
dark-matter particles at r! 1:

 n��x� �
f2

3�
M0

m
x2
Z 1

1

�z� 1�3=2dz
exz � 1

; (17)

for which the average momentum at temperature T �
102 GeV, immediately after their production, is
(cf. Ref. [6])

 

�
hpi
T

�
T�100 GeV

�
�6

378
�5�
’ 2:45: (18)

This is lower than the same quantity for a thermal distri-
bution, hpi=T � 3:15.

Even more importantly, these momenta are further red-
shifted as the universe cools down from the temperature at
which most dark matter is produced, Tprod �m�
100 GeV to the much lower temperatures at which the
structure begins to form. As the universe cools down, the
number of effective degrees of freedom decreases from

g��Tprod� � 110:5 to g��0:1 MeV� � 3:36. This assumes
no new physics below the Higgs mass; any new physics
would cause an additional cooling of the dark matter. The
ratio of dark matter to entropy is reduced by the factor � 

33. This causes the redshifting of hpsi by the factor �1=3:

 

�
hpi
T

�
�T�1 MeV�

� 0:76
�

110:5
g�� ~mS�

�
1=3
: (19)

This is very different from the DW scenario [2], in which
the average neutrino momentum at low temperature T is

 hpsiDW � 2:83T: (20)

Comparing Eqs. (19) and (20), one concludes that the
sterile neutrino mass corresponding to the same free-
streaming length can vary by more than a factor of 3
depending on the production scenario [7]. A detailed
analysis of the free-streaming properties of ‘‘chilled’’
dark matter is presented in Ref. [31].

The dark matter abundance in this model depends on the
details of the Higgs mass matrix and the two-component
decays, aside from which it has the form:

 ��s � 0:2
�
f

10�8

�
3
�
hSi
m1;2

��
33

�

�
: (21)

Since we expect the masses of the two mass eigenstates to
be of the same order, and considering the cubic power of
the unknown coupling f, the details of the solution are not
very important. However, what may be important is the
additional effect of the first-order phase transition on the
average momentum of the dark matter particles. If the dark
matter population is redshifted significantly by the entropy
release in the phase transition, then the Lyman-� bound
could be further relaxed.

V. ELECTROWEAK PHASE TRANSITION

As discussed above, the population of sterile neutrinos is
subject to dilution and redshift due to the entropy produc-
tion that occurs (i) in any possible phase transitions at
lower temperatures, and (ii) when the number of degrees
of freedom in plasma decreases due to the decoupling of
standard model particles below 100 GeV. The redshift due
to (ii) alone can reduce the momenta of dark matter parti-
cles by a factor more than 3.2 [7]. Of course, the dilution
due to (i) matters only if a first-order phase transition takes
place after the sterile neutrinos are produced, and, more-
over, if S bosons are too heavy to have a high number
density in the new vacuum after the phase transition. To
study this possibility, one has to take into account the
temperature effects on the effective potential and the his-
tory of the phase transitions predicted by the model.
Electroweak phase transition in a model with a singlet
Higgs has been analyzed in Refs. [32–34]. The plausibility
of the first-order phase transition makes the electroweak
baryogenesis a viable possibility, and it has implications
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for the LHC and the ILC [34]. Here we concentrate on the
effects the first-order transition could have on the popula-
tion of dark-matter sterile neutrinos.

A. Finite-temperature effects and the first-order phase
transition

The tree-level effective potential in terms of the VEVof
the two Higgs bosons, hHi � 1��

2
p � and hSi � � is

 

V0
tree��;�� � �

1

2
�2
H�

2 �
�H
4
�4 �

1

2
�2
S�

2 �
�S
4
�4

� �HS�2�2 �
�
6
�3 �

!
2
�2�: (22)

To study the phase transition, we included the one-loop
temperature-dependent corrections and analyzed the po-
tential numerically, as discussed below.

The tree-level Higgs mass eigenvalues are:
 

�m0
1;2�

2 � 1
2�3�H � 2�HS��2 � �3�S � 2�HS��2

� �!� �����2
H ��

2
S � f�3�H � 2�HS��

2

� �3�S � 2�HS��
2 � �!� �����2

H ��
2
S�

2

� 4�2�4�HS��!�
2g1=2�: (23)

The 1-loop, zero temperature correction to the effective
potential [35] in the MS renormalization scheme is

 V1��;�� �
X
i

ni
64�2 m

4
i ��;��

�
log

mi��;��
2

mi��0; �0�
2 �

3

2

�
;

(24)

where ni are the degrees of freedom of the contributing
particles and mi��;�� are their field-dependent masses.
The main contributions are from the neutral component
of the SM Higgs, the singlet Higgs, the Goldstone bosons
�, the W and Z gauge bosons, and the top quark t:

 nt � �12; nW � 6; nZ � 3;

n� � 3; nH � nS � 1:
(25)

The gauge-singlet Higgs S does not couple to the fermions
or the gauge bosons, thus their field-dependent masses are
the same as in the minimal SM:
 

m2
t �

y2
t

2
�2; m2

W �
g2

4
�2; m2

Z �
g2 � g02

4
�2;

m2
� � �H�2 ��2

H � 2�HS�2 �!�: (26)

The Higgs mass eigenvalues are given by (23). mi��0; �0�
stand for particle masses at the vacuum state ��0; �0� at
zero temperature.

The temperature-dependent contribution to the effective
potential at one loop is [36,37]:

 VT��;�; T� �
X
i

niT4

2�2 Ib;f

�
m2
i ��;��

T2

�
� VTring; (27)

where

 Ib;f�y� �
Z 1

0
dxx2 log1� e�

��������
x2�y
p

� (28)

The upper sign corresponds to bosons, while the lower one
to fermions. Since we consider a wide range of tempera-
tures, we do not make use of the well-known high-T
expansion of the functions (28). VTring is the ring contribu-
tion of the gauge, Higgs and Goldstone bosons:
 

VTring � �
T

12�
fTr�m2

gb ��gb�
3=2 � �m2

gb�
3=2�

� Tr�m2
higgs ��higgs�

3=2 � �m2
higgs�

3=2�

� n��m2
� ����

3=2 � �m2
��

3=2�g (29)

where mhiggs is the tree-level Higgs mass mixing matrix,
corresponding to the potential (22), whose eigenvalues are
given in (23). m2

gb is the mass mixing matrix for the
electroweak gauge bosons:

 m2
gb �

g2�2

4 0 0 0

0 g2�2

4 0 0

0 0 g2�2

4 � gg0�2

4

0 0 � gg0�2

4
g02�2

4

0
BBBBB@

1
CCCCCA: (30)

�i are the thermal contributions to the masses, given for
our model by [32,34,37]:
 

�gb � diag
�

11

6
g2T2;

11

6
g2T2;

11

6
g2T2;

11

6
g02T2

�

�higgs � diag
��

3

16
g2 �

1

16
g02 �

�H
2
�
yt
4
�
�HS

3

�
T2;

�
1

4
�S �

4

3
�HS

�
T2

�

�� �

�
3

16
g2 �

1

16
g02 �

�H
2
�
yt
4
�
�HS

3

�
T2: (31)

The effective potential at finite temperature is the sum of
(22), (24), and (27):

 Veff��;�; T� � V0��;�� � V1��;�� � VT��;�; T�:

(32)

In the calculations that follow we ignore V1 for simplicity,
since it is only a small correction to the zero-T effective
potential, and we treat the imaginary part of the potential as
usual [38].

The history of the universe for a typical set of parameters
discussed in Table I is shown in Fig. 2. Because of the
symmetry �! ��, only the �> 0 half plane need to be
considered. Since the singlet does not couple to the gauge
bosons and the t quark, it receives the smallest correction at
a high temperature. Therefore, there is usually a range of
temperatures in which the Higgs doublet has no VEV,
while the singlet has a VEV. At a higher temperature, the
singlet VEV also tends to 0, although it never completely
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disappears due to the �! �� asymmetry, induced by the
� and ! terms.

Therefore, in the early universe, at T � 100 GeV, the
effective potential has a unique minimum at f0; �fg. At a
lower temperature, for some range of the parameter space,
the doublet also develops a VEV and the universe shifts to
f�f�T�; �f�T�g through a second-order phase transition. In
the meanwhile, a local minimum has been developed at
f�t�T�; �t�T�g. At T � Tc the two minima become degen-
erate and at T < Tc, f�t; �tg turns out to be the true vacuum
(cf. Fig. 2). At some temperature To & Tc the false vacuum
decays into the true vacuum via bubble nucleation, de-
scribed in Sec. V B. Figure 3 shows this evolution along
the straight-line path connecting the two minima, as uni-
verse cools down. In Fig. 4, we show the evolution of the
order parameter, the SM Higgs VEV �.

B. Phase transition through bubble nucleation

The tunneling from the false to the true vacuum was
calculated numerically using an approximation in which
the bounce [39] was assumed to lie along a straight line in
the 2-d field space (�, �). Let  be the field configuration
along this path. At finite temperature, one looks for solu-
tions of the Euclidean equations periodic in the ‘‘time’’
direction with period T�1[40]. In the high-temperature
limit, the solution should be translationally invariant along
the time axis, thus the dependence of  on temperature
disappears. The O�3�-symmetric (in the spatial coordi-
nates) solution will now obey the equations:

 

d2

dr2
�

2

r
d
dr
�
dV
d

;
d
dr

��������r�0
� 0; �1�� 0; (33)
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FIG. 2. Contour plots of Veff��;�; T� at T � Tc, T � Tc, and
T � 0, corresponding to the parameter set A of Table I. At T �
Tc the universe is in the unbroken phase � � 0, with �> 0. At
lower temperatures, the minimum of Veff shifts to nonzero �,
while a second minimum appears in the �< 0 region. The two
minima become degenerate at T � Tc, and at T � 0 the true
vacuum is located at � � 246 GeV, �< 0.

TABLE I. Representative parameter sets (see text for discus-
sion). The unit for all dimensionful parameters is GeV, except for
ms, which is given in keV.

parameter sets A B

�H 0.5 0.6
�S 0.6 0.4
�HS 0.025 �0:02
� 2 �25
! 25 90
�0 �200 �220

Tc 266 220
To 168 179
Tr 170 182

vc=Tc 1.4 1.5
mt

1;2�0� 227, 247 188, 302
mf

1;2�To� 191, 139 118, 101

mt
1;2�Tr� 215, 201 251, 143
hpi=T 0.84 0.85
f 4:2 � 10�8 4 � 10�8

ms (keV) 8.42 8.85
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where  � 0 is the false vacuum. The decay rate per unit
volume is

 � 
 T4

�
S3�T�
2�T

�
3=2
e�S3=T; (34)

where we neglect the prefactor due to the change in the
symmetry group [41]. Here S3� is the 3-dimensional
action:

 S3� �
Z
d3x

�
1

2
�r�2 � V�; T�

�
: (35)

For the solution of Eq. (33) we adopt numerical meth-
ods, rather than using the well-known approximation
schemes at the thin and thick wall limits [40]. The O4

symmetric case at T � 0 has been solved numerically in

[42]. We do the same for the O3 symmetric equation (33)
and present here the results, used for the numerical esti-
mates of Table I.

A potential of the form:

 V�� � 1
2M�T�

22 � 1
3��T�

3 � 1
4
�T�

4 (36)

with M2 > 0 to ensure at least metastability at  � 0,
encompasses all of the renormalizable potentials. For
such a potential the transition between different regions
depends on a single dimensionless parameter:

 � �
9

8


M2

�2 : (37)

For tunneling to occur we must have � � 1
4 , while � 	 0 is

required for the potential to be bounded from below.
At finite temperature, the O3 symmetric action (35) is

found to be:
 

S3 �
9M3

23=2�2

�
Ŝ3;thick � 125:8�� 239:5�2

�
33�

1� 4�
� Ŝ3;thin

�
(38)

with Ŝ3;thick ’ 13:72�1� 4��2 and Ŝ3;thin �
24
��
2
p
�

36
4�

�1�4��2

being the limits for the thick and thin wall approximation,
respectively [40].

The time needed for the universe to tunnel from the false
to the true vacuum is estimated by setting � � t4H 
 1 where
tH �

M0

2T2 is the Hubble time in the radiation-dominated
universe. Taking into account that during the electroweak
phase transition T 
 100 GeV, this yields: S3

T 
 160,
which defines the tunneling temperature To in the estima-
tions of Table I. If S3

T � 160, the tunneling occurs very
quickly, when the universe is still hot. If S3

T � 160, the
tunneling rate is too low and the universe remains at the
false vacuum.

When this condition is met, the universe tunnels from
the false vacuum f to the true vacuum t. The energy
gained from the transition to a deeper minimum reheats the
universe from the tunneling temperature To to a higher
temperature Tr. Since the expansion of the universe is
much slower than the tunneling, the reheating temperature
Tr is found by taking the energy density to be constant
��f�To�; To� � ��t�Tr�; Tr�, where ��; T� �
f�; T� � Ts�; T�, with f�; T� � Veff�; T� the free
energy density and s � �@f=@T the entropy density. In
Fig. 5 the free energy density in the true and false vacuum
are presented vs temperature.

Representative numerical estimations done using the
above are presented in Table I. The independent parame-
ters of the model were chosen to be �H, �S, �HS, �, ! and
the VEVs of the two Higgs bosons at zero temperature �0,
�0, of which �0 is kept fixed at 246 GeV.

300 250 200 150 100 50 0
T (GeV)

0

50

100

150

200

250

(G
eV

)

FIG. 4. The evolution of the SM Higgs VEV � with tempera-
ture. At very high T, symmetry is restored: � � 0. At a lower
temperature a second-order phase transition to � � 0 takes
place, while still remaining in the false vacuum (dashed line).
At T � To, a first-order phase transition brings the universe to
the true vacuum (solid line). At T � 0, � � 246 GeV. The data
corresponds to parameter set A of Table I.
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(GeV)

−2×108

−1×108

1×108

2×108

3×108

4×108

5×108
V

(
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)
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4
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T=0

To

Tc

T1

high T

FIG. 3. The potential configuration along the straight-line path
connecting the two minima, at various temperatures. At very
high T the potential possesses only one minimum. At a lower
temperature T1 a local minimum starts forming. At Tc < T1 the
two minima become degenerate. At To < Tc tunneling to the true
vacuum occurs. At T � 0 the universe has settled in the true
vacuum. The curves correspond to parameter set A of Table I.
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Tc, To, Tr stand for the critical, tunneling and reheating
temperature, respectively. vc is the distance between the
two vacua at the critical temperature and vc

Tc
> 1 is the

criterion for a strong 1st order phase transition. The pa-
rameter space of the potential (4) can provide for a variety
of phase transition scenarios (1st order only, 2nd order
only, 2nd order followed by 1st order). The parameter
sets presented here fulfill the requirement for a strong 1st
order phase transition. In A, a second-order phase transi-
tion to nonzero VEV of the SM Higgs precedes the first-
order one to the true vacuum (Fig. 4). In B, no second-order
phase transition occurs.
mt

1;2�T�, m
f
1;2�T� stand for the Higgs mass eigenvalues at

the true and false vacuum, respectively, at temperature T.
For the parameter sets of Table I, both of the Higgs modes

decay after the transition to the true vacuum, since Tr >
mt

1;2�Tr�
2:3 , which is the temperature at which the decay rate

appears to be maximal. Conversely, decay in the false
vacuum would require tunneling temperature small
enough, To <

mf�To�
2:3 , in order for the Higgs bosons to

have time to decay before the phase transition, and also
sufficiently heavy Higgs eigenstates in the true vacuum,
mt�Tr�> 2:3Tr, so that decays after the phase transition are
suppressed by the low number density of Higgs bosons. No
parameter sets satisfying the above were found.

The values of the sterile neutrino Yukawa coupling f to
the Higgs singlet, presented in Table I, are obtained by
requiring that sterile neutrinos make up all the dark matter,
where now the details of the two-component decay, the
phase transition and the decoupling of degrees of freedom
were taken into account. The numerical results are consis-
tent with the estimate of Eq. (21). The sterile neutrino mass
ms � f � �0 is then set to be in the keV range.

VI. STERILE NEUTRINO PRODUCTION FROM
OUT-OF-EQUILIBRIUM DECAYS

Finally, we address the possibility of S decoupling early
from equilibrium and decaying into sterile neutrinos out of
equilibrium. This is the case if �, ! 
 0 and �HS 
 10�6.
Then, only a second-order, rather than a first-order, phase
transition takes place and the S decays occur in the broken
phase.

The sterile neutrino population is again found from
Eq. (10), where now we need to first determine the out-
of-equilibrium concentration of S bosons.

The S boson number density NS after decoupling, taking
into account the annihilations of S bosons to SM particles,
is given by [29]

 

NS�T�

T3
�
Neq
S �Tf�

T3
f

1

2� rf=r
: (39)

If it were only for the SS! XX annihilations, the S boson
abundance would decrease at r! 1 to just half of its
equilibrium value at freeze-out. However, the decay of S
particles to sterile neutrinos will result in an exponential
damping of the S boson abundance. In addition, after H
and S develop VEVs, S bosons will decay to SM fermions
through the mixing with the SM Higgs. We can therefore
ignore the SS! XX annihilations and consider only the
S! NaNa and S! �ff decays to determine nS after
freeze-out. The kinetic equation for S bosons is

 E
@nS
@t
�Hj ~pj2

@nS
@E
� �

m2h2

8�
nS; (40)

where

 h2 �
X
a

f2
a

�
1�

4f2
a�2

m2

�
�
X
f

�2
f

�
1�

4m2
f

m2

�

�

�
�HS

max��H; �S�

�
2

(41)

takes into account the decay to all of the sterile neutrino
species and SM fermions.1 Here �f are the Yukawa cou-
plings of the SM fermions to the Higgs doublet and

�HS
max��H;�S�

is the mixing angle of the two Higgs mass eigen-
states, at the limit �HS � �H, �S, and � 
 �. Since S
bosons live in the electroweak scale, the main fermion
decay mode will be the �bb channel. For �HS * 10�6, this
dominates over the decays into keV sterile neutrinos. As
we will see below, �HS 
 10�6 and Ma � keV is a self-
consistent set of parameters for producing a sufficient

140 120 100 80 60 40 20 0
T (GeV)

−1×109

0

1×109

2×109
(G

eV
4
)

FIG. 5. The free energy density vs temperature, at the true
vacuum (lower curve) and at the false vacuum (upper curve).
Significant reheating could occur if the universe cooled down to
a low temperature before the tunneling took place. At the
temperature at which the tunneling actually occurs, T 

100 GeV, the reheating is not significant.

1We note in passing that sterile neutrinos with MeV<Ma <
MS (a 	 2), produced in the S decays, can decay into three
active neutrinos via mixing, in a tree-level process that involves
Z exchange. Hence, we must take into account only the branch-
ing ratio of decay into the long-lived singlets with keV-scale
masses.
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amount of sterile neutrinos to make up dark matter, through
out-of-equilibrium decays of S bosons.

In terms of r � m=T and xS � pS=T, one obtains

 

@nS
@r
� �

h2M0

8�m
r2����������������

x2
S � r

2
q nS: (42)

This yields
 

nS�xS; r� �
1

e
����������
x2
S�r

2
f

p
� 1

0
B@ r�

����������������
x2
S � r

2
q

rf �
����������������
x2
S � r

2
f

q
1
CA

�x2
S

� e���r
����������
x2
S�r

2
p

�rf
����������
x2
S�r

2
f

p
�; (43)

where we set � � h2M0

16�m and we took nS to be the thermal
equilibrium distribution function at T � Tf .

Using (42), Eq. (10) can be partially integrated to give
the sterile neutrino distribution function, produced by S
bosons decays after their freeze-out:
 

n�6 �x; r� �
B

x2

�Z 1
j�r2

f =4x��xj
xSnS�xS; rf�dxS

�
Z r

rf

r0

2x

�
r02

4x
� x

�
nS

���������r
02

4x
� x

��������; r0
�
dr0

�
Z 1
j�r2=4x��xj

xSnS�xS; r�dxS

�
(44)

where we set n�6 �x; rf� � 0 and

 B �
f2

h2 (45)

is the branching ratio of S! N1N1 to all other decays, with
N1 being the lightest sterile neutrino. The last term in (44)
vanishes at the limit r! 1, while the second term does
not contribute to the total abundance, but only shifts the
momentum distribution. The abundance of sterile neutri-
nos at any later time will be proportional to the amount of S
bosons that have already decayed up to that time:

 Y�6
s �r� � BYS�rf� � YS�r��; (46)

where

 YS�r� �
45

4�4g�

Z 1
0
nS�xS; r�x2

SdxS (47)

is the S boson abundance, with nS�xS; r� given by (43). The
production rate dY�6

s =dr peaks at some rprod � m=Tprod.
Since � determines how fast S bosons decay, rprod depends
on � but is effectively independent of rf . Given that �HS 	
10�6 is required for S bosons to be in equilibrium at early
times, � receives a minimum contribution from the �bb
decay mode, through the mixing with the SM Higgs.
Taking into account the b quark Yukawa coupling to the
SM Higgs �b ’ 2� 10�2 and that �H, �S < 1, the decay
into �bb pairs ensures that � 	 0:01, which results in S

bosons decaying early enough, at rprod < 10, before the
decoupling of the QCD degrees of freedom. Then, in
Eq. (47), g� 
 90–110, or � 
 25–33. The dependance
of the final sterile neutrino abundance Y�6

s �1�=B on rf is
shown in Fig. 6.

The amount of dark matter produced from the out-of-
equilibrium decay of S bosons is

 ��s 
 0:2
�
ms

3 keV

��
Y�6
s =B

10�3

��
B

0:1

�
: (48)

Early decoupling of S bosons 1 & rf & 3 implies �HS ’
10�6 (cf. Fig. 1). The dominant decay mode is then �bb
pairs and the branching ratio of S decays into an ms ’
3 keV sterile neutrino, i.e. with f � �1–5� � 10�8, is B ’
0:1� 0:01. The amount of sterile neutrinos produced by
the out-of-equilibrium decays is then sufficient to consti-
tute dark matter.

The average momentum at r!1 of the sterile neutrino
population produced through the out-of-equilibrium de-
cays is

 

hpi
T
�

�
R
1
rf
drr2

R
1
0 dxx

2nS�x; r�R
1
0 dxx

2nS�x; rf�
: (49)

The variation of �hpi=T� with � is shown in Fig. 7, for
various values of rf, where the redshifting factor �1=3

[Eq. (15)] has not yet been included. Then, for the set of
parameters discussed above � 
 0:01–0:1 and the produc-
tion peaks at rprod ’ 3. Thus, the average momentum at the
current temperature, for decoupling around rf � 1–2, can
be as low as (cf. Fig. 7):

 

hpi
T
’

�
2:5

�1=3

�
T�1 MeV

� 0:8: (50)

2 4 6 8 10 12 14
rf

10−7

10−6

10−5

10−4

10−3

Ys___
B

FIG. 6 (color online). The final sterile neutrino abundance
Y�6
s �1�=B vs rf . rf � 1–2 corresponds to out-of-equilibrium

decays of S bosons, producing sufficient amount of dark matter.
For rf > 3, the amount produced is insignificant in comparison
to that produced during the in-equilibrium decays, occurring at
r < 3, and can be ignored.
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Finally, we return to the in-equilibrium decay scenario.
If rf > 3, S bosons decay primarily while still in equilib-
rium. However, the amount of dark matter produced will be
supplemented by any additional sterile neutrinos produced
after S bosons come out of equilibrium. This again is given
by Eq. (48), where now both Ys=B and B take lower values
because of the increase in rf and �HS (cf. Fig. 6). Thus, the
amount of dark matter produced is determined only by a
fraction of what was produced before the freeze-out, and
our results from the previous section remain valid.

VII. BARYOGENESIS

The model under consideration and its minimal modifi-
cations offer at least two scenarios for generating the
baryon asymmetry of the universe below the electroweak
scale. One possibility is that the baryon asymmetry could
arise from the low-scale leptogenesis if there are at least
three sterile neutrinos below the electroweak scale, and if
the two heavier ones are nearly degenerate in mass [27].
This scenario is different from the more commonly dis-
cussed thermal leptogenesis in that neutrino oscillations,
not decays, are responsible for the change in the lepton
number of the plasma. Active neutrinos (in equilibrium)

can oscillate into the sterile neutrinos (out of equilibrium),
and CP violation in the neutrino mass matrix could make
the net lepton number of the out-of-equilibrium sterile
neutrinos nonzero. The excess lepton number remaining
in plasma is partially converted into the baryon number by
sphalerons [27].

An alternative possibility exists if the phase transition is
strongly first-order, which is quite likely in the model with
the singlet, as discussed in Refs. [32–34]. In this case the
standard electroweak baryogenesis [43] can take place in
the course of this first-order phase transition. The model of
Eq. (3) can easily be modified to include a sufficient
amount of CP violation: all that is required for a successful
baryogenesis is to include the second Higgs doublet [33].

VIII. CONCLUSION

The inclusion of singlet fermions (right-handed neutri-
nos) in the standard model is the usual way to generate the
observed neutrino masses [1]. In contrast with many other
models, we assume that both Dirac and Majorana neutrino
masses are generated via the Higgs mechanism [20]. The
immediate advantage of this model is the possibility to
produce dark matter, in the form of sterile neutrinos, which
is cold enough to satisfy the bounds on the small-scale
structure and the bounds from X-ray observations, while
explaining the pulsar kicks at the same time [7]. The same
sterile neutrinos can play an important role in the forma-
tion of the first stars [11]. We have considered different
ways in which the dark-matter sterile neutrinos can be
produced from the Higgs decays in the early universe. If
the production from the Higgs decays dominates over the
production by neutrino oscillations, the resulting dark mat-
ter population is colder than in the Dodelson-Widrow case
for the same mass. The Higgs structure of the model has
important implications for the collider physics an can be
probed at the at the Large Hadron Collider and a Linear
Collider [34,44].
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