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In previous work we proposed a field theory model for multiple M2-branes based on an algebra with a
totally antisymmetric triple product. In this paper we gauge a symmetry that arises from the algebra’s
triple product. We then construct a supersymmetric theory that is consistent with all the symmetries
expected of a multiple M2-brane theory: 16 supersymmetries, conformal invariance, and an SO�8� R-
symmetry that acts on the eight transverse scalars. The gauge field is not dynamical. The result is a new
type of maximally supersymmetric gauge theory in three dimensions.
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I. INTRODUCTION

The branes of M-theory are important but still very
much mysterious objects. While the dynamics of a single
M-brane is well understood, very little is known about the
interactions of multiple M-branes. For a current review of
M-branes and their interactions, see [1].

In a recent paper [2], we proposed a model of multiple
M2-branes based on an algebra that admits a totally
antisymmetric triple product. (The triple product can be
constructed, for example, from the associator in a non-
associative algebra.) Examination of the supersymmetry
algebra suggested that the theory has a local gauge sym-
metry that arises from the triple product.

In Ref. [2] the nature of these gauge transformations was
not clear, so the model presented contained just the scalar
and fermi fields. Moreover, it was invariant under just four
supersymmetries. In this paper we will study the gauge
symmetry in more detail. We will show how to gauge the
local symmetry and obtain a conformal and gauge-
invariant action with all 16 supersymmetries. The theory
has an SO�8� R-symmetry that acts on the eight transverse
scalars, a nonpropagating gauge field, and no free parame-
ters, modulo a rescaling of the structure constants. The
gauge field ensures that the supersymmetry algebra closes
(up to a gauge transformation) on shell.

Apart from our motivation to obtain a worldvolume
theory for multiple M2-branes, it is generally worthwhile
to pursue extensions to Yang-Mills gauge theory and to
explore the possible relevance of nonassociative structures
to theoretical physics and geometry. In fact, beyond the
model proposed in [2], there are other physical examples
[3–8] in which fuzzy three spheres arise. Such objects
presumably require an algebraic structure that is based on
an antisymmetric triple product, so the results discussed
here may be relevant.

The rest of this paper is organized as follows. In Sec. II
we present the details of the algebraic structure that we
require and show how it leads to a natural symmetry. In
Sec. III we gauge the symmetry by introducing a vector
gauge field. In Sec. IV we construct a gauge-invariant
supersymmetric theory with 16 supercharges acting on
the scalars, vector, and fermions. The superalgebra closes
on a set of equations of motion that are invariant under
supersymmetry. We show that the equations of motion
arise from a supersymmetric action consistent with all
the known continuous symmetries of the M2-brane.
Sec. V five contains some closing comments.

We also include two appendices. The first provides a
concrete example of a three-algebra; the second lists some
Clifford algebra identities that are relevant to the compu-
tations in Sec. IV.

While this paper was is in preparation, we received
Ref. [9], in which the algebraic structures underlying mul-
tiple M2-branes are discussed. Furthermore, in a revised
version (v4), the gauged supersymmetry algebra was found
to close using the fermion and vector equations of motion.
The fields are elements of a Lie algebra constructed out of
the semidirect product of two other algebras, one of which
has a triple product. The superalgebra presented in [9]
looks similar to ours. It would be interesting to see if the
two algebraic structures are, in fact, the same.

II. SOME ALGEBRAIC DETAILS

The model presented in [2] was based on a nonassocia-
tive algebra. In algebra one commonly introduces the
associator

 hA;B;Ci � �A � B� � C� A � �B � C�; (1)

which vanishes in an associative algebra. In what follows
we need the antisymmetrized associator
 

�A;B;C� � hA;B;Ci � hB;C; Ai � hC;A; Bi � hA;C; Bi

� hB;A; Ci � hC;B; Ai; (2)
*bagger@jhu.edu
†neil.lambert@kcl.ac.uk

PHYSICAL REVIEW D 77, 065008 (2008)

1550-7998=2008=77(6)=065008(6) 065008-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.065008


which is what one finds by expanding out the Jacobi
identity ��A;B�; C� � ��B;C�; A� � ��C;A�; B�. In a nonas-
sociative algebra, the antisymmetrized associator leads to a
natural triple product structure.

To define an action we require a trace form on the
algebra A. This is a bilinear map Tr: A	A! C that
is symmetric and invariant:

 Tr �A;B� � Tr�B;A�; Tr�A � B;C� � Tr�A;B � C�:

(3)

We also assume ‘‘Hermitian’’ conjugation # and positivity,
which implies Tr�A#; A� 
 0 for any A 2A (with equal-
ity if and only if A � 0). The invariance property implies
that
 

Tr�hA;B;Ci; D� � Tr��A � B� � C;D� � Tr�A � �B � C�; D�

� Tr�A � B;C �D� � Tr�A; �B � C� �D�

� �Tr�A; hB;C;Di�: (4)

It also follows that

 Tr ��A;B;C�; D� � �Tr�A; �B;C;D��: (5)

More generally we only require that the algebra admit a
totally antisymmetric trilinear product ��; �; �� that satisfies
(5). In particular, the antisymmetric product need not arise
from a nonassociative product on the algebra. We call such
an algebra a three-algebra. Note that a three-algebra need
not contain a bilinear product and hence is not necessarily
an algebra in the usual sense.

In [2] we argued that the general form for the supersym-
metry transformations acting on the scalars and fermions
must be
 

�XI � i ���I�;

�� � @�X
I���I�� ��XI; XJ; XK��IJK�;

(6)

where � is a constant. The indices �, � � 0, 1, 2 label the
M2-brane coordinates and I; J; K � 3; 4; 5; . . . ; 10 label
the coordinates transverse to the M2-branes. All spinor
quantities correspond to the Clifford algebra in 11 space-
time dimensions. The preserved supersymmetries satisfy
�012� � �; the worldvolume fermions obey �012� � ��.

With these transformations, the supersymmetry algebra
does not close. Rather, closure on the scalars XI leads to

 ��1; �2�XI � 2 ��1���2@�XI � 6i� ��1�JK�2�XJ; XK; XI�:

(7)

The first term on the right-hand side is just a translation.
The second term, however, is a local version of the global
symmetry transformation

 �X � ��;�; X�; (8)

where �, � 2A.

For (8) to be a symmetry, it must act as a derivation,

 ���X; Y; Z�� � ��X; Y; Z� � �X; �Y; Z� � �X; Y; �Z�: (9)

This requirement leads to the so-called ‘‘fundamental’’
identity (which has also appeared in [10–12])
 

��;�; �X; Y; Z�� � ���;�;X�; Y; Z� � �X; ��;�; Y�; Z�

� �X; Y; ��;�; Z��: (10)

In what follows, we assume that this identity holds. It plays
a role analogous to the Jacobi identity in ordinary Lie
algebra, where it arises from demanding that the trans-
formation �X � ��;X� act as a derivation. (In Appendix A
we give a concrete realization of a three-algebra that
satisfies the fundamental identity.)

It is convenient to introduce a basis Ta for the algebra
A. On physical grounds we assume that all the generators
are Hermitian, in the sense that �Ta�# � Ta. We then
expand the field X � XaT

a, a � 1; . . . ; N, where N is the
dimension of A (and not the number of M2-branes). We
introduce the ‘‘structure’’ constants

 �Ta; Tb; Tc� � fabcdT
d; (11)

from which is it is clear that fabcd � f�abc�d. The trace
form provides a metric

 hab � Tr�Ta; Tb� (12)

that we can use to raise indices: fabcd � hdefabce. Again
on physical grounds we assume that hab is positive definite.
The condition (5) on the trace form implies that

 fabcd � �fdbca; (13)

and this further implies that fabcd � f�abcd�, in analogy
with the familiar result in Lie algebras. In a basis form the
fundamental identity (10) becomes

 fefgdf
abc

g � fefagf
bcg

d � f
efb

gf
cag

d � f
efc

gf
abg

d:

(14)

We can augment this algebra by including an element T0

that associates with everything, or more precisely, that
satisfies f0ab

d � 0. If we assume that h0b � 0 if b � 0,
we find fabc0 � 0. Thus this mode decouples and it can be
interpreted as the center-of-mass coordinate.

The symmetry transformation (8) can be written as

 �Xd � fabcd�a�bXc: (15)

However the notation allows for the more general trans-
formation

 �Xd � fabcd�abXc; (16)

which we assume from now on. In particular, the trans-
formation (7) corresponds to the choice

 �ab / i ��1�JK�2X
J
aX

K
b : (17)
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Note that the generator �ab cannot in general be written as
��a�b� for a single pair of vectors (�a, �b). However, �ab

can always be written as a sum over N such pairs.
To see that the action is invariant under global symme-

tries of this form, we observe that for any Y,

 

1
2�Tr�Y; Y� � Tr��Y; Y� � hde�YdYe

� hde�abfabcdYcYe � fabce�abYcYe � 0;

(18)

by the antisymmetry of fabce. In addition, the fundamental
identity ensures that

 ���XI; XJ; XK��a � fcdba�cd�XI; XJ; XK�b: (19)

Thus the Lagrangian

 L � �1
2 Tr�@�X

I; @�XI�

� 3�2 Tr��XI; XJ; XK�; �XI; XJ; XK��; (20)

is invariant under the symmetry �XIa � fcdba�cdXIb.

III. GAUGING THE SYMMETRY

We now wish to promote the global symmetry discussed
above to a local one. To that end we introduce a covariant
derivative D�X such that ��D�X� � D���X� � ��D��X.
If we let

 �Xa � �cdfcdbaXb � ~�b
aXb; (21)

then the natural choice is to take

 �D�X�a � @�Xa � ~A�
b
aXb; (22)

where ~A�
b
a � fcdbaA�cd is a gauge field with two alge-

braic indices. We can therefore think of ~A�
b
a as living in

the space of linear maps from A to itself, in analogy with
the adjoint representation of a Lie algebra. The field X is
then, in some sense, in the fundamental representation. The
gauge field acts as an element of gl�N�, where N is the
dimension of A. Furthermore, as a consequence of the
antisymmetry of fabcd, the symmetry algebra is contained
in so�N�.

A little calculation shows that the covariant derivative is
obtained by taking

 � ~A�
b
a � @� ~�b

a �
~�b

c
~A�

c
a � ~A�

b
c

~�c
a � D�

~�b
a:

(23)

Indeed, this is the usual form of a gauge transformation.
The field strength is defined as

 ��D�;D��X�a � ~F��
b
aXb; (24)

which leads to

 

~F ��
b
a � @� ~A�

b
a � @� ~A�

b
a � ~A�

b
c

~A�
c
a � ~A�

b
c

~A�
c
a:

(25)

The resulting Bianchi identity is D�� ~F���
b
a � 0. One also

finds that

 � ~F��
b
a � �

~�b
c

~F��
c
a � ~F��

b
c

~�c
a: (26)

These expressions are identical to what one finds in an
ordinary gauge theory based on a Lie algebra, where the
gauge field is in the adjoint representation. Here the gauge
field takes values in the space of linear maps of A into
itself. The triple product allows one to construct linear
maps on A from two elements of A.

In particular consider the set G of all N 	 N matrices
~�b

a � �cdf
cdb

a, where �cd is arbitrary. The fundamental
identity ensures that this set is closed under the ordinary
matrix commutator. Thus G defines a matrix Lie algebra
that is a subalgebra of so�N�. The fundamental identity
implies that fabcd is an invariant 4-form of G. Thus every
three-algebra generates a Lie algebra with an invariant 4-
form. However, it is unclear whether or not the existence of
an invariant 4-form in a Lie algebra is sufficient to ensure
that its fundamental representation is a three-algebra that
satisfies the fundamental identity.

IV. SUPERSYMMETRIZING THE GAUGED
THEORY

We now show how to supersymmeterize the gauged
multi-M2-brane model in a manner consistent will all the
continuous symmetries expected of a multiple M2-brane
theory, namely, 16 supersymmetries, conformal invariance,
and an SO�8� R-symmetry that acts on the eight transverse
scalars. We first recall the structure of the full superalgebra
with 16-component spinors. In [2] we argued that the
general form is (6), and that closure leads to the local
symmetry

 �XI / ��2�JK�1�XJ; XK; XI� (27)

that we gauged above.
Let us apply the ideas of the previous section to gauge

this symmetry. We start by introducing the gauge field
~A�

b
a with its associated covariant derivative. The super-

symmetry transformations then take the form
 

�XIa � i ���I�a;

��a � D�X
I
a���I�� �XIbX

J
cX

K
d f

bcd
a�IJK�;

� ~A�
b
a � i �����IXIc�dfcdba:

(28)

(A similar, possibly identical, form for the gauge field
variation was used in [9].)

This algebra can be made to close on shell. We first
consider the scalars. We find that the transformations close
into a translation and a gauge transformation;

 ��1; �2�X
I
a � v�D�X

I
a �

~�b
aX

I
b; (29)

where
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 v� � �2i ��2���1; ~�b
a � 6i� ��2�JK�1X

J
cX

K
d f

cdb
a:

(30)

We then consider the fermions. Evaluating ��1; �2��a,
we find two separate terms involving ��2���IJKL�1 that
must cancel for closure. This implies

 � � �1=6; (31)

so there is no free parameter. Proceeding further we com-
pute
 

��1; �2��a � v�D��a �
~�b

a�b � i� ��2���1��
�

	

�
��D��a �

1

2
�IJX

I
cX

J
d�bf

cdb
a

�

�
i
4
� ��2�KL�1��

KL

	

�
��D��a �

1

2
�IJXIcX

J
d�bfcdba

�
: (32)

Closure requires that the second and third lines vanish.
This determines the fermionic equation of motion;

 ��D��a �
1
2�IJX

I
cX

J
d�bfcdba � 0: (33)

Thus on shell we see that

 ��1; �2��a � v�D��a �
~�b

a�b; (34)

as required.
We finally turn to ��1; �2� ~A�

b
a. Here we again find a

term involving ��2���IJKL�1:

 �
i
3
� ��2���IJKL�1�XIcXJeXKf X

L
g fefgdf

cdb
a: (35)

Happily this term vanishes as a consequence of the funda-
mental identity. Continuing, we find
 

��1; �2� ~A�
b
a � 2i� ��2���1�����

�
XIcD

�XId �
i
2

��c�
��d

�

	 fcdba � 2i��2�IJ�1�X
I
cD�X

J
df

cdb
a: (36)

To close the algebra we fix the ~A�
b
a equation of motion;

 

~F ��
b
a � ����

�
XJcD

�XJd �
i
2

��c�
��d

�
fcdba � 0; (37)

so that on shell,

 ��1; �2� ~A�
b
a � v� ~F��

b
a �D�

~�b
a:

Note that ~A�
c
d contains no local degrees of freedom, as

required. We see that the 16 supersymmetries close on
shell.

To find the bosonic equations of motion, we take the
supervariation of the fermion equation of motion. This
gives

 0 � �I
�
D2XIa �

i
2

��c�
IJXJd�bf

cdb
a

�
1

2
fbcdaf

efg
dX

J
bX

K
c X

I
eX

J
fX

K
g

�
�

� �I��XIb

�
1

2
"��� ~F��

b
a � XJcD�XJdf

cdb
a

�
i
2

��c�
��df

cdb
a

�
�: (38)

The second term vanishes as a consequence of the vector
equation of motion (37). The first term determines the
scalar equations of motion,

 D2XIa �
i
2

��c�
IJXJd�bfcdba �

@V
@XIa

� 0: (39)

The potential is

 V �
1

12
fabcdfefgdX

I
aX

J
bX

K
c XIeX

J
fX

K
g

�
1

2 � 3!
Tr��XI; XJ; XK�; �XI; XJ; XK��: (40)

Let us summarize our results. The supersymmetry trans-
formations are
 

�XIa � i ���I�a;

��a � D�XIa���I��
1

6
XIbX

J
cXKd f

bcd
a�IJK�;

� ~A�
b
a � i �����IX

I
c�df

cdb
a:

(41)

These supersymmetries close into translations and gauge
transformations,
 

��1; �2�X
I
a � v�@�X

I
a � �

~�b
a � v

� ~A�
b
aX

I
b�;

��1; �2��a � v�@��a � �
~�b

a � v
� ~A�

b
a�b�;

��1; �2� ~A�
b
a � v�@� ~A�

b
a �D��

~�b
a � v

� ~A�
b
a�;

(42)

after using the equations of motion
 

��D��a �
1

2
�IJXIcX

J
d�bfcdba � 0;

D2XIa �
i
2

��c�
I
JX

J
d�bf

cdb
a �

@V

@XIa
� 0;

~F��
b
a � "���

�
XJcD

�XJd �
i
2

��c�
��d

�
fcdba � 0:

(43)

We have explicitly demonstrated that the supersymmetry
variation of the fermion equation of motion vanishes, and
that the algebra closes on shell. It follows that all the
equations of motion are invariant under supersymmetry.
Furthermore one can check using the fundamental identity
that the Bianchi identity ����D�

~F��
b
a � 0 is satisfied.

We close this section by presenting an action for this
system. The equations of motion can be obtained from the
Lagrangian
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 L � �
1

2
�D�XaI��D�XIa� �

i
2

��a��D��a

�
i
4

��b�IJXIcX
J
d�afabcd � V

�
1

2
"���

�
fabcdA�ab@�A�cd

�
2

3
fcdagf

efgbA�abA�cdA�ef

�
: (44)

It is not hard to check that the action is gauge invariant and
supersymmetric under the transformations (41). Note that
(44) contains no free parameters, up to a rescaling of the
structure constants. In fact, given the presence of the
Chern-Simons term, it is natural to expect the fabcd to be
quantized [13].

It is important to note that the structure constants fabcd
enter into the Chern-Simons term in a nonstandard way.
Viewed as a 3-form in an arbitrary dimension, this
‘‘twisted‘‘ Chern-Simons term

 � �
�
fabcdA�ab@�A�cd

�
2

3
fcdagf

efgbA�abA�cdA�ef

�
dx� ^ dx� ^ dx�

(45)

satisfies

 d� � Fab ^ ~Fab; (46)

where ~F��
b
a � F��cdf

cdb
a. Also note that � is written in

terms of A�ab and not the physical field ~A�
b
a � A�cdfcdba

that appears in the supersymmetry transformations and
equations of motion. However, one can check that � is
invariant under shifts of A�ab that leave ~A�

b
a invariant.

Thus it is locally well defined as a function of ~A�
b
a.

This theory provides an example of the type of model
that was searched for in [14]. It is invariant under 16
supersymmetries and an SO�8� R-symmetry. It is also
conformally invariant at the classical level. These are all
the continuous symmetries that are expected of multiple
M2-branes. Note that the Chern-Simons term naively
breaks the parity that is expected to be a symmetry of the
M2-brane worldvolume. However, we can make the
Lagrangian parity invariant if we assign an odd parity to
fabcd. In particular, if we invert x2 ! �x2, we must then
require that XIa and ~A�

a
b be parity even for � � 0, 1; ~A2

a
b

and fabcd be parity odd; and �a ! �2�a. Note that this
assignment implies that A�ab is parity odd for � � 0, 1,
while A2ab is parity even.

V. CONCLUSIONS

In this paper we described the gauge symmetry that
arises in the model of multiple M2-branes presented in
[2]. We included a nonpropagating gauge field and ob-

tained a theory that is invariant under all 16 supersymme-
tries with no free parameters, up to a rescaling. Thus the
model presented in [2] can indeed be viewed as the trun-
cation of a maximally supersymmetric theory to the scalar
and fermion modes.

The Lagrangian given here is consistent with all the
known symmetries of M2-branes. The M2-brane worldvo-
lume theory is expected to arise as the strong coupling,
conformal fixed point of a three-dimensional, maximally
supersymmetric Yang-Mills gauge theory. Furthermore, in
the large N limit, it is conjectured to be dual to an AdS4 	
S7 solution of M-theory. Thus the Lagrangian given here is
a candidate for the strong coupling fixed point of a three-
dimensional super Yang-Mills theory and a field theory
dual of M-theory on AdS4 	 S

7.
As mentioned in the introduction, similar results on the

closure of the algebra have recently been reported in [9].
This paper adopts a different, but possibly equivalent, form
for the algebra. Three-algebras that satisfy the fundamental
identity can also be viewed as Lie algebras admitting an
invariant 4-form that satisfies the fundamental identity. We
give one example in Appendix A, but it is clearly important
to find more examples. We hope that these studies will
warrant a deeper and fruitful investigation into the alge-
braic structure of multiple M2-branes as a step towards
identifying the microscopic degrees of freedom of M-
theory.
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APPENDIX A: AN EXAMPLE

In this appendix we provide an example of a three-
algebra that satisfies the fundamental identity. The simplest
nontrivial case corresponds to four generators, a; b; . . . �
1, 2, 3, 4. If we normalize the generators such that
Tr�Ta; Tb� / �ab, it then follows that

 fabcd / "abcd: (A1)

One can explicitly check that the fundamental identity is
satisfied. In this case the space G generated by all matrices
~�c

d � �abfabcd is the space of all 4	 4 antisymmetric
matrices and hence G � so�4� with the invariant 4-form
"abcd.

It is also possible to realize this three-algebra as arising
from a nonassociative algebra. In [2] we considered the
three-algebra of Hermitian matrices that anticommute with
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a fixed Hermitian matrix G, with G2 � 1. We defined

 A � B � QABQ; (A2)

where Q � 1��
2
p �1� iG�. We also took Tr�A;B� �

trace�Q�1AQ�1B� where trace denotes the standard matrix
trace. The associator turned out to be

 hA;B;Ci � 2GABC; (A3)

and hence

 �A;B;C� � 2G�ABC� cyclic�: (A4)

We also found that G could play the role of translations as
�A;B;G� � 0 for all A, B that anticommute with G.

Let us consider the case in which A has four generators,
which we take to be the (Euclidean) four-dimensional
	-matrices with G � 	5 and Q � �1� i	5�=

���
2
p

. The
product is then 	a � 	b � Q	a	bQ � 	5	a	b, and one
finds that

 h	a; 	b; 	ci � 2	5	
a	b	c: (A5)

Thus

 �	a; 	b; 	c� � 2 � 3!	5	
abc � 2 � 3!"abcd	

d; (A6)

and hence fabcd � 12"abcd.

APPENDIX B: FIERZ AND OTHER IDENTITIES

In this appendix we present the Fierz identity that we use
repeatedly above. All spinorial quantities are those of the
11-dimensional Clifford algebra; we take them to be real.
Let �1, �2, and 
 be arbitrary spinors. The combination
� ��2
��1 � � ��1
��2 can then be written as
 

� ��2
��1 � � ��1
��2 � �
1

16

�
� ��2�m�1��

m


�
1

2!
� ��2�mn�1��

mn


�
1

5!
� ��2�mnpqr�1��

mnpqr
;
�
; (B1)

where m; n; . . . � 0; . . . ; 10, �; �; . . . � 0, 1, 2, and
I; J; . . . � 3; 4; . . . ; 10. If �1 and �2 have the same chirality
with respect to �012, then the only terms that contribute
must have an even number of I indices. Moreover, the
expression is only nonvanishing when 
 has the same
�012 chirality as �1 and �2. When this is the case, (B1)
reduces to
 

� ��2
��1 � � ��1
��2 � �
1

16

�
2� ��2���1��

�


� � ��2�IJ�1��
IJ


�
1

4!
� ��2���IJKL�1��

��IJKL

�
:

(B2)

We also found the following identities useful:
 

�M�IJ�M � 4�IJ;

�M�IJKL�M � 0;

�IJP�KLMN�P ���I�KLMN�J��J�KLMN�I;

�I�KL�J��J�KL�I � 2�KL�IJ� 2�KJ�IL� 2�KI�JL

� 2�LI�JK� 2�LJ�IK� 4�KJ�IL

� 4�KI�JL;

�IJM�KL�M � 2�KL�IJ� 6�KJ�IL� 6�KI�JL

� 6�LI�JK� 6�LJ�IK� 4�KJ�IL

� 4�KI�JL: (B3)
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