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The perturbative effective potential V in the massless ��4 model with a global O�N� symmetry is
uniquely determined to all orders by the renormalization group functions alone when the Coleman-
Weinberg renormalization condition d4V

d�4 j��� � � is used, where � represents the renormalization scale.
Systematic methods are developed to express the n-loop effective potential in the Coleman-Weinberg
scheme in terms of the known n-loop minimal-subtraction (MS) renormalization group functions.
Moreover, it also proves possible to sum the leading- and subsequent-to-leading-logarithm contributions
to V. An essential element of this analysis is a conversion of the renormalization group functions in the
Coleman-Weinberg scheme to the renormalization group functions in the MS scheme. As an example, the
explicit five-loop effective potential is obtained from the known five-loop MS renormalization group
functions and we explicitly sum the leading-logarithm, next-to-leading-logarithm, and further subleading-
logarithm contributions to V. Extensions of these results to massless scalar QED are also presented.
Because massless scalar QED has two couplings, conversion of the renormalization group functions from
the MS scheme to the Coleman-Weinberg scheme requires the use of multiscale renormalization group
methods.
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I. INTRODUCTION

The effective potential V in the massless ��4 model
with a global O�N� symmetry has received considerable
attention [1–5] because of its connection to the scalar-field
theory projection of the standard model for N � 4. A
variety of renormalization schemes have been employed
in computing the effective potential, among them minimal
subtraction (MS) [6] and the Coleman-Weinberg (CW)
scheme [1,3,7], which imposes the condition

 

d4V

d�4

�����������
� 24�; (1)

where � is the renormalization scale.
In this paper we develop iterative techniques that

uniquely determine leading-logarithm and subsequent-to-
leading-logarithm expansions of the effective potential in
the CW scheme for O�N�-symmetric massless ��4 theory
and for massless scalar QED with a �4 interaction. As
discussed below, the renormalization group (RG) functions
in the CW scheme differ from the known MS scheme RG
functions [7], resulting in nontrivial effects of this scheme
conversion beginning at two-loop order. Although it has
been known for some time that the effective potential is, in
principle, determined by the RG equation [1], two-loop
calculations have either failed to make the necessary
scheme conversion [8,9] or have been done explicitly
without using RG methods [3].

In Sec. II we explicitly construct the effective potential
V for the ��4 model, not only up to five-loop order, but
also the N4LL (next-to, next-to, next-to, next-to leading-
logarithm) contributions to V without explicit evaluation of
any diagrams, simply by applying the RG equation in

conjunction with the CW renormalization scheme, thereby
realizing the result of Ref. [1].1

In Sec. III we extend our analysis to massless scalar
QED with a �4 interaction, a theory which contains two
couplings. The results are quite similar to the ��4 sce-
nario; iterative methods are developed to determine the
scalar-field effective potential in terms of the RG functions
in the CW scheme. The presence of multiple couplings
requires the use of multiscale RG methods [11,12] to
convert the RG coefficients to the CW scheme.

II. MASSLESS O�N�-SYMMETRIC ��4 THEORY

In O�N�-symmetric massless ��4 theory, the effective
potential in the CW scheme takes the form

 V��;�;�� �
X1
n�0

Xn
m�0

�n�1TnmLm�4 (2)

when computed in perturbation theory, where we have
defined

 L � log
�
�2

�2

�
: (3)

Since the renormalization scale� is unphysical, changes in
� must be compensated for by changes in � and �; this
leads to the renormalization group equation

 

�
�

@
@�
� ����

@
@�
� �����

@
@�

�
V��;�;�� � 0 (4)

1The relation between V and the RG equation appearing in
Ref. [1] is further analyzed in Ref. [10], where the importance of
fixing the constants Tn0 appearing in Eq. (2) is emphasized.
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where

 ���� � �
d�
d�
�
X1
k�2

bk�k; (5)

 ���� �
�
�
d�
d�
�
X1
k�1

gk�k: (6)

The renormalization group equation (4) can be used
[5,13] to sequentially sum the logarithms appearing in
Eq. (2); that is, if we rewrite Eq. (2) as

 V��;�;�� �
X1
n�0

�n�1Sn��L��4 (7)

where

 Sn��L� �
X1
m�0

Tn�mm��L�m; (8)

then the functions Sn��� are determined by Eq. (4), pro-
vided we impose the boundary condition Sn�0� � Tn0.
More explicitly, we write Eqs. (4)–(7) as
 

0 �
X1
k�0

��1� �g1�� g2�
2 � . . .��2�k�2S0k���

� �b2�2 � b3�3 � . . .��k��k� 1�Sk��� � �S0k����

� 4�g1�� g2�2 � . . .��k�1Sk���; (9)

so that to order �2, and, in general, to order �n�2, we,
respectively, find that

 

�
��2� b2��

d
d�
� �b2 � 4g1�

�
S0 � 0; (10)

 

0 �
�
��2� b2��

d
d�
� �n� 1�b2 � 4g1

�
Sn

�
Xn�1

m�0

�
�2gn�m � bn�2 �m��

d
d�

� ��m� 1�bn�2�m � 4gn�1�m�

�
Sm: (11)

In general, if Eq. (9) is satisfied at order �n�2, Sn���
satisfies the differential equation (11) whose solution re-
quires that we know Sm��� (m � 0; 1; . . . n� 1), bm (m �
2; . . . n� 2), gm (m � 1; . . . n� 1), and the boundary con-
dition Sn�0� � Tn0. In other words, Sn��� is governed by
coupled differential equations which depend upon the n�
1-loop RG coefficients. It is important to note that the RG
equation by itself does not determine the boundary con-
ditions Tn0; these will be seen to be determined by the CW
renormalization condition.

The solutions for S0 and S1 are

 S0��� �
T00

w
; (12)

 S1��� � �
4g2T00

b2w
�

4g2T00 � b2T10

b2w2 �
b3T00

b2w2 logw;

(13)

where w � 1� b2

2 � and g1 � 0 for the ��4 model. As
suggested by (12) and (13), the explicit solutions to
Eqs. (10) and (11) take the form of polynomials in w and
logw:

 Sn��� �
1

b2

Xn�1

i�1

Xi�1

j�0

�ni;j
�logw�j

wi
: (14)

Expressions for the coefficients �ni;j up to n � 2 are given
in Appendix A in terms of a recursion relation. Appendix A
also demonstrates that a partial summation of the recursion
relation is possible.

If V is computed so that Eq. (1) is satisfied, then upon
substituting Eq. (7) into Eq. (1), we find that

 24� �
X1
k�0

�k�1

�
16�4 d

4

d�4 Sk�0� � 80�3 d
3

d�3 Sk�0�

� 140�2 d
2

d�2 Sk�0� � 100�
d
d�
Sk�0� � 24Sk�0�

�
:

(15)

(We note that L � 0 if � � �.) It follows from Eq. (15)
that for the CW renormalization scheme

 S0�0� � T00 � 1; (16)

 

0 � 100S00�0� � 24S1�0� � 50b2T00 � 24T10 ) T10

� �
25

12
b2; (17)

 0 � 140S000 �0� � 100S01�0� � 24S2�0�

� 12T20 � 50b2T10 � �35b2
2 � 25b3 � 100g2�T00;

(18)

 

0 � 80S0000 �0� � 140S001 �0� � 100S02�0� � 24S3�0�

� �60b3
2 � 175b2b3 � 50b4 � 610b2g2 � 200g3�T00

�

�
210b3

2 � 100b3 � 48
b4

b2
� 200g2 � 48

g3

b2

�
48

b2
�b4 � g3�

�
T10 � 150b2T20 � 24T30; (19)

etc.; in general, by having Eq. (15) satisfied at each order in
� we end up with
 

16
d4

d�4 Sk�0� � 80
d3

d�3 Sk�1�0� � 140
d2

d�2 Sk�2�0�

� 100
d
d�
Sk�3�0� � 24Sk�4�0� � 0 �k � 0; 1; 2 . . .�:

(20)
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Consequently, the (n� 1-loop) boundary condition
Sn�0� � Tn0 is determined iteratively by lower-order re-
sults via Eq. (20); that is, once Sk��� . . . Sk�3��� are known,
Sk�4�0� � Tk�40 is fixed by Eq. (20). Hence V is deter-
mined entirely by the renormalization group functions
����, ���� when employing the CW renormalization con-
dition of Eq. (1). It is not apparent how Tn0 can be deter-
mined in any other scheme except by relating that scheme
to the CW scheme.

However, the renormalization group functions are gen-
erally computed in the MS renormalization scheme, being
given up to five-loop order in Ref. [14]. To relate the
renormalization group functions in these two schemes,
we note, following Ref. [7], that in the MS scheme the
form of the effective potential is much the same as that of
Eq. (2),

 V��;�; ~�� �
X1
n�0

Xn
m�0

�n�1 ~Tnm ~Lm�4 (21)

where now

 

~L � log
�
��2

~�2

�
: (22)

Upon comparing Eqs. (3) and (22), the mass scale ~�2 in the
MS scheme can be related to the mass scale �2 in the
scheme of Eq. (1) by

 ~� � �1=2�: (23)

Consequently, d�
d ~� � ��1=2 � ��3=2

2
~���� where ~���� �

~� d�
d ~� , �~���� � ~�d�

d ~� , and thus [7]

 ���� �
~����

1�
~����
2�

; (24)

 ���� �
~����

1�
~����
2�

(25)

relate the renormalization group functions in the two
schemes. Knowing ~���� and ~���� in the MS renormaliza-
tion scheme thus determines ���� and ���� in the CW
renormalization scheme [Eq. (1)] and hence V can be
determined entirely from ~���� and ~����. In particular, if
~���� � ~b2�

2 � ~b3�
3 � . . . , ~���� � ~g1�� ~g2�

2 � . . . ,
then Eqs. (24) and (25) can be expanded to convert the
five-loop MS-scheme renormalization group functions of
[14]. The explicit results to three-loop order (the first order
at which the conversion of the anomalous dimension is
nontrivial) are

 b2 � ~b2; (26)

 b3 � ~b3 �
1
2
~b2

2; (27)

 b4 � ~b4 � ~b2
~b3 �

1
4
~b3

2; (28)

 g1 � ~g1 � 0; (29)

 g2 � ~g2; (30)

 g3 � ~g3 �
1
2
~b2 ~g2: (31)

The results up to five-loop order (or indeed any desired
order) are easily obtained.

The MS-scheme RG coefficients for theO�N� version of
the ��4 model are known to five-loop order [14]; to
establish our conventions their values to three-loop order
are

 

~b 2 �
N � 8

2�2 ; (32)

 

~b 3 � �
3�3N � 14�

4�4 ; (33)

 

~b 4 �
33N2 � 922N � 2960� 96�5N � 22�	�3�

64�6
; (34)

 

~g 1 � 0; (35)

 ~g 2 � �
N � 2

16�4 ; (36)

 ~g 3 �
�N � 2��N � 8�

128�6
: (37)

The sum of all leading-logarithm (LL) and next-to-lead-
ing-logarithm (NLL) contributions to V is given by

 VLL�NLL � ��S0��L� � �S1��L���4 (38)

where S0 and S1 are completely determined by Eqs. (12),
(13), (16), (17), (26), (27), (30), (32), (33), and (36). We
can then recover the complete two-loop CW-scheme result
for V computed explicitly in Ref. [3] upon expanding S0

and S1 to terms quadratic in L � log�
2

�2 and calculating T20

via (18). It should be noted that the two-loop CW-scheme
result [3] does not satisfy the RG equation with MS co-
efficients; if one solves the RG equation with MS-scheme
RG functions, it would disagree with the explicit two-loop
calculation.

As noted earlier, S4 requires knowledge of the renor-
malization group functions to five-loop order, and hence S4

is the highest-order term in the expansion (7) that can be
determined with current knowledge of the renormalization
group functions in the massless O�N� theory [14]. The
solutions S0, S1, S2, S3, and S4 contain the boundary-
condition coefficients Tn0 for n � 4. These five coeffi-
cients are determined by the set of five equations (16)–
(20) with k � 0. Once these coefficients are determined,
the N4LL expression for the effective potential

 VN4LL �
X4

n�0

�n�1Sn��L��
4 (39)
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is expanded up to fifth order in L to obtain the five-loop
perturbative coefficients Tnm for 0 � n � 5 and 0<m �
5. The remaining five-loop coefficient T50 � S5�0� is de-
termined via (20) with k � 1. We present our determina-
tion of the explicit values for the perturbative coefficients
to three-loop order (one order higher than the CW-scheme

calculation of Ref. [3]),

 T00 � 1; (40)

 T10 � �
25�N � 8�

24�2 ; T11 �
N � 8

4�2 ; (41)

 T20 �
5�17N2 � 347N � 1418�

72�4 ;

T21 � �
11N2 � 206N � 836

24�4 ; T22 �
�N � 8�2

16�4 ;

(42)

 T30 � �
5�784N3 � 26 305N2 � �251 338� 7200	�3��N � 694 032� 31 680	�3��

2304�6
; (43)

 T31 �
296N3 � 9425N2 � �87 242� 1440	�3��N � 239 376� 6336	�3�

384�6
; (44)

 T32 � �
�N � 8��10N2 � 209N � 858�

64�6
; T33 �

�N � 8�3

64�6
: (45)

The results (40)–(42) are in agreement with the explicit
two-loop calculation [3]. As mentioned earlier, the corre-
sponding expression S2��� used to obtain these coefficients
is given in Appendix A. Although the analytic expressions
for the remaining coefficients to five-loop order are too
lengthy to be presented, we give their numerical values for
N � 1 (simple scalar-field theory) and N � 4 (the scalar-
field theory projection of the standard model) in Tables I
and II.

In the next section, we examine how the methods devel-
oped for massless scalar-field theory can be extended to
massless scalar electrodynamics, a theory with multiple
couplings.

III. MASSLESS SCALAR ELECTRODYNAMICS

Massless scalar quantum electrodynamics (MSQED)
has the Lagrangian
 

L �
1

2
��@� � ieA���

	���@� � ieA����

�
1

4
�@�A
 � @
A��2 �

g
4!
��	��2: (46)

The effective potential V��� in this model can be com-

puted perturbatively in a variety of ways [1–4,15]. The
effective action for MSQED has the expansion
 

� �
Z
d4x

�
�V��� �

1

4
H���F�
F

�


�
1

2
Z����@� � ieA���	�@� � ieA���� . . .

�
: (47)

In the CW renormalization condition [1]

 

d4V���

d�4

�����������
� g; (48)

 H���j��� � 1 � Z���j���; (49)

one finds a perturbative expansion for V��� of the form

 V�g; �;�;mu� �
�X1
n�1

Xn�k
r�0

X1
k�0

Tn�k�r;r;kg
n�k�r�rLk

�
�4;

(50)

 L � log
�
�2

�2

�
; (51)

where � � e2, and �2 is the RG scale appearing in

TABLE II. Five-loop perturbative coefficients for N � 1 and N � 4.

T50 T51 T52 T53 T54 T55

N � 1 �14:06 6.407 �1:362 0.1744 �1:404
 10�2 6:158
 10�4

N � 4 �50:09 23.20 �5:065 0.6709 �5:631
 10�2 2:595
 10�3

TABLE I. Four-loop perturbative coefficients for N � 1 and
N � 4.

T40 T41 T42 T43 T44

N � 1 5.218 �2:277 0.4457 �4:865
 10�2 2:701
 10�3

N � 4 14.59 �6:477 1.304 �0:1475 8:537
 10�3
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Eq. (48). The effective potential satisfies the RG equation
 

�
dV
d�
� 0 �

�
�

@
@�
� �g

@
@g
� ��

@
@�
� ��

@
@�

�


 V�g; �;�;�� � DV: (52)

Here, �g, ��, and � are the renormalization group func-
tions

 �g�g; �� � �
dg
d�
�
X1
n�2

�gn; �gn �
Xn
r�0

bgn�r;rgn�r�r;

(53)

 ���g; �� � �
d�
d�
�
X1
n�2

��n ; ��n �
Xn
r�0

b�n�r;rgn�r�r;

(54)

 ��g; �� �
�
�
d�
d�
�
X1
n�1

�n; �n �
Xn
r�0

�n�r;rgn�r�r:

(55)

In the previous section it was shown that the effective
potential in an O�N�-symmetric massless ��4 theory is
uniquely determined by the RG equation in the CW
scheme. We now extend this analysis to deal with the
situation occurring in MSQED, where two couplings g
and � occur. As shown below, there are two crucial dis-
tinctions between the single- and multiple-coupling situ-
ations. First, the coupled ordinary differential equations
(11) get replaced by coupled partial differential equations.
Second, the conversion of the RG functions from the MS
scheme to the CW scheme requires use of multiscale RG
methods [11,12].

We now proceed to show how, together, Eqs. (48) and
(52) again determine V without the calculation of addi-
tional Feynman diagrams. We first define

 pkn�g; �� �
Xn
r�0

Tn�r;r;kgn�r�r �n � k� 1�: (56)

As a result, Eq. (50) can be written

 V�g; �;�;�� �
X1
n�1

Xn�1

k�0

pkn�g; ��Lk�4; (57)

with the contributions

 VLL �
X1
k�0

pkk�1L
k�4; (58)

 VNLL �
X1
k�0

pkk�2L
k�4 . . . ; (59)

 VNpLL �
X1
k�0

pkk�p�1L
k�4; (60)

giving the leading-log, next-to-leading-log, etc. corrections
to V.

First, we find that substitution of (57) into (48) results in
the condition

 24p0
n � 100p1

n � 280p2
n � 480p3

n � 384p4
n � g (61)

upon noting that if � � �, then L � 0. Recalling that
pkn � 0 if n < k� 1, we see that if n � 1, Eq. (61) leads to

 p0
1 �

g
24
; (62)

the tree-level result.
We now substitute Eqs. (53)–(55) and (57) into Eq. (52)

to obtain
 X1
n�1

Xn�1

k�0

�
�2kpknL

k�1 �
X1
m�2

�
�gm

@pkn
@g
� ��m

@pkn
@�

�
Lk

�
X1
m�1

�4�mp
k
nL

k � 2k�mp
k
nL

k�1�

�
�4 � 0: (63)

Since pkn,�gn,��n , and �n are all polynomials of degree n in
g and �, we can obtain coupled first-order partial differ-
ential equations that express each of the pkn in terms of �gn,
��n , and �n. This is done by requiring that Eq. (63) be
satisfied order by order in Lk and in

Pn
r�0 crg

n�r�r. These
equations are first-order partial differential equations
whose boundary conditions are provided by Eq. (61).

For example, at second order in the couplings and order
zero in L, Eq. (63) leads to

 � 2p1
2 � �

g
2

@p0
1

@g
� ��2

@p0
1

@�
� 4�1p

0
1 � 0: (64)

This fixes p1
2, since p0

1 is given by Eq. (62). Now, at third
order in the couplings and order L, we see from Eq. (63)
that

 � 4p2
3 � �

g
2

@p1
2

@g
� ��2

@p1
2

@�
� 4�1p

1
2 � 0: (65)

Since p1
2 has been determined, Eq. (65) serves to fix p2

3. In
general, at order �n� 2� in the couplings, and order n in L,
we find that

 pn�1
n�2 �

1

2�n� 1�

�
�g2

@
@g
� ��2

@
@�
� 4�1

�
pnn�1; (66)

so that all of the contributions to VLL in Eq. (58) can be
calculated, provided we use the expression for p0

1 given by
Eq. (62).

Since we now know p1
2, we can set n � 2 in Eq. (61),

leading to

 p0
2 � �

25

6
p1

2: (67)

This serves to start the sequence p0
2, p1

3 . . . , etc. Upon
looking at terms in Eq. (63) that are of order n� 3 in the
couplings and n in L, we have the recursion relation
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 �pnn�2 � �1pnn�1� �
1

2n

��
�g2

@
@g
� ��2

@
@�
� 4�1

�
pn�1
n�1

�

�
�g3

@
@g
� ��3

@
@�
� 4�2

�
pn�1
n

�
;

(68)

which finally fixes all contributions to VNLL in Eq. (59) in
terms of �g2 , �g3 , ��2 , ��3 , �1, and �2.

It is evident that VNPLL involves the polynomials
pnn�p�1. From Eq. (61), p0

p�1 can be found once
p1
p�1 . . .p4

p�1 have been computed in the course of deter-
mining VNp�1LL . . .VLL. Having fixed p0

p�1 in this way, all
subsequent contributions to VNPLL are determined in terms
of the polynomials pnn�p . . .pnn�1 as well as �g2 . . .�gp�1,
��2 . . .��p�1, �1 . . .�p, by considering those terms in
Eq. (63) that are of order n� p� 2 in the coupling, and
order n in L. The effective potential for massless scalar
QED is therefore completely determined by the RG func-
tions in the CW renormalization scheme. In Appendix B,
the sums appearing in Eqs. (58) and (59) for VLL and VNLL

are evaluated in closed form using a variant of the method
of characteristics.

As in the case of O�N�-symmetric massless ��4 theory,
it is necessary to convert the RG functions from the MS
scheme to the CW scheme. However, because there are two
logarithms log�g�2= ~�2� and log���2= ~�2� appearing in
the MS-scheme perturbative expansion, a simple rescaling
of the renormalization scale ~� as in (23) cannot convert
these two logarithms into the single logarithm (51).

The presence of multiple incompatible logarithmic
scales is known to cause difficulties when attempting to
solve the RG equation in other applications. To circumvent
these problems, the concept of multiple renormalization
scales, one scale for each appearance of the traditional MS
RG scale in the Lagrangian, was first considered in [11].
This method was refined in [12] by associating a renor-
malization scale with each kinetic term in the Lagrangian,
which, in the case of massless scalar QED, will introduce
two renormalization scales (�g and ��) resulting in a MS-
scheme perturbation series for the effective potential con-
taining two logarithms:

 Lg � log
�
g�2

�2
g

�
; L� � log

�
��2

�2
�

�
: (69)

With multiple renormalization scales, there will exist MS-
scheme RG equations and RG functions associated with
each scale [12],

 

�g
dV
d�g
� 0 �

�
�g

@
@�g
� ~�gg

@
@g
� ~��g

@
@�
� ~�g�

@
@�

�
V

� D1V; (70)

 

��
dV
d��

� 0 �
�
��

@
@��

� ~�g�
@
@g
� ~���

@
@�
� ~���

@
@�

�
V

� D2V; (71)

where

 

~�g
g � �g

@g
@�g

; ~�g� � ��
@g
@��

; (72)

 

~��
g � �g

@�
@�g

; ~��� � ��
@�
@��

; (73)

 ~� g� � �g
@�
@�g

; ~��� � ��
@�
@��

: (74)

As outlined in Ref. [12], these multiscale MS-scheme RG
functions can be obtained from the 1= poles in the (multi-
scale) renormalization constants. These multiscale RG
functions can also be determined by reconstructing the
effective potential in the MS scheme from the MS RG
functions and the logarithm-free parts of V; at this stage
the renormalization scale ~� can be split into �g and ��,
allowing for a determination of Eqs. (72)–(74) through the
requirement that V be independent of both �g and �� along
the lines of Ref. [16]. Furthermore, in the limit when the
two scales coincide (�g � �� � ~�), the multiscale MS
RG functions are related to the single-scale MS RG func-
tions ~�g, ~��, and ~� via [12]

 

~� g � ~�gg � ~�g�; ~�� � ~��g � ~���;

~� � ~�g � ~��:
(75)

The RG functions (72)–(74) must also be consistent with
the integrability condition �D1; D2�V � 0; this constraint
combined with the boundary condition (75) may also be
used to determine the multiscale RG functions [12].

It is now evident that the rescalings

 �g �
���
g
p
�; �� �

����
�
p

� (76)

will convert the MS-scheme multiscale logarithms (69)
into the CW-scheme logarithm (51), thereby enabling
scheme conversion. The RG functions in the CW scheme
can then be obtained from (76) combined with

 �g � �
dg
d�
� �

d�g
d�

@g
@�g
��

d��
d�

@g
@��

; (77)

 �� � �
d�
d�
� �

d�g
d�

@�
@�g
��

d��
d�

@�
@��

; (78)

 �� � �
d�
d�
� �

d�g
d�

@�
@�g
��

d��
d�

@�
@��

; (79)

to obtain
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 �g � ~�gg

�
1�

�g

2g

�
� ~�g�

�
1�

��

2�

�
; (80)

 �� � ~��g

�
1�

�g

2g

�
� ~���

�
1�

��

2�

�
; (81)

 � � ~�g

�
1�

�g

2g

�
� ~��

�
1�

��

2�

�
: (82)

The above equations can be solved perturbatively for the
coefficients of the CW-scheme RG functions in terms of
the multiscale MS-scheme RG functions.2 As expected, to
lowest order one finds that the CW-scheme and MS-
scheme RG coefficients coincide so that the effects of
scheme conversion enter at two-loop level.

IV. CONCLUSIONS

In summary, we have developed iterative techniques that
uniquely determine, in terms of MS RG functions, leading-
logarithm and subsequent-to-leading-logarithm expan-
sions of the effective potential in the CW scheme for
massless ��4 scalar-field theory with a global O�N� sym-
metry. In these techniques, the NpLL expression is gov-
erned by a coupled set of first-order ordinary differential
equations containing the p� 1-loop RG coefficients, and
the boundary conditions for this system are determined by
the CW renormalization condition. In this approach, it is
essential to convert the RG functions from the MS scheme
[in which they are known to five-loop order in
O�N�-symmetric massless scalar-field theory] to the CW
scheme.

The methods developed for the scalar field with one
coupling have been extended to massless scalar QED.
The presence of two couplings does not change the essen-
tial features of the analysis; instead of coupled ordinary
differential equations, the NpLL expansions are deter-
mined by systems of first-order partial differential equa-
tions resulting from the RG equation and algebraic
equations arising from the CW renormalization condition.
Similarly, conversion of the RG functions from the MS
scheme to the CW scheme in massless scalar QED is also
more elaborate, and requires the use of multiscale renor-
malization group methods. Although multiscale RG tech-
niques are not widely known, the necessary multiscale RG
functions can either be calculated directly by introducing a
renormalization scale for each kinetic term (and hence
propagator) in the theory and exploiting the usual relation
between the RG functions and the 1= terms in the renor-

malization constants, or they may be reconstructed from
the single-scale MS-scheme RG functions in conjunction
with integrability conditions related to the commutator of
the RG operator associated with each renormalization scale
[11,12].

We would like to extend our methods to computing the
effective potential when the mass of the field � is nonzero.
In particular, our analysis may allow us to correct the two-
loop renormalization group analysis of the standard model
appearing in Ref. [8], which is in disagreement with the
explicit two-loop calculation [17]. It would also be inter-
esting to see if the effective potential in the MS renormal-
ization scheme could be determined uniquely by the
renormalization group functions.
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APPENDIX A: MASSLESS ��4 THEORY

The differential equation (11) establishes a recursive
relation for the Sn��� resulting in solutions of the form

 Sn��� �
1

b2

Xn�1

i�1

Xi�1

j�0

�ni;j
Lj

wi
; (A1)

where w � 1� b2

2 �, � � �L, and L � log�w�.
In terms of this notation, the solution for S0 is

 S0��� �
�0

1;0

b2w
; �0

1;0 � b2T00 � b2; (A2)

and the solution for S1 is

 S1��� �
1

b2

��1
1;0

w
�
�1

2;0

w2 �
�1

2;1L

w2

�
; (A3)

where

 �1
1;0 � �4g2T00; �1

2;0 � b2T10 � 4g2T00;

�1
2;1 � �b3T00:

(A4)

For the higher-order Sn, recursive expressions for �ni;j
provide the most compact form. For example, the solution
for S2 is

 S2��� �
1

b2

��2
1;0

w
�
�2

2;0

w2 �
�2

2;1L

w2 �
�2

3;0

w3 �
�2

3;1L

w3

�
�2

3;2L
2

w3

�
; (A5)

where

2It can be verified that the scalar-field theory scheme conver-
sion results (24) and (25) are obtained from the �! 0 limit of
the MSQED results (80)–(82). In this limit, ~�gg ! ~�, ~�g ! ~�,
and all other multiscale MS RG functions become zero.
Inversion of the resulting expressions �g � ~��1� �g=�2g��
and � � ~��1� �g=�2g�� lead to �g � ~�=�1� ~�=�2g�� and
� � ~�=�1� ~�=�2g��, consistent with Eqs. (24) and (25).
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 �2
1;0 � �

1
2�b3 � 4g2��

1
1;0 � 2T00g3; (A6)

 

�2
2;0 � �fb3�

1
1;0 � 4g2�

1
2;0 � �b3 � 4g2��

1
2;1

� �b4 � b2g2�T00g; (A7)

 �2
2;1 � �4g2�

1
2;1; (A8)

 

�2
3;0 �

1
2f�3b3 � 4g2��

1
1;0 � 8g2�

1
2;0 � �2b3 � 8g2��

1
2;1

� �2b4 � 4g3 � 2b2g2�T00 � 2b2T20g; (A9)

 �2
3;1 � �b3�2�

1
2;0 � �

1
2;1�; (A10)

 �2
3;2 � �b3�1

2;1: (A11)

The differential equation (11) combined with the form of
the solution (A1) can be used to obtain a set of recursion
relations for the coefficients �ni;j. One finds that this pro-
cedure yields
 

0 � b2�j� 1��ni;j�1 � f�n� i� 1�b2 � 4g1g�
n
i;j

�
Xn�1

m�0

�bn�2�m�j� 1��mi;j�1

� �i� 1��b2gn�m � bn�2�m��mi�1;j

� �j� 1��b2gn�m � bn�2�m��
m
i�1;j�1

� �4gn�1�m � �m� i� 1�bn�2�m��
m
i;j�: (A12)

We note that �ni;j � 0 if i > n� 1, j > i� 1, i < 0, or
j < 0. The coefficients for S3 and S4 can be extracted from
the recursion relation (A12) as needed to determine the Tnm
given in Tables I and II. It is immediately apparent that if
i � n� 1 and j � n in Eq. (A12), then

 4g1�nn�1;n � 0; (A13)

and so for consistency g1 � 0, as is already known from
explicit calculation. If now in Eq. (A12) we set i � n� 1,
it follows that

 �nn�1;j�1 � �
�

n
j� 1

�n�1
n;j � �

n�1
n;j�1

�
(A14)

where � � � b3

b2
. Considering values of i less than n� 1

results in a recursion relation that requires knowing b4, g2,
etc.

For j � n� 1, it follows from (A14) that

 �nn�1;n � ��n�1
n;n�1 (A15)

so that

 �nn�1;n � �n�0
1;0 (A16)

where �1
1;0 � b2. As a result, in the expansion of V there is

a contribution

 VI �
1

b2

X1
n�0

�n�1�nn�1;n
Ln

wn�1 (A17)

which is a geometric series whose sum is

 VI �
�
4!

1

w� �b3

b2
log�w�

: (A18)

Consequently, the sum of the contributions that are of
the highest order in L and 1

w at the NnLL order of pertur-
bation theory gives rise to a singularity in V appearing, not
when w � 0, but rather when w� �b3

b2
log�w� � 0.

If now j � n� 2 in (A12), we find that

 �nn�1;n�1 � �
�

n
n� 1

�n�1
n;n�2 � �

n�1
n;n�1

�
(A19)

which implies

 �nn�1;n�1 � �n�
n
�
1

2
�

1

3
� . . .�

1

n

�
� n�n�1�1

2;0

(A20)

where �1
2;0 is given above. Upon expressing

 

1

2
�

1

3
� . . .�

1

n
� lim

x!1

Xn
k�2

Z x

0
yk�1dy

� lim
x!1

Z x

0

y� yn

1� y
dy (A21)

we now find that V has a contribution

 VII �
X1
n�0

�n�1�nn�1;n�1

Ln�1

wn�1 (A22)

which then becomes

 VII �
X1
n�0

�n�1 L
n�1

wn�1 lim
x!1

�
�n�n

Z x

0

y� yn

1� y
dy

� n�n�1�1
2;0

�
: (A23)

Since
P
1
k�0 kx

k�1 � d
dx

P
1
k�0 x

k � 1
�1�x�2 , the sum and in-

tegral in the above can be evaluated in turn, leading to

 VII �
�2

w�w� �b3

b2
logw�

�
�
�
1�

log�1� B�
B

�
� �1

2;0

�

(A24)

where B � �� log�w�
w . Having summed the contributions of

Ln�1

wn�1 in the NnLL contribution to V to all orders to obtain
VII, we again find that V has a peculiar singularity
structure.
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APPENDIX B: MASSLESS SCALAR
ELECTRODYNAMICS

In this appendix we show how the sums appearing in
Eqs. (58) and (59) for VLL and VNLL can be evaluated in
closed form by adapting the method of characteristics
[18,19]. This first entails defining
 

wkn�k� �g�t�; ���t�; t� � exp
�

4
Z t

0
�1� �g���; ������d�

�


 pkn�k� �g�t�; ���t�� (B1)

where

 

d �g�t�
dt

� �g2� �g�t�; ���t��� �g�0� � g�; (B2)

 

d ���t�
dt

� ��2 � �g�t�; ���t��� ���0� � �� (B3)

are characteristic functions.3 From Eqs. (B1)–(B3) it fol-
lows that

 

d
dt
wkn�k� �g; ��; t� �

�
�g2� �g; ���

@
@ �g
� ��2 � �g; ���

@
@ ��

� 4�1� �g; ���
�
wkn�k� �g; ��; t�: (B4)

Together, Eqs. (66) and (B4) show that

 wnn�1� �g; ��; t� �
1

2n

�
�g2� �g; ���

@
@ �g
� ��2 � �g; ���

@
@ ��

� 4�1� �g; ���
�
wn�1
n � �g; ��; t�: (B5)

We now define

 VLL�t� �
X1
n�0

wnn�1� �g�t�; ���t�; t� �Ln�4; (B6)

where

 

�L � log
�
�2

��2�t�

�
(B7)

with

 

d ���t�
dt

� ���t�; ���0� � �: (B8)

From Eqs. (58), (B1)–(B3), and (B6)–(B8) it follows that

 VLL�t � 0� � VLL: (B9)

We see that Eqs. (B4) and (B5) lead to

 wnn�1� �g; ��; t� �
1

2nn!

dn

dtn
w0

1� �g; ��; t� (B10)

so that Eq. (B6) becomes

 VLL�t� �
X1
n�0

�Ln

2nn!

dn

dtn
w0

1� �g�t�; ���t�; t��4

� w0
1

�
�g
�
t�

�L
2

�
; ��
�
t�

�L
2

�
; t�

�L
2

�
: (B11)

Furthermore, Eqs. (B1)–(B3) and (B9) reduce Eq. (B11) to

 VLL � w0
1

�
�g
�
L
2

�
; ��
�
L
2

�
;
L
2

�
�4: (B12)

This coincides with the result appearing in Ref. [5].
Having found this closed-form expression for the

leading-log contribution to V���, we turn to the next-to-
leading-log contribution of Eq. (59). The first step is to
define

 VNLL�t� �
X1
n�0

wnn�2� �g�t�; ���t�; t� �Ln�4: (B13)

We now note that Eqs. (68), (B4), and (B5) together show
that
 

wnn�2 �
1

2n

��
d
dt
wn�1
n�1

�
�

�
�1

�
�g2

@
@ �g
� ��2

@
@ ��
� 4�1

�

�

�
�g3

@
@ �g
� ��3

@
@ ��
� 4�2

��
wn�1
n

�

�
1

2n

�
d
dt
wn�1
n�1 �D�t�w

n�1
n

�
; (B14)

where D�t� corresponds to the differential operator acting
upon wn�1

n .
Iterating Eq. (B14), we obtain

 wnn�2 �
1

2n

�
d
dt

�
1

2�n� 1�

�
d
dt
wn�2
n �D�t�wn�2

n�1�

�

�D�t�wn�1
n

�
: (B15)

Repeating this n times and using Eq. (B10), we find

 wnn�2 �
1

2nn!

�
dn

dtn
w0

2 �
dn�1

dtn�1 D�t�w
0
1 �

dn�2

dtn�2 D�t�
d
dt
w0

1

�
dn�3

dtn�3 D�t�
d2

dt2
w0

1 � . . .�D�t�
dn�1

dtn�1 w
0
1

�
:

(B16)

The identity
 

dn

dtn
�fg� �

dn�1

dtn�1

�
f
dg
dt

�
� . . .�

d
dt

�
f
dn�1g

dtn�1

�
� f

dng
dtn

�
dn�1

dtn�1 ��g� ��
dn�1g

dtn�1 ��0 � f� (B17)

converts Eq. (B16) to the form
3Solutions to Eqs. (B2) and (B3) appear in Ref. [1]. They are

easily obtained as b�1;1 � 0.
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 wnn�2 �
1

2nn!

�
dn

dtn
w0

2 �
dn

dtn
� ~Dw0

1� �
~D
dnw0

1

dtn

�
(B18)

where

 

d
dt

~D � D: (B19)

More explicitly, we have

 

~D�t�w0
1� �g�t�; ���t�; t� �

�Z t

0

�
�g3� �g���; ������

@
@ �g�t�

� . . .� 2��1� �g���; �������2
�
d�
�
w0

1� �g�t�; ���t�; t�; (B20)

 

d
dt
� ~D�t�w0

1� �g�t�; ���t�; t�� �
�
�g3� �g�t�; ���t��

@
@ �g�t�

� . . .� 2��1� �g�t�; ���t���2
�
w0

1� �g�t�; ���t�; t�

�

�Z t

0

�
�g3� �g���; ������

@
@ �g�t�

� . . .� 2��1� �g���; �������2
�
d�
��
d
dt
w0

1� �g�t�; ���t�; t�
�
: (B21)

Equations (B20) and (B21) ensure consistency between
Eqs. (B16) and (B18). In Eqs. (B20) and (B21), �g and ��
are evaluated at t when appearing in the arguments of w0

1.
Derivatives with respect to �g and �� have these functions
evaluated at the scale t. In Eq. (B21), derivatives with
respect to t acting on w0

1� �g�t�; ���t�; t� do so prior to func-
tional derivatives @=@ �g�t�, @=@ ���t�; the last step in
Eq. (B21) is the integral over �.

Equations (B13) and (B18) lead to
 

VNLL�t� � w0
2

�
�g
�
t�

�L
2

�
; ��
�
t�

�L
2

�
; t�

�L
2

�

� ~D
�
t�

�L
2

�
w0

1

�
�g
�
t�

�L
2

�
; ��
�
t�

�L
2

�
; t�

�L
2

�

� ~D�t�w0
1

�
�g
�
t�

�L
2

�
; ��
�
t�

�L
2

�
; t�

�L
2

�
: (B22)

It is evident that

 VNLL�t � 0� � VNLL; (B23)

and so VNLL of Eq. (59) is

 VNLL �

�
w0

2

�
�g
�
L
2

�
; ��
�
L
2

�
;
L
2

�

� ~D
�
L
2

�
w0

1

�
�g
�
L
2

�
; ��
�
L
2

�
;
L
2

��
: (B24)

[Since ~D0�t� � D�t�, we can set ~D�0� � 0.]
As a result, we see that if�g2 ,�g3 ,��2 ,��3 , �1, �2, p0

1, and
p0

2 are known, then VNLL is fully determined. It is seen that
this approach can also be used to find closed-form expres-
sions for VNPLL (p � 2).
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