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We investigate properties of a quasilocal mass in a higher-dimensional spacetime having symmetries
corresponding to the isomertries of an (n� 2)-dimensional maximally symmetric space in Einstein-
Gauss-Bonnet gravity in the presence of a cosmological constant. We assume that the Gauss-Bonnet
coupling constant is non-negative. The quasilocal mass was recently defined by one of the authors as a
counterpart of the Misner-Sharp quasilocal mass in general relativity. The quasilocal mass is found to be a
quasilocal conserved charge associated with a locally conserved current constructed from the generalized
Kodama vector and exhibits the unified first law corresponding to the energy-balance law. In the
asymptotically flat case, it converges to the Arnowitt-Deser-Misner mass at spacelike infinity, while it
converges to the Deser-Tekin and Padilla mass at infinity in the case of asymptotically anti-de Sitter.
Under the dominant energy condition, we show the monotonicity of the quasilocal mass for any k, while
the positivity on an untrapped hypersurface with a regular center is shown for k � 1 and for k � 0 with an
additional condition, where k � �1, 0 is the constant sectional curvature of each spatial section of
equipotential surfaces. Under a special relation between coupling constants, positivity of the quasilocal
mass is shown for any k without assumptions above. We also classify all the vacuum solutions by utilizing
the generalized Kodama vector. Lastly, several conjectures on further generalization of the quasilocal
mass in Lovelock gravity are proposed.
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I. INTRODUCTION

In a general theory admitting a diffeomorphism invari-
ance, the concept of local energy density becomes mean-
ingless. Expressions for mass-energy-momentum
pseudotensors explicitly depending only on the metric
and its first derivatives will vanish at any point of the
spacetime in the locally flat coordinates [1]. This difficulty
comes about as a natural result of the strong equivalence
principle. Thus, we face a formidable issue arising in any
theory of gravity derived by a diffeomorphism invariant
Lagrangian. In spite of a considerable number of attempts
to formulate a meaningful local energy density (see, e.g.,
[2,3] and references therein), we have not yet obtained an
acceptable resolution to this problem. Localizing and iden-
tifying the gravitational mass-energy-momentum remains
puzzling.

There exist, however, at least two satisfactory notions of
total mass-energy (simply mass, hereafter) describing an
isolated system in general relativity in four dimensions,
that is the Arnowitt-Deser-Misner (ADM) mass [1,4] and
the Bondi mass [5]. Accordingly, it is tempting to employ
the quasilocal mass [3,6,7], which is defined quasilocally
on the boundary of a given spacetime. For a finite region, it
contains a boundary term, which determines the boundary
conditions and the value of a quasilocal mass.

From past studies of the quasilocal mass, it is suggested
that a well-defined quasilocal mass should posses the five

properties shown below [8]. (See [3] for a review.)
(i) When a two-sphere shrinks toward a point, the point
in a spacetime must have zero mass. (ii) A metric two-
sphere in Minkowski spacetime should have zero mass.
(iii) In asymptotically flat spacetimes, it gives the ADM
mass and the Bondi mass at spacelike and null infinities,
respectively. (iv) In spherically symmetric spacetimes,
there exists a mass function, to which any definition of
mass should reduce in the spherically symmetric case. In
particular, in Schwarzschild spacetime with the ADM or
Bondi mass M, the mass function should give M. (v) If a
two-sphere S is completely contained in the interior of
another two-sphere S0, then the mass on S0 should be equal
to or greater than the mass on S.

In the spherically symmetric case, the Misner-Sharp
mass is widely accepted as a well-posed quasilocal mass
in general relativity [6].1 It satisfies the above conditions
except for condition (v). However, the condition (v) can be
weakened to be satisfied only in the untrapped regions, and
then the Misner-Sharp mass satisfies all the above condi-
tions. In spherically symmetric spacetimes, a very useful
formulation of the basic equations in terms of the Misner-
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1Here it should be noted that we have another candidate for the
quasilocal mass called the Brown-York mass [7]. It is intimately
related to the Hamilton-Jacobi method and directly derived by
the gravitational Hamiltonian. The Brown-York mass satisfies
the conditions (i)–(iii); however, it does not reproduce the
Misner-Sharp mass in the spherically symmetric case. Thus,
the uniqueness of the mass function in condition (iv) is still an
open problem up to now. Refer to [9] for a recent study.
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Sharp mass is available, with which it was shown that the
Misner-Sharp mass is intimately related to the dynamical
aspects of black holes and singularities [10]. A general-
ization of the Misner-Sharp mass in the presence of a
cosmological constant � has also been considered, which
inherits characteristics from the Misner-Sharp mass
although the asymptotic structure of the spacetime is dif-
ferent from the case without � [11].

In recent years, it has been of great importance to
analyze physics in higher-dimensional spacetimes. String
theory is the most promising theory for unifying funda-
mental forces in nature and reduces to the higher-
dimensional general relativity at the tree level. Even at
the classical level, higher-dimensional gravity shows quite
different aspects from that in four dimensions. Studies of
arbitrary dimensional gravity will reveal the characteristics
of four-dimensional gravity.

In arbitrary dimensions, the most general action con-
structed from the Riemann curvature tensor and its con-
tractions giving rise to the second-order quasilinear field
equations is given by the Lovelock polynomial [12]. In
four dimensions, it reduces to the Einstein-Hilbert action
with �. Einstein-Gauss-Bonnet gravity, whose Lagrangian
includes up to the quadratic term, arises in the low-energy
limit of heterotic string theory as the higher curvature
correction to general relativity [13].

The generalized Misner-Sharp mass in Einstein-Gauss-
Bonnet gravity was recently proposed by one of the present
authors [14]. In the vacuum case without �, it reduces to
the higher-dimensional ADM mass in the unique spheri-
cally symmetric solution obtained by Boulware and Deser,
and independently by Wheeler [15,16]. Recently, it was
shown that more pathological massive naked singularities,
which are ruled out in general relativity, can be formed in
five dimensions from the gravitational collapse of a physi-
cally reasonable matter in Einstein-Gauss-Bonnet gravity
[14,17]. In their studies, the generalized Misner-Sharp
mass was adopted to evaluate the mass of the singularities;
however, the validity of that quasilocal mass has not been
addressed so much. The main purpose of the present paper
is to fill this gap.

In this paper, we show that the generalized Misner-Sharp
mass defined in [14] is a natural counterpart of the Misner-
Sharp mass in general relativity. Our quasilocal mass
agrees with a quasilocal conserved charge associated
with a locally conserved current constructed from the
generalized Kodama vector. Using the simple mass varia-
tion formulas of the basic equations, we show that our
quasilocal mass inherits characteristics from the Misner-
Sharp mass such as monotonicity or positivity.

The outline of the present paper is as follows. Basic
equations are given in the next section. In Sec. III, we
discuss the relation between the generalized Kodama vec-
tor and our quasilocal mass. Section IV is devoted to
investigating the properties of the quasilocal mass. Our

conclusions and discussions are summarized in Sec. V, in
which we propose a further generalization of the quasilocal
mass in general Lovelock gravity and some associated
conjectures. Expressions of curvature tensors are given in
the Appendix. Conventions of curvature tensors are
R����V� :� �r�;r��V� and R�� :� R����. The
Minkowski metric is taken to be the mostly plus sign,
and Roman indices run over all spacetime indices. We
adopt units in which only the n-dimensional gravitational
constant Gn retained.

II. BASIC EQUATIONS

We begin with a brief description of Einstein-Gauss-
Bonnet gravity in the presence of a cosmological constant.
The action in the n�� 5�-dimensional spacetime is given
by

 S �
Z

dnx
�������
�g
p

�
1

2�2
n
�R� 2�	 �LGB�

�
	 Smatter;

(2.1)

where �n :�
�������������
8�Gn
p

and R and � are the n-dimensional
Ricci scalar and the cosmological constant, respectively.
Smatter in Eq. (2.1) is the action for matter fields. The Gauss-
Bonnet term LGB comprises the combination of the Ricci
scalar, Ricci tensor R��, and Riemann tensor R���� as

 LGB :� R2 � 4R��R
�� 	 R����R

����: (2.2)

In the four-dimensional spacetime, the Gauss-Bonnet term
does not contribute to the field equations since it becomes a
total derivative. � is the coupling constant of the Gauss-
Bonnet term. This type of action is derived in the low-
energy limit of heterotic string theory [13]. In that case, �
is regarded as the inverse string tension and positive defi-
nite. Thus, we also assume � � 0 throughout this paper.
The gravitational equation of the action (2.1) is

 G�
� 	 �H

�
� 	���� � �2

nT
�
�; (2.3)

where

 G�� :� R�� �
1
2g��R; (2.4)

 H�� :� 2�RR�� � 2R��R
�
� � 2R�	R���	

	 R��	
R��	
� �
1
2g��LGB; (2.5)

and T�� is the energy-momentum tensor for matter fields
obtained from Smatter. The field Eq. (2.3) contains up to the
second derivatives of the metric.

Suppose the n-dimensional spacetime �Mn; g��� to be a
warped product of an (n� 2)-dimensional constant curva-
ture space �Kn�2; 
ij� and a two-dimensional orbit space-
time �M2; gab� under the isometries of �Kn�2; 
ij�. Namely,
the line element is given by

 g��dx�dx� � gab�y�dyadyb 	 r2�y�
ij�z�dzidzj; (2.6)
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where a, b � 0, 1; i, j � 2; . . . ; n� 1. Here r is a scalar on
�M2; gab� with r � 0 defining its boundary and 
ij is the
unit metric on �Kn�2; 
ij� with its sectional curvature k �
�1, 0. We assume that �Mn; g��� is strongly causal and
�Kn�2; 
ij� is compact. Curvature tensors in this spacetime
are given in the Appendix.

The generalized Misner-Sharp mass in Einstein-Gauss-
Bonnet gravity is a scalar function on �M2; gab� with the
dimension of mass such that

 m :�
�n� 2�Vkn�2

2�2
n

f�~�rn�1 	 rn�3�k� �Dr�2�

	 ~�rn�5�k� �Dr�2�2g; (2.7)

where ~� :� �n� 3��n� 4��, ~� :� 2�=��n� 1��n� 2��,
Da is a metric compatible linear connection on �M2; gab�
and �Dr�2 :� gab�Dar��Dbr� [14]. Vkn�2 denotes the area
of Kn�2. In the four-dimensional spherically symmetric
case without a cosmological constant, m reduces to the
Misner-Sharp quasilocal mass [6].

The line element may be written locally in the double-
null coordinates as

 d s2 � �2e�f�u;v�dudv	 r2�u; v�
ijdzidzj: (2.8)

Null vectors �@=@u� and �@=@v� are taken to be future
pointing. The expansions of two independent future-
directed radial null geodesics are defined as

 �	 :� �n� 2�r�1r;v; (2.9)

 �� :� �n� 2�r�1r;u: (2.10)

Here we give some definitions for later investigations.
Definition 1: A trapped (untrapped) surface is an

(n� 2)-surface with �	�� > �<�0.
Definition 2: A trapped (untrapped) region is the union

of all trapped (untrapped) surfaces.

Definition 3: A marginal surface is an (n� 2)-surface
with �	�� � 0.

Observe that the value of �	 or �� is not a geometrical
invariant because the null coordinates u and v have a
rescaling freedom u! U�u�, v! V�v�. An invariant
combination is ef�	��. The function r, on the other
hand, has a geometrical meaning as an areal radius: the
area of the symmetric subspace is given by

 A :� Vkn�2r
n�2: (2.11)

Then, the quasilocal mass m is expressed as
 

m�
�n� 2�Vkn�2

2�2
n

rn�3

�
�~�r2	

�
k	

2

�n� 2�2
r2ef�	��

�

	 ~�r�2

�
k	

2

�n� 2�2
r2ef�	��

�
2
�
: (2.12)

The most general material stress-energy tensor T�� is
given by

 T��dx�dx� � Tuu�u; v�du2 	 2Tuv�u; v�dudv

	 Tvv�u; v�dv
2 	 p�u; v�r2
ijdz

idzj:

(2.13)

By making use of the expressions given in the Appendix,
the governing Eq. (2.3) is given by

 �r;uu 	 f;ur;u�
�

1	
2 ~�

r2 �k	 2efr;ur;v�
�
� �

�2
n

n� 2
rTuu;

(2.14)

 �r;vv 	 f;vr;v�
�

1	
2 ~�

r2 �k	 2efr;ur;v�
�
� �

�2
n

n� 2
rTvv;

(2.15)

 

rr;uv 	 �n� 3�r;ur;v 	
n� 3

2
ke�f 	

~�

2r2 ��n� 5�k2e�f 	 4rr;uv�k	 2efr;ur;v� 	 4�n� 5�r;ur;v�k	 efr;ur;v��

�
n� 1

2
~�r2e�f �

�2
n

n� 2
r2Tuv; (2.16)

 

r2f;uv 	 2�n� 3�r;ur;v 	 k�n� 3�e�f � �n� 4�rr;uv 	
2 ~�e�f

r2 �ef�k	 2efr;ur;v�fr2f;uv � �n� 8�rr;uvg

	 2r2e2f�f;ur;ur;vv 	 f;vr;vr;uu� 	 �n� 5��k	 2efr;ur;v�
2 	 2r2e2ffr;uur;vv 	 f;uf;vr;ur;v � �r;uv�

2g�

� �2
nr

2�Tuv 	 e
�fp�: (2.17)

The variation of m is determined by these equations as

 m;v �
1

n� 2
Vkn�2e

frn�1�Tuv�	 � Tvv���; (2.18)

 m;u �
1

n� 2
Vkn�2e

frn�1�Tuv�� � Tuu�	�: (2.19)

These variation formulas are exactly the same as those in
general relativity, which enables us to prove most of the
lemmas and propositions in this paper in close parallel with
the general relativistic case.

Instead of specifying the matter fields, energy conditions
are imposed in the present paper. The null energy condition
for the matter field implies
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 Tuu � 0; Tvv � 0; (2.20)

while the dominant energy condition implies

 Tuu � 0; Tvv � 0; Tuv � 0; (2.21)

which assures that a causal observer measures the non-
negative energy density and the energy flux is a future-
directed causal vector.

III. GENERALIZED KODAMA VECTOR AND
QUASILOCAL MASS

In this section, we explicitly show that m is a quasilocal
conserved quantity associated with a locally conserved
current. First, we give the definition of the generalized
Kodama vector [18,19],

 K� :� ����r�r; (3.1)

where ��� � �ab�dx
a���dx

b��, and �ab is a volume ele-
ment of �M2; gab�. In the double-null coordinates (2.8), we
have �uv � e�f and �uv � �ef. The Kodama vector was
originally introduced in four-dimensional spherically sym-
metric spacetimes [18].

In the double-null coordinates, we have

 K� @
@x�

� ef
�
r;v

@
@u
� r;u

@
@v

�
: (3.2)

It follows immediately that K� is tangent to fr � constg
surfaces, i.e., K� and r�r are orthogonal

 K�r�r � 0: (3.3)

This feature illustrates that K� is the analogue of the
Hamiltonian vector field with an energy function r on a
symplectic manifold. It is also shown that

 K�K� � ��rr�
2 � 2efr;vr;u; (3.4)

so that K� is timelike and spacelike in the untrapped and
trapped region, respectively, and it is null on marginal
surfaces. In the untrapped region, K� generates a preferred
time evolution. The minus sign in the right side of (3.1)
ensures that K� is future directed in the untrapped region.

Since two orthogonal null vectors are proportional to
each other, we have

 K� � r�r; (3.5)

on marginal surfaces, where the proportionality factor has
been determined so as to be consistent with (3.1).

By definition, we readily see thatK� is a local conserved
current

 r�K� � 0: (3.6)

It is also shown by direct calculations that

 G��r
�K� � 0; (3.7)

 H��r
�K� � 0 (3.8)

hold, where we have used expressions in the Appendix
together with r�K� � DaKb�dx

a���dx
b�� and

�DaDbr�DaKa � 0.
Equations (3.6), (3.7), and (3.8) imply that the vector

fields

 J�
�0�

:� �1
2g
��K�; (3.9)

 J�
�1�

:� G��K�; (3.10)

 J�
�2�

:� H��K� (3.11)

are also divergence-free because of the identities r�g�� 

0, r�G�� 
 0, and r�H�� 
 0. Thus, three independent
locally conserved currents J�

�0�, J
�
�1�, and J�

�2� are constructed
from the generalized Kodama vector K�. Here we define

 J� :� �
1

�2
n
��2�J�

�0� 	 J
�
�1� 	 �J

�
�2��; (3.12)

which is also divergence-free

 r�J� � 0: (3.13)

Each coefficient in Eq. (3.12) was chosen such that, by
virtue of field equations, J� � �T��K� representing the
energy current.

Since J� is divergence-free (3.13), there exists, at least
locally, a potential function � such that

 J� � ����r��: (3.14)

Namely, J� is a Hamiltonian vector field with an energy
function �. In the untrapped region, J� is a future-directed
causal vector if the dominant energy condition holds. The
integrals of locally conserved currents K� and J� over
some spatial volume � with boundary give associated
charges

 QK :�
Z

�
K�d��; (3.15)

 QJ :�
Z

�
J�d��; (3.16)

where d�� is a directed surface element on �. If � has no
boundary, these quantities will be independent of the
choice of � when � is compact or the integrand vanishes
at infinity.

Now, we introduce the coordinates as

 d s2 � �e2
�t;��dt2 	 e2 �t;��d�2 	 r2�t; ��
ijdz
idzj

(3.17)

and take the spatial volume � as � � ft � t0 � const; 0 �
� � �0g. In this set of coordinates, we have �t� � e
	 

and �t� � �e�
� , so that

 K� @
@x�

� e�
� 
�
r;�

@
@t
� r;t

@
@�

�
: (3.18)

HIDEKI MAEDA AND MASATO NOZAWA PHYSICAL REVIEW D 77, 064031 (2008)

064031-4



A future-directed unit normal to � is then u� :�
e�
�@=@t�� and a directed surface element is written by
u� and a surface element d� as d�� � �u�d�. Then, it is
a tedious but straightforward task to show

 QK � Vkn�2r
n�1=�n� 1�; (3.19)

 QJ � m; (3.20)

where r andm are evaluated at t � t0 and � � �0. Because
the areal volume V is defined by

 V :� Vkn�2r
n�1=�n� 1�; (3.21)

QK is interpreted as the areal volume and actually diver-
gent for a noncompact �. The values of QK and QJ, of
course, depend on the particular choice of �, reflecting
their quasilocal nature. Equation (3.20) is the main result in
this section. It should be observed that although arbitrary
linear combinations of J�

�0�, J
�
�1�, and J�

�2� give locally con-
served currents, only the energy current form (3.12) is
associated with our quasilocal mass.

The existence of a symmetry entails the conserved
Noether charge as a symmetry generator. More precisely,
Noether’s theorem states that the invariance of the
Hamiltonian H along a vector field �� implies the con-
served charge Q� through the Poisson bracket

 0 � fH;Q�gPB � L�H: (3.22)

Now ��� is a closed two-form, it is identified as a sym-
plectic structure. Let us see the above in the language of
symplectic structure (see, e.g., [20]) and further discuss the
relation between conserved currents and associated
charges. The symplectic structure ��� naturally induces
the Poisson bracket

 fA;BgPB :� �����r�A��r�B�; (3.23)

 � V�Br�A � LVBA; (3.24)

where A and B are scalar functions on �M2; gab�, and
V�B :� �����r�B� is a Hamiltonian vector field associ-
ated with B. If we take A as the Hamiltonian and B as a
charge associated with a vector ��, we reproduce
Eq. (3.22). Using the above formula, we calculate the
Poisson bracket between charges and associated energy
functions. We obtain

 0 � fV; rgPB � LKV � K�r�V; (3.25)

and

 0 � fm;�gPB � LJm � J�r�m; (3.26)

both of which show that V and m are conserved along K�

and J�, respectively.

IV. PROPERTIES OF THE QUASILOCAL MASS

In this section, properties of the quasilocal mass (2.7)
such as the energy balance law, vacuum, asymptotic be-
havior, monotonicity, and positivity, are examined.

A. Unified first law

The first law of thermodynamics is one of the elemen-
tary laws of physics representing an energy conservation.
Thus, the first law can be used as an explicit criterion
concerning the properness of the definition of mass. We
will show that this is indeed the case for the quasilocal
mass as well: it satisfies the unified first law.

We define a scalar

 P :� �1
2T

a
a (4.1)

and a vector

  a :� TabD
br	 PDar (4.2)

on �M2; gab�, where the contraction is taken over on the
two-dimensional orbit space. The areal volume V given by
(3.21) satisfies DaV � ADar, where A is given by (2.11).
By using the field equations (see the equations in the
Appendix) and utilizing the identity (A6), we obtain

 dm � A adxa 	 PdV: (4.3)

This is the unified first law corresponding to an energy
balance law [21]. The first term in the right-hand side
represents an energy flux, while the second represents an
external work [21,22]. Assuming the dominant energy
condition, we have P � 0. In the double-null coordinates,
the unified first law gives the variation formulas (2.18) and
(2.19).

B. Vacuum

In the vacuum case, it follows from Eqs. (2.18) and
(2.19) that m;u � m;v � 0, i.e., m � M, where M is a
constant. A static vacuum solution, which we call the
generalized Boulware-Deser-Wheeler solution
[15,16,23,24], is given by

 d s2 � �F�r�dt2 	 F�1�r�dr2 	 r2
ijdz
idzj; (4.4)

where

 F�r� :� k	
r2

2 ~�

�
1�

�������������������������������������������������������������
1	

8�2
n ~�M

�n� 2�Vkn�2r
n�1
	 4 ~� ~�

s �
:

(4.5)

In the case where k � 1 and � � 0, the staticity as-
sumption is redundant and the generalized Birkhoff’s theo-
rem holds, namely, the Boulware-Deser-Wheeler solution
(4.4) is the general solution [25]. For general k and �, on
the other hand, other solutions are possible. We classify all
the vacuum solutions below by utilizing the generalized
Kodama vector. The following proposition includes the
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results in [25–27] and a special case of the results in
[28,29] in Lovelock gravity, in which �Dr�2 � 0 is implic-
itly assumed.

Proposition 1 (Vacuum solutions).—An n-dimensional
vacuum spacetime in Einstein-Gauss-Bonnet gravity with
the metric form (2.6) is isometric to one of the followings:

(i) the generalized Boulware-Deser-Wheeler solution (4.4)
if �Dr�2 � 0, (ii) the Nariai-type solution (4.19) if r is
constant, and (iii) the solution (4.13) if �Dr�2 �
k	 r2=�2 ~��.

Proof.—For the warped product spacetime (2.6), inde-
pendent vacuum field equations are given by

 �
1	

2 ~�

r2 �k� �Dr�
2�

�
�2�R� �n� 2�

D2r
r
� 2�n� 1�~�	

2 ~�

r2

�
�k� �Dr�2�

�
�
�n� 6�D2r

r
�
�n� 5��k� �Dr�2�

r2

�

	 2��D2r�2 � �DaDbr��D
aDbr��

�
� 0; (4.6)

 

�
1	

2 ~�

r2 �k� �Dr�
2�

��
DaDbr�

1

2
gabD

2r
�
� 0; (4.7)

 �
D2r
r
	 �n� 3�

k� �Dr�2

r2 � �n� 1�~�	
2 ~��k� �Dr�2�

r2

�
�n� 5��k� �Dr�2�

2r2 �
D2r
r

�
� 0: (4.8)

In deriving Eq. (4.7), we have used the two-dimensional
identity (A6). Equation (4.7) requires either

 class I: 1	
2 ~�

r2 �k� �Dr�
2� � 0 (4.9)

or

 class II: DaDbr�
1
2gabD

2r � 0: (4.10)

We first analyze the class I. Substituting (4.9) into
Eq. (4.8) yields

 1	 4 ~� ~� � 0: (4.11)

Together with (4.9), this implies the vanishing of quasilocal
mass m 
 0. From Eqs. (4.6) and (4.11), we have

 

D2r
r
�

1

2 ~�
	

~�

r2 ��D
2r�2 � �DaDbr��D

aDbr��: (4.12)

If r � r0 � const, or if Dar is null, it leads to a contra-
diction. If �Dr�2 � 0, we find a general solution by choos-
ing r as one of the coordinates,

 d s2 � �h�r�e2��t;r�dt2 	 h�1�r�dr2 	 r2
ijdzidzj;

(4.13)

where h�r� :� k	 r2=�2 ~��, 1	 4 ~� ~� � 0, and ��t; r� is
an arbitrary function. Hence the class I solution is not
static in general. If � � ��t�, this corresponds to the di-
mensionally extended constant curvature black hole given
by Banãdos, Teitelboim, and Zanelli [30].

We next analyze class II. We first note that Eq. (4.10)
implies that Dar is a conformal Killing vector on
�M2; gab�. We find from Eqs. (4.10) and the definition of
the generalized Kodama vector (3.2) that

 DaKb � �
1
2�abD

2r; (4.14)

which in turn implies that Ka is a Killing vector field on

�M2; gab�, i.e.,D�aKb� � 0. Sincer�K� � DaKb�dxa��

�dxb��, we conclude that K� is a hypersurface-orthogonal
Killing vector on �Mn; g���,

 K��r�K�� � 0; r��K�� � 0: (4.15)

If Dar is a null vector, we can choose r � u or r � v
without loss of generality. Then, from Eqs. (4.6) and (4.8),
only the case of k � 0 with � � 0 is allowed, and con-
sequently m 
 0 is given from Eq. (2.7). For r � u,
Eq. (4.10) gives

 d s2 � �2dudv	 u2�ijdz
idzj; (4.16)

which is the Minkowski solution written in null coordi-
nates. For r � v, we obtain the solution with u and v
interchanged: again reproduces the flat space.

Next, we consider the case in which Dar is not null.
Suppose first the generalized Kodama vector is timelike.
Because of its hypersurface orthogonality (4.15), we can
choose K� � �@=@t�� in the coordinates (3.17), and then
all the metric components (
,  , and r) are independent of
t. The unified first law (4.3) implies that m is constant, and
Eq. (4.10) now reduces to

 

d

d�
�
	  � � 0;

d2

d�2 r � 0; (4.17)

or

 r � r0 � const: (4.18)

In the former case, the remaining gauge degrees of
freedom enable us to set 
 � � and r � �. Finally,
Eqs. (4.6) and (4.8) indicate that the resulting spacetime
is isometric to the generalized Boulware-Deser-Wheeler
solution (4.4).

In the latter case of r � r0 � const, Eq. (4.6) gives that
�2�R is constant, i.e., M2 is a two-dimensional constant
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curvature spacetime, which is the two-dimensional flat,
de Sitter, or anti-de Sitter spacetime. Thus, Mn is the
Nariai-type spacetime, of which the metric is given in the
standard coordinates as [31]

 d s2 � ��1� ��2�dt2 	
d�2

1� ��2 	 r
2
0
ijdz

idzj;

(4.19)

where

 � :�
�

2�n� 3� 	 2 ~��n� 5�kr�2
0

r2
0 	 2 ~�k

�
k; (4.20)

and r2
0 is the real and positive root of the following alge-

braic equation:

 �n� 1�~� �
�n� 3�k

r2
0

	
�n� 5�~�k2

r4
0

: (4.21)

The existence condition of the real and positive r2
0 is �> 0

and k � �1 or ��n� 3�2=�4�n� 1��n� 5�~�� � ~� � 0
and k � �1 for n � 6, while it is k~�> 0 for n � 5.

If the generalized Kodama vector is spacelike, the
Nariai-type solution (4.19) or the dual ‘‘interior’’ solution
of (4.4), i.e., the solution with t and r interchanged, is
obtained. �

It is noted that the condition �Dr�2 � k	 r2=�2 ~�� in
proposition 1 inevitably leads to a special relation between
coupling constants (4.11), but its inverse does not hold.
Actually, the generalized Boulware-Deser-Wheeler solu-
tion (4.4) with any k and the Nariai-type solution (4.19)
with k � �1 also admit the special relation (4.11). Five-
dimensional Einstein-Gauss-Bonnet gravity with the rela-
tion (4.11) is a class of Chern-Simons gravity defined in
odd dimensions [32,33].

C. Asymptotic behavior

We next discuss the asymptotic property of the quasilo-
cal mass in asymptotically flat spacetimes. It is shown that
the quasilocal mass m gives the ADM mass at spatial
infinity.

Proposition 2 (Asymptotic behavior in asymptotically
flat spacetime).—In an n-dimensional asymptotically flat
spacetime, m coincides with the higher-dimensional ADM
mass at spatial infinity.

Proof.—In an n-dimensional asymptotically flat space-
time, there exists a coordinate system such that
 

ds2 ’ �

�
1�

2�2
nM

�n� 2�An�2�n�3

�
dt2 �

�2
nJijx

i

An�2�n�1 dxjdt

	

�
1	

2�2
nM

�n� 2��n� 3�An�2�
n�3

�
dxidxi; (4.22)

around spatial infinity �! 1, where � :�
���������������������Pn�1
i�1 �x

i�2
q

is
defined on an (n� 1)-dimensional Euclidean space [34].

An�2 is the surface area of an (n� 2)-dimensional unit
sphere

 A n�2 :�
2��n�1�=2

���n� 1�=2�
; (4.23)

where ��x� is the gamma function. The constantsM and Jij
are the higher-dimensional ADM mass and the higher-
dimensional ADM angular momenta, respectively, where
the number of components of Jij is given by the integer part
of �n� 1�=2 corresponding to the rank of SO�n� 1�.
Consequently, the areal coordinate r asymptotically takes
the value

 r ’ �
�

1	
�2
nM

�n� 2��n� 3�An�2�
n�3

�
: (4.24)

Substituting this into Eq. (2.7) with k � 1, Vkn�2 �An�2,
and � � 0, we have

 mj�!1 � M: (4.25)

�
The above proposition can be also shown from the result

in the previous section. Let the spatial volume � extend out
to the spacelike infinity. Since the spatial part of the
generalized Kodama vector vanishes and it reduces to a
timelike Killing vector asymptotically in the asymptoti-
cally flat spacetime, the charge (3.16) is strictly conserved
independent of time slicing. Thus, Eq. (3.20) provides the
identical result because in the asymptotically flat case,
higher-order curvature terms fall off sufficiently rapidly
at infinity, so that they do not contribute to the conserved
charges such as M or Jij (see the expressions in [35–38]).

It deserves to be noted here on the asymptotic behavior
of the quasilocal mass (2.7) at null infinity in the asymptoti-
cally flat spacetimes. The Misner-Sharp mass is asymptotic
to the Bondi mass at null infinity in general relativity [10].
This asymptotic behavior is one of the criteria for the well-
posedness of a quasilocal mass. Thus, our quasilocal mass
should be asymptotic to the higher-dimensional Bondi
mass in that limit. However, as demonstrated in [39,40],
we cannot define the Bondi-like radiation energy in an
asymptotically flat spacetime in odd dimensions due to
the absence of a stable conformal null infinity.2 In the
vacuum case, the mass parameter m in the Boulware-
Deser-Wheeler solution gives the higher-dimensional
ADM mass at spacelike infinity and coincides with the
higher-dimensional Bondi mass at null infinity in even
dimensions as well, because the higher curvature terms
fall off sufficiently rapidly also at null infinity. But it is
not clear whether the odd-dimensional expression of the
higher-dimensional Bondi mass is meaningful in its own
right.

2This peculiar characteristic in odd dimensions may be related
to the late-time behavior of the gravitational radiation [41].
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Next, we investigate the value of our quasilocal mass in
the asymptotically anti-de Sitter (AdS) region. We employ
the asymptotically AdS boundary condition of Henneaux
and Teitelboim for the metric components adopting the
coordinates x� � ft; �; zig [42] (see [43] for the higher-
dimensional version). The metric under consideration can
be written as g�� � g�0��� 	 h��, where g�0��� is the metric of
the AdS spacetime, from which deviation is represented by
h��. In the global coordinates, we have
 

g�0���dx�dx� � �
�
1	

�2

‘2
eff

�
dt2 	

�
1	

�2

‘2
eff

�
�1

d�2

	 �2d�2
n�2; (4.26)

where d�2
n�2 is the line element of a unit (n� 2)-sphere.

The effective curvature radius in this spacetime is given by

 ‘2
eff

:� �
1

2 ~�
�1�

��������������������
1	 4 ~� ~�

p
�: (4.27)

The AdS spacetime (4.26) solves the vacuum field equa-
tions corresponding to the generalized Boulware-Deser-
Wheeler solution (4.4) with k � 1 and M � 0. The falloff
condition is such that
 

htt � c1�
�n	3 	O���n	2�; (4.28a)

h�� � c2��n�1 	O���n�2�; (4.28b)

ht� � c3��n 	O���n�1�; (4.28c)

h�i � c4��n 	O���n�1�; (4.28d)

hti � c5�
�n	3 	O���n	2�; (4.28e)

hij � c6�
�n	3 	O���n	2�; (4.28f)

where c1; . . . ; c6 are functions independent of �. In the
n-dimensional spherically symmetric spacetime, which is
of our interest here, c1; . . . ; c6 are independent of zi and
c4 � c5 � 0.

Using the gravitational Hamiltonian formalism [44],
Padilla gave an expression of the global mass energy in
Einstein-Gauss-Bonnet gravity for the maximally symmet-
ric background as [45]

 E :� �
�q

�2
n

Z
S
N�K � K0�dS; (4.29)

where �q :� �
��������������������
1	 4 ~� ~�

p
andN is the lapse function. We

call E the Padilla mass. Here K is the extrinsic curvature of
(n� 2)-sphere S at infinity with respect to a spatial surface
�. K0 is the extrinsic curvature of (n� 2)-sphere with the
identical intrinsic geometry embedded in the background
AdS space (4.26). The Padilla mass (4.29) reproduces the
Deser-Tekin mass, i.e., the global mass energy obtained as
a Killing charge [37] (see also [38,46] for comparison).

We use the coordinates (3.17) and take the spatial sur-
face such as � � ft � constg. Then we have N ’ �=‘eff

and

 K ’
�n� 2�

‘eff

�
1�
�n� 1�c6

2�n�1

��
1	

‘2
eff

2�2 �
c2‘�2

eff

2�n�1

�
;

(4.30)

 K0 ’
�n� 2�

‘eff

�
1�
�n� 1�c6

2�n�1

��
1	

‘2
eff

2�2

�
: (4.31)

Putting all together, we arrive at

 E � �
�n� 2�An�2c2

2�2
n‘4

eff

��������������������
1	 4 ~� ~�

p
; (4.32)

where An�2 is the area of unit (n� 2)-sphere given by
(4.23).

It is shown that our quasilocal massm approaches (4.32)
at infinity.

Proposition 3 (Asymptotic behavior in asymptotically
AdS spacetime).—In an n-dimensional asymptotically
AdS spacetime, m coincides with the Padilla and Deser-
Tekin mass at infinity.

Proof.—Substituting the asymptotic boundary condi-
tions (4.28) into the definition of our quasilocal mass
(2.7) for k � 1 and Vkn�2 �An�2, we obtain

 mj�!1 �
�n� 2�An�2c2

2�2
n‘

4
eff

�
1�

2 ~�

‘2
eff

�
;

� �
�n� 2�An�2c2

2�2
n‘4

eff

��������������������
1	 4 ~� ~�

p
;� E; (4.33)

where we used the fact h�� ’ �c2‘
�4
eff �

�n	3 for �! 1.
�

D. Monotonicity and positivity

In this subsection, we investigate two important proper-
ties of the quasilocal mass m, namely, monotonicity and
positivity. We fix the orientation of the untrapped surface
by �	 > 0 and �� < 0, i.e., @=@u and @=@v are ingoing
and outgoing null vectors, respectively.

Proposition 4 (Monotonicity).—If the dominant energy
condition holds,m is nondecreasing (nonincreasing) in any
outgoing (ingoing) spacelike or null direction on an un-
trapped surface.

Proof.—Let s��@=@x�� � sv�@=@v� 	 su�@=@u� be an
outgoing nontimelike vector, where sv > 0 and su � 0 are
satisfied. The variation formulas (2.18) and (2.19), and the
dominant energy condition (2.21) yieldm;v � 0 andm;u �
0 on an untrapped surface. Thus, we obtain Lsm �
svm;v 	 sum;u � 0 on an untrapped surface. The proof is
similar for an ingoing nontimelike direction. �

Next, we move on to the proof of positivity. The point
where r � 0 is called center if it defines the boundary of
�M2; gab�. A central point is called regular if

 

2

�n� 2�2
efr2�	�� 	 k ’ Cr

2 (4.34)
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holds around the center and singular otherwise, where a
constant C is assumed to be nonzero.

Lemma 1.—If �~�	 C	 ~�C2 > �<�0 holds, then m is
positive (negative) around the regular center.

Proof.—From Eq. (2.12), we obtain

 m ’
�n� 2�Vkn�2

2�2
n

rn�1��~�	 C	 ~�C2� (4.35)

around the regular center. �
Lemma 2.—If the regular center is surrounded by un-

trapped surfaces and the dominant energy condition holds,
then �~�	 C	 ~�C2 � 0 is satisfied and consequently m
is non-negative around the regular center.

Proof: From Eq. (4.35), we have

 m;v ’
�n� 1�Vkn�2

2�2
n

rn�1�	��~�	 C	 ~�C2�; (4.36)

 m;u ’
�n� 1�Vkn�2

2�2
n

rn�1����~�	 C	 ~�C2� (4.37)

around the regular center. By Eqs. (4.36) and (4.37) and
proposition 4, if the regular center is surrounded by un-
trapped surfaces and the dominant energy condition holds,
the inequality �~�	 C	 ~�C2 � 0 is satisfied. Then, by
Lemma 1, m is non-negative around the center. �

Proposition 5 (Positivity).—If the dominant energy
condition holds on an untrapped spacelike hypersurface
with a regular center, then m � 0 holds there.

Proof.—The proposition follows from proposition 4 and
lemma 2. �

In proposition 5, it is assumed that a regular center is
surrounded by untrapped surfaces. By Eq. (4.34), a regular
center is surrounded independent of C by untrapped and
trapped surfaces for k � 1 and �1, respectively.
Therefore, the positivity of m is shown for k � 1, but not
for k � �1 because the assumption cannot be satisfied for
k � �1. In the case of k � 0, on the other hand, the
assumption gives a constraint on the value of C.

Lemma 3.—Suppose the dominant energy condition in
the case of k � 0 in general relativity. Then, a regular
center cannot be surrounded by untrapped surfaces for
� � 0. On the other hand, if a regular center is surrounded
by untrapped surfaces for �< 0, C satisfies ~� � C< 0.

Proof.—Suppose the dominant energy condition and the
regular center surrounded by untrapped surfaces. Then, C
is negative by Eq. (4.34), while C � ~� holds by lemma 2.
Therefore, C satisfies ~� � C< 0 if �< 0, while � � 0
gives a contradiction. �

Thus, in the case of k � 0 in general relativity, the
regular center surrounded by untrapped surfaces under
the dominant energy condition was shown to be possible
only in the presence of a negative cosmological constant.
In Einstein-Gauss-Bonnet gravity, the constraint on the
value of C is more complicated.

Lemma 4.—Suppose the dominant energy condition in
the case of k � 0 in Einstein-Gauss-Bonnet gravity. Then,
if a regular center is surrounded by untrapped surfaces, C
satisfies C< 0 if ~� � �1=�4 ~��, C< C�, or C	 <C< 0
if �1=�4 ~��< ~�< 0, and C � C� if ~� � 0, where

C	 :� ��1	
��������������������
1	 4 ~� ~�

p
�=�2 ~�� and C� :� ��1���������������������

1	 4 ~� ~�
p

�=�2 ~��.
Proof.—Suppose the dominant energy condition and the

regular center surrounded by untrapped surfaces. Then, C
is negative by Eq. (4.34), while�~�	 C	 ~�C2 � 0 holds
by lemma 2. The latter inequality is satisfied for any C if
1	 4 ~� ~� � 0. If 1	 4 ~� ~�>0, it is satisfied for C satisfy-
ing C � C� < 0 or C � C	, where C	 > �<�0 holds for
positive (negative) � and C	 � 0 holds for � � 0. �

In the positivity proof of the Misner-Sharp mass (n � 4,
k � 1, and � � 0) in [10], it is claimed that proposition 5
follows immediately from proposition 4 together with the
fact that a regular center is surrounded by untrapped sur-
faces by Eq. (4.34). However, because the sign ofm around
the regular center depends on the value of C as seen in
lemma 1, the positivity of m around the regular center
seems to be nontrivial, which requires lemma 2 for com-
pletion of the proof.

As mentioned above, the proof of proposition 5 does not
work for k � �1 and for k � 0 depending on C in
Eq. (4.34). However, under the special relation (4.11)
between the coupling constants, with which our theory
reduces to Chern-Simons gravity for n � 5 [32,33], the
positivity of m is shown for any k without assumptions in
proposition 5.

Proposition 6 (Positivity with 1	 4 ~� ~� � 0)—If 1	
4 ~� ~� � 0, then m � 0 holds.

Proof.—For 1	 4 ~� ~� � 0, Eq. (2.7) gives

 m �
�n� 2�Vkn�2

8 ~��2
n

rn�5

�
r2 	 2 ~��k� �Dr�2�

�
2
� 0:

(4.38)

�
In the asymptotically AdS case under the special relation

(4.11), moreover, the following result is obtained.
Proposition 7 (Vanishing in asymptotically AdS space-

time with 1	 4 ~� ~� � 0)—Suppose 1	 4 ~� ~� � 0 and
the dominant energy condition in an n-dimensional asymp-
totically AdS spacetime. Then, m � 0 holds on an un-
trapped spacelike hypersurface.

Proof.—For 1	 4 ~� ~� � 0, we have m � 0 at infinity
by proposition 3. Thus, by propositions 4 and 6, m � 0
holds on an untrapped spacelike hypersurface. �

Here we note that, although the metric in the generalized
Boulware-Deser-Wheeler solution (4.5) for n � 6 with
k � 1 and 1	 4 ~� ~� � 0 approaches AdS at infinity for
an arbitrary positive constant M and M coincides with our
quasilocal mass, it does not conflict with proposition 7.

GENERALIZED MISNER-SHARP QUASILOCAL MASS . . . PHYSICAL REVIEW D 77, 064031 (2008)

064031-9



This is because that spacetime is not asymptotically AdS in
the sense that the falloff condition (4.28) does not hold.

The positivity property of the quasilocal mass has a
physical interpretation whereby under the stated circum-
stances the sum of the matter energy and the gravitational
potential energy cannot be negative. This is not obvious
even when an energy condition on matter is assumed since
gravitational potential energy tends to be negative [10].
The results of this section are summarized in Table I.

V. SUMMARY AND DISCUSSION

A quasilocal mass characterizes spacetime geometry
quasilocally and represents the energy enclosing a spatial
surface. In the present paper, we have analyzed properties
of the generalization of the Misner-Sharp quasilocal mass
in a higher-dimensional spacetime having symmetries cor-
responding to the isometries of an (n� 2)-dimensional
maximally symmetric space in Einstein-Gauss-Bonnet
gravity. Our quasilocal mass is defined in a purely geomet-
rical way and reduces to the Misner-Sharp mass in the four-
dimensional spherically symmetric case without a cosmo-
logical constant.

It was shown that our quasilocal mass (2.7) possesses
properties similar to those of the Misner-Sharp mass. Our
quasilocal mass coincides with a charge associated with a
locally conserved current constructed from the generalized
Kodama vector and satisfies the unified first law, which
states that the change of the quasilocal mass is comple-
mented by the energy inflow and the external work. This
should be one of the touchstones of the quasilocal mass.
We also classified all the vacuum solutions by utilizing the
generalized Kodama vector.

The quasilocal mass satisfies the simple variation for-
mulas (2.18) and (2.19), which are the same as those in
general relativity. As a result, they allow us to prove the
monotonicity and positivity of the quasilocal mass in a
similar manner to the general relativistic case. Under the
dominant energy condition, monotonicity on an untrapped
surface and positivity on an untrapped spacelike hypersur-
face with a regular center were shown to hold. However,
we also showed that the assumptions in the proof of
positivity are not realized for k � �1 and for k � 0 with
a non-negative cosmological constant in general relativity.

In contrast, under a special relation (4.11) between cou-
pling constants, positivity of the quasilocal mass is shown
for any k without the assumptions above.

It was shown that our quasilocal mass approaches the
higher-dimensional global mass at (spacelike) infinity in
the asymptotically flat or AdS spacetime. In the asymptoti-
cally flat case, it approaches the higher-dimensional ADM
mass at spacelike infinity, while it does the Deser-Tekin
and Padilla mass at infinity in the asymptotically AdS case.
On the other hand, we have not argued the asymptotic
behavior of the quasilocal mass at null infinity. The
Misner-Sharp mass approaches the Bondi mass at null
infinity in the vacuum case [10]. This asymptotic property
is one of the criteria for the well-posedness of a quasilocal
mass. It is tempting to hope that our quasilocal mass should
be asymptotic to the higher-dimensional Bondi mass in
that limit. However, as mentioned in subsection IV C, this
is indeed the case at least in even dimensions [39,40]. The
absence of a stable conformal null infinity forbids us from
defining the Bondi-like radiation energy for odd-
dimensional spacetimes in terms of the conformal comple-
tion technique. We have at present no alternative way of
dealing with the radiation energy but to make use of
conformal infinity. The meaning of the radiation energy
in the asymptotically flat case remains open in odd
dimensions.

All above results support the interpretation of m defined
by Eq. (2.7) as a well-posed quasilocal mass at least in the
spherically symmetric case. One of the main applications
of the quasilocal mass is to the black hole dynamics. In
dynamical spacetime, a black hole can be locally defined
by a future outer trapping horizon [10]. Then, the quasilo-
cal mass can be used to evaluate the mass of such a
dynamical black hole. Actually, we can read off the dy-
namical black hole entropy by rewriting the unified first
law. This issue will be reported in a subsequent paper [47].

We conclude this paper by speculation about further
generalization of the quasilocal mass in Lovelock gravity.
Einstein-Gauss-Bonnet gravity as well as general relativity
give rise to the quasilinear second-order field equations and
are classes of Lovelock gravity [12]. Lovelock gravity
exhibits some remarkable properties. When we write the
field equations as G�� � �2T��, (1) G�� is symmetric in
its indices, (2) G�� contains up to the second derivative of
the metric, (3) r�G�� 
 0, and (4) G�� is linear in the
second derivative of the metric. In four dimensions, the
fourth condition is derived by other three. The Lovelock
Lagrangian comprises the dimensionally extended Euler
densities. In n-dimensional spacetimes, up to [n=2]-
curvature terms appear in the field equations, where [x]
denotes the integer part of x. But in even dimensions, the
last (�n=2�th) term does not contribute to field equations
because it becomes a topological invariant. Then, a natural
question arises, whether a similar quasilocal mass can be
defined in Lovelock gravity?

TABLE I. Properties of the quasilocal mass. For k � �1, the
assumption in proposition 5 for positivity cannot be satisfied,
while it constrains the value of C for k � 0 (see lemmas 3 and 4.)
In the special case where 1	 4 ~� ~� � 0, positivity ofm is shown
for any k without assumptions in proposition 5.

k � 1 k � 0 k � �1

Unified first law Yes Yes Yes
Global mass Yes Not applicable Not applicable
Monotonicity Yes Yes Yes
Positivity Yes See the caption See the caption
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The action for Lovelock gravity is given by

 S �
1

2�2
n

Z
dnx

�������
�g
p X�n=2�

i�0

�iL�i� 	 Smatter; (5.1)

where L�i� is the ith order Lovelock Lagrangian, which is
an ith polynomial in Riemann curvature and its contrac-
tions, and we identify L�0� :� 1, L�1� :� R, L�2� :� LGB,
and so on [12]. �i is a coupling constant with dimension
�length�2�i�1� such as �0: � �2�, �1 :� 1, and �2 :� �.
The gravitational equation following from this action is
given by

 G �� :�
X
i�0

�iG
�i�
�� � �2

nT��; (5.2)

where the tensor G�i��� is given from L�i� such as G�0��� :�

��1=2�g��, G�1��� :� G��, and G�2��� :� H��.
We propose the generalized Misner-Sharp quasilocal

mass in Lovelock gravity

 mL :�
Vkn�2

2�2
n

X�n=2�

i�0

�i�n� 2�!

�n� 1� 2i�!
rn�1�2i�k� �Dr�2�i:

(5.3)

mL would approach to the higher-dimensional ADM mass
at spacelike infinity in an asymptotically flat spacetime
because higher-order curvature terms fall off sufficiently
rapidly.

We envisage that the unified first law continues to be
valid in Lovelock gravity.

Conjecture 1 (Unified first law).—The unified first law
(4.3) holds in Lovelock gravity by replacing m by mL.

Since the unified first law gives us a clear physical
interpretation, the validity of above conjecture will en-
hance the reliability of the quasilocal mass.

Conjecture 1 directly implies that the variation formulas
(2.18) and (2.19) hold in Lovelock gravity by replacing m
by mL. As seen in propositions 4 and 5, the monotonicity
and positivity of the quasilocal mass are easily shown by
these variation formulas under the dominant energy con-
dition. Thus, this conjecture implies that they also hold in
Lovelock gravity. Conjecture 1 also implies that the gen-
eralized Misner-Sharp mass formalism in Lovelock gravity
would be available in the system with a perfect fluid
satisfying p � ��, which is obtained by replacing m by
mL in Eqs. (2.15)–(2.20) in [14].

We speculate that the following local conservation laws
would hold in Lovelock gravity.

Conjecture 2 (Local conservation law).—For the gen-
eralized Kodama vector K�,

 G�i���r�K� 
 0 (5.4)

holds, so that

 J�i�� :� G�i���K� (5.5)

is divergence-free for each i. Then, LJmL � 0 holds and
mL is given as

 mL �
Z

�
J�d��; (5.6)

 J� :� �
1

�2
n

X�n=2�

i�0

�iJ�i��; (5.7)

where the integration is done over some spatial volume �
with a boundary, as shown in Sec. III.

Properness of the above two conjectures gives a possi-
bility to treat any class of Lovelock gravity in a unified
manner. They will be quite helpful to give us much deeper
insights into Lovelock gravity.
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APPENDIX: CURVATURE TENSORS

The nonvanishing components of the Levi-Civitá con-
nections are

 �abc �
�2��abc�y�; �iij � �̂ijk�z�;

�aij � �r�D
ar�
ij; �ija �

Dar
r
�ij;

(A1)

where the superscript ‘‘(2)’’ denotes the two-dimensional
quantity, and Da is the two-dimensional linear connection
compatible with gab. �̂ijk is the Levi-Civitá connection
associated with 
ij. The Riemann tensor is given by

 

Rabcd �
�2�Rabcd; Raibj � �r�D

aDbr�
ij;

Rijkl � �k� �Dr�
2���ik
jl � �

i
l
jk�: (A2)

The Ricci tensor and the Ricci scalar are given by
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Rab � �2�Rab � �n� 2�
DaDbr
r

;

Rij � f�rD2r	 �n� 3��k� �Dr�2�g
ij;

R � �2�R� 2�n� 2�
D2r
r
	 �n� 2��n� 3�

k� �Dr�2

r2 :

(A3)

The Weyl tensor is simplified to
 

Cabcd �
n� 3

n� 1
Wga�cgd�b;

Caibj � �
n� 3

2�n� 1��n� 2�
Wgabr2
ij;

Cijkl �
2

�n� 1��n� 2�
Wr4
i�k
l�j;

(A4)

with

 W :� �2�R	 2
D2r
r
	 2

k� �Dr�2

r2 : (A5)

Availing ourselves of the following identity

 

�
DaDbr�

1

2
gabD2r

�
D2r 
 �DaDcr��DbDcr�

�
1

2
gab�DcDdr��D

cDdr�;

(A6)

we express the Gauss-Bonnet tensor as

 

Hab �
2�n� 2��n� 3��n� 4�

r3 �k� �Dr�2�




��
D2r� �n� 5�

�k� �Dr�2�
4r

�
gab �DaDbr

�
;

Hij � 2�n� 3��n� 4�
�
�
k� �Dr�2

2
�2�R� �D2r�2

	 �DaDbr��D
aDbr� � �n� 5��n� 6�

�k� �Dr�2�2

4r2

	 �n� 5�
k� �Dr�2

r
D2r

�

ij: (A7)

The Gauss-Bonnet combination is given by

 LGB �
4�n� 2��n� 3�

r2

�
k� �Dr�2

2
�2�R	 �D2r�2

� �DaDbr��D
aDbr� 	 �n� 4��n� 5�



�k� �Dr�2�2

4r2 � �n� 4�
k� �Dr�2

r
D2r

�
: (A8)
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