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A massless spin-2 field equation in de Sitter space, which is invariant under the conformal trans-
formation, has been obtained. The framework utilized is the symmetric rank-2 tensor field of the
conformal group. Our method is based on the group theoretical approach and six-cone formalism,
initially introduced by Dirac. Dirac’s six-cone is used to obtain conformally invariant equations on
de Sitter space. The solution of the physical sector of massless spin-2 field (linear gravity) in de Sitter
ambient space is written as a product of a generalized polarization tensor and a massless minimally
coupled scalar field. Similar to the minimally coupled scalar field, for quantization of this sector, the Krein
space quantization is utilized. We have calculated the physical part of the linear graviton two-point
function. This two-point function is de Sitter invariant and free of pathological large-distance behavior.

DOI: 10.1103/PhysRevD.77.064028 PACS numbers: 04.62.+v, 03.70.+k, 11.10.Cd, 98.80.Jk

I. INTRODUCTION

Quantum field theory in de Sitter (dS) space-time has
evolved as an exceedingly important subject, studied by
many authors over the course of the past decade. This is
due to the fact that most recent astrophysical data indicate
that our universe might currently be in a dS phase. The
importance of dS space has been primarily ignited by the
study of the inflationary model of the universe and the
quantum gravity. In Minkowski space-time, it is well
known that the massless fields propagate on the light-
cone. These fields are invariant under the conformal group
SO�2; 4�. For spin s � 1 they are invariant under the gauge
transformation as well. In dS space, mass is not an invari-
ant parameter for the set of observable transformations
under the dS group SO�1; 4�. Concept of light-cone propa-
gation, however, does exist and leads to the conformal
invariance. ‘‘Massless’’ is used here in reference to the
conformal invariance (propagation on the dS light-cone).
The term ‘‘massive’’ fields is referred to the fields that in
their Minkowskian limit (zero curvature) reduce to massive
Minkowskian fields alone. Indeed, the principal series of
unitary irreducible representations (UIRs) admits a mas-
sive Poincaré group UIR in the limit H � 0.

It has been shown that the massive and massless con-
formally coupled scalar fields in dS space correspond to the
principal and complementary series representations of the
dS group, respectively [1]. The massive vector field in dS
space has been associated with the principal series,
whereas massless field corresponds to the lowest represen-
tation of the vector discrete series representation in the dS
group [2]. The massive and massless spin-2 fields in dS
space have been also associated with the principal series
and the lowest representation of the rank-2 tensor discrete

series of the dS group, respectively [3–5]. The importance
of the massless spin-2 field in the dS space is due to the fact
that it plays the central role in quantum gravity and quan-
tum cosmology.

In the previous paper, the conformally invariant (CI)
wave equations for scalar and vector fields in dS space
were obtained [6]. We are interested in the conformal
invariance properties of the massless spin-2 field in dS
space, i.e. dS linear gravity. In this paper, the massless
spin-2 CI wave equation is obtained. The framework uti-
lized here is the symmetric rank-2 tensor field. Our method
is based on a group theoretical point of view and Dirac’s
six-cone formalism and the conformal space is used to
obtain the CI equations. The concept of conformal space
was used by Dirac [7] to demonstrate the field equations for
spinor and vector fields in 1� 3-dimensional space-time in
manifestly CI form. He embedded Minkowski space as the
hypersurface �abuaub � 0, �a; b � 0; 1; 2; 3; 4; 5�, �ab �
diag�1;�1;�1;�1;�1; 1� in IR6. Then he extended the
fields by homogeneity requirements to the whole of the
space of homogeneous coordinates, namely, IR6. This
formalism developed by Mack and Salam [8] and many
others [9]. This approach to conformal symmetry leads to
the best path to exploit the physical symmetry in contrast to
approaches based on group theoretical treatment of state
vector spaces associated with the group. We use this for-
malism to obtain CI wave equations in dS space. Many
believe that conformal invariance may be the key to the
solution of the problem of quantum gravity. The conformal
invariance, and the light-cone propagation, constitutes the
basis for construction of massless field in dS space. For s �
1, the gauge invariance provides an additional tool for
analysis of this problem.

The organization of this paper and its brief outlook are
as follows. Section II is devoted to a brief review of the dS
massless spin-2 field equations in the ambient space.*takook@razi.ac.ir
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Section III introduces Dirac’s manifestly covariant formal-
ism of symmetric tensor fields on the six-cone; in this
section, conditions for the existence of CI wave equations
are given. Invariant subspace of fields are defined by means
of subsidiary conditions: transversality, divergenceless-
ness. Section IV is devoted to the solutions of the physical
part of field equations. We show that this physical sector
can be written in terms of a polarization tensor and a
massless minimally coupled scalar field

 K ���x� �D���x; @���x�:

A Krein space quantization [10,11] becomes necessary to
circumvent the corresponding well-known anomalies. In
Sec. V we calculate the two-point function W ���0�0 �x; x0�
in ambient space notations. It is particularly shown that
obtaining a covariant two-point function without infrared
divergence necessitates the use a Krein space field quanti-
zation. Finally a brief conclusion and an outlook for further
investigation will be presented. We will supplied some
useful identities and mathematical details of calculations
in the appendices, and in Appendix F, the two-point func-
tion is calculated in terms of the intrinsic coordinates from
its ambient space counterpart.

II. DE SITTER FIELD EQUATIONS

The dS metric is a solution of the cosmological
Einstein’s equation with positive constant �. It is conven-
iently described as a hyperboloid embedded in a five-
dimensional Minkowski space
 

XH �
�
x 2 IR5; x2 � ���x

�x� � �H�2 � �
3

�

�
;

�; � � 0; 1; 2; 3; 4; (2.1)

where ��� � diag�1;�1;�1;�1;�1�. The dS metrics
reads

 ds 2 � ���dx
�dx� � gdS

��dX
�dX�; �; � � 0; 1; 2; 3

where the X�’s are 4 space-time intrinsic coordinates of the
dS hyperboloid. Any geometrical object in this space can
be written in terms of the four local coordinates X� (in-
trinsics) or in terms of the five global coordinates x�

(ambient space).
The linearized gravitational wave equation in intrinsic

coordinates is [12,13]
 

1
2��Hh�� �r�r�h�� �r�r�h�� �r�r�h0�

� 1
2g

dS
���r�r�h�� ��Hh0� �H2�h�� �

1
2h
0gdS
��� � 0;

(2.2)

where �H � r�r
� is the Laplace-Beltrami operator on

dS space and h0 � h�� is the trace of h�� with respect to the
background metric. Here, r� is the covariant derivative,
and the indices are raised and lowered by the background

metric (g�� � gdS
�� � h��). Not that the field Eq. (2.2) is

invariant under the gauge transformation

 h�� ! hgt�� � h�� �r�	� �r�	�; (2.3)

where 	 is an arbitrary vector field.
In the following the ambient space notations is used; in

these notations, the relationship with UIRs of the dS group
becomes straightforward because the Casimir operators are
easy to identify [14]. There are two Casimir operators
 

Q�1�2 � �
1
2L

��L�� � �
1
2�M

�� � S����M�� � S���;

Q�2�2 � �W�W�; (2.4)

where M�� � �i�x�@� � x�@�� � �i�x� �@� � x� �@��
and W� � �

1
8 
�����L

��L��, in which the symbol

����� holds for the usual antisymmetric tensor. The
action of the spin generator S�� is defined by [14]

 S��K� � �i����K� � ���K� � ��K��

� ��K���;

�@� is the tangential (or transverse) derivative on dS space,

 

�@ � � ���@
� � @� �H

2x�x � @; with x � �@ � 0;

and ��� is the transverse projector (��������H2x�x�).
It has been shown that the field Eq. (2.2) in the ambient

space reads as ([14] and appendix B)

 �Q�1�2 � 6�K�x� �D2@2 �K � 0; (2.5)

where @2 �K� � �@ �K� �H2x�K0 � 1
2

�@�K0 and the
operator D2 is the generalized gradient defined by

 D2K � H�2S� �@�H2x�K: (2.6)

Note that S is the symmetrizer operator and K is a vector
field. It is clear that the field Eq. (2.5) is invariant under the
following gauge transformation:

 K �� !Kgt
�� �K�� �D2�g: (2.7)

The operatorQ�1�2 commutes with the action of the group
generators and, as a consequence, it is constant in each
UIR. Thus the eigenvalues of Q�1�2 can be used to classify
the UIRs i.e.,

 �Q�1�2 � hQ
�1�
2 i�K�x� � 0: (2.8)

Following Dixmier [15], we get a classification scheme
using a pair �p; q� of parameters involved in the following
possible spectral values of the Casimir operators:

 Q�1�p � ��p�p� 1� � �q� 1��q� 2��Id;

Q�2�p � ��p�p� 1�q�q� 1��Id:
(2.9)

Three types of scalar, tensorial, or spinorial UIRs are
distinguished for SO�1; 4� according to the range of values
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of the parameters q and p [15,16], namely, the principal,
the complementary and the discrete series. The flat limit
indicates that for the principal and the complementary
series the value of p bears meaning of spin. For the discrete
series case, the only representation which has a physically
meaningful Minkowskian counterpart is the p � q case.
Mathematical details of the group contraction and the
physical principles underlying the relationship between
dS and Poincaré groups can be found in Refs. [17,18],
respectively. The spin-2 tensor representations relevant to
the present work are as follows:

(i) The UIRsU2;� in the principal series where p � s �
2 and q � 1

2� i� correspond to the Casimir spectral
values:

 hQ�
2i � �2 � 15

4 ; � 2 IR; (2.10)

note that U2;� and U2;�� are equivalent.
(ii) The UIRs V2;q in the complementary series where

p � s � 2 and q� q2 � �; correspond to

 hQ�
2 i � q� q2 � 4 � �� 4; 0<�< 1

4:

(2.11)

(iii) The UIRs �	
2;q in the discrete series where p � s �

2 corresponds to

 hQ�1�2 i � �4; q � 1��	
2;1�;

hQ�2�2 i � �6; q � 2��	
2;2�:

(2.12)

The massless spin-2 field in dS space corresponds to the
�	

2;2 and �	
2;1 cases in which the sign 	 stands for the

helicity. In these cases, the two representations �	
2;2, in the

discrete series with p � q � 2, have a Minkowskian in-
terpretation. It should be noted that p and q do not bear the
meaning of mass and spin. For discrete series in the limit
H ! 0, p � q � s are indeed none other than spin. The
representation ��

2;2 has a unique extension to a direct sum
of two UIRs C�3; 2; 0� and C��3; 2; 0� of the conformal
group SO�2; 4�with positive and negative energies, respec-
tively [17,19]. The latter restricts to the massless tensor
Poincaré UIRs P>�0; 2� and P<�0; 2� with positive and
negative energies, respectively. The following diagrams
illustrate these connections:

 

��
2;2 ,!

C�3; 2; 0�



C��3; 2; 0�
!
H�0

C�3; 2; 0�  - P>�0; 2�

 


C��3; 2; 0�  - P<�0; 2�;

(2.13)

 ��
2;2 ,!

C�3;0;2�



C��3;0;2�
!
H�0

C�3;0;2�  - P>�0;�2�

 


C��3;0;2�  - P<�0;�2�;

(2.14)

where the arrows ,! designate unique extension; P_�0; 2�
[P_�0;�2�] are the massless Poincaré UIRs with positive
and negative energies and positive (negative) helicity. It is
important to note that the representations �	

2;1 do not have
corresponding flat limits.

III. DIRAC’S SIX-CONE, CONFORMALLY
INVARIANT EQUATIONS

In the Minkowski space, for every massless representa-
tion of the Poincaré group there exists only one corre-
sponding representation in the conformal group [19,20].
In the dS space, as mentioned, for the massless tensor field,
only two representations in the discrete series ��	

2;2� have a
Minkowskian interpretation. The signs 	 correspond to
two types of helicity for the massless tensor field. In this
section, the conformal invariance of massless tensor field
in dS space is studied. CI wave equations in dS space are
best obtained by first establishing the wave equations in
Dirac’s null-cone in IR6, and then followed by the projec-
tion of these equations to the dS space.

Dirac’s six-cone (or Dirac’s projection cone) is defined
by u2 � u2

0 � ~u2 � u2
5 � 0, where ua 2 IR6; and ~u �

�u1; u2; u3; u4�. Reduction to four-dimensional space
(physical space-time) is achieved by projection, that is by
fixing the degrees of homogeneity of all fields. Wave
equations, subsidiary conditions, etc., must be expressed
in terms of operators that are defined intrinsically on the
cone. These are well-defined operators that map tensor
fields on tensor fields with the same rank on cone u2 � 0
[6,21]. It is important to note that on the cone u2 � 0, the
second order Casimir operator of conformal group, Q2, is
not a suitable operator to obtain CI wave equations. For
example, for a symmetric tensor field of rank-2, we have
[19,21,22]

 Q 2�cd � 1
2LabL

ab�cd

� ��u2@2 � N̂5�N̂5 � 4� � 8��cd; (3.1)

where N̂5 is the conformal-degree operator defined by

 N̂ 5 � ua@a: (3.2)

On the cone this operator reduces to a constant, i.e.
N̂5�N̂5 � 4� � 8. It is clear that this operator cannot lead
to the wave equations on the cone. The well-defined op-
erators exist only in exceptional cases. For tensor fields of
degree �1; 0; 1; . . . , the intrinsic wave operators are
@2; �@2�2; �@2�3; . . . , respectively [21]. Thus the following
CI system of equations, on the cone, has been used [6]:

 

�
�@a@a�n� � 0;

N̂5� � �n� 2��;
(3.3)

where � is a tensor field of a definite rank and of a definite
symmetry.
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Other CI conditions can be added to the above system in
order to restrict the space of the solutions. The following
conditions are introduced to achieve the above goal:

(a) transversality

 ua�ab... � 0;

(b) divergencelessness

 Grad a�ab... � 0;

(c) tracelessness

 �a
ab... � 0:

The operator Grada unlike @a is intrinsic on the cone, and is
defined by [21]

 Grad a � ua@b@b � �2N̂5 � 4�@a: (3.4)
In order to project the coordinates on the cone u2 � 0, to

the 1� 4 dS space we chose the following relation:

 

�
x� � �Hu5��1u�;

x5 � Hu5:
(3.5)

Note that x5 becomes superfluous when we deal with the
projective cone. It is easy to show that various intrinsic
operators introduced previously now read as

(1) the conformal-degree operator �N̂5�

 N̂ 5 � x5
@
@x5

; (3.6)

(2) the conformal gradient �Grad��

 Grad � � �x
�1
5 fH

2x��Q0 � N̂5�N̂5 � 1��

� 2 �@��N̂5 � 1�g; (3.7)

where Q�1�p � Qp; ,
(3) and the powers of d’Alembertian �@a@a�n, which act

intrinsically on a field of conformal-degree �n� 2�,

 �@a@a�n � �H2nx�2n
5

Yn
j�1

�Q0 � �j� 1��j� 2��:

(3.8)

Considering the conformal invariance in the dS space, we
classify the 21 degrees of freedom of the symmetric tensor
field �ab on the cone by (in the following for the brevity
we take H � 1)

 K �� � ��� � Sx��� � x� x�x�x �� � x;

K� � x ��� � x�x �� � x; � � x �� � x;
(3.9)

where K�� and K� are tensor and vector fields on dS
space, respectively (x�K�� � x�K�� � 0 � x�K�).
The fields �55, x:�5, x�x:�5 ���5 are auxiliary fields
which are unnecessary to demonstrate on the dS space.

In the following CI wave equation for the symmetric
rank-2 tensor field is considered. We have shown [6], for
scalar and vector fields, the simplest CI system of equa-
tions is obtained through setting n � 1 in (3.3), i.e. the field
with conformal-degree �1, resulting equations are the
UIRs of SO�1; 4�. For a symmetric tensor field of rank-2,
the CI system (3.3) with n � 1 leads to (Appendix B)

 �Q0�2�K���
2
3S�

�@��2x�� �@ �K��
1
3��� �@ � �@ �K�0:

(3.10)

It is clear that (3.10) does not correspond to any UIRs of the
dS group. The intrinsic counterpart of (3.10) becomes
(Appendix B)

 ��� 4�h�� �
2
3Sr�r � h� �

1
3g

dS
��r � r � h � 0; (3.11)

in which the intrinsic field h�� is locally determined by the
transverse tensor field K�� through

 h���X� �
@x�

@X�
@x�

@X�
K���x�X��:

Taking the flat limit (H ! 0) of (3.11) we will gain the
second order CI massless spin-2 wave equation in four-
dimensional Minkowski space, which was found by Barut
and Xu [23]. They have found the conformally covariant
massless spin-2 field equation by varying the coefficients
of various terms in the standard equation.

In order to obtain the CI wave equation for a massless
spin-2 field which is the physical state of dS space, let us
set n � 2 in (3.3), then we have

 

�
�@a@

a�2� � 0;

N̂5� � 0:
(3.12)

The following CI conditions can be added to the above
system to restrict the space of solutions:

(a) transversality ua�ab � 0, that results in

 x5��5b � x ��b� � 0; (3.13)

(b) divergencelessness

 Grad a�ab � 0: (3.14)

It is easy to show that (Appendix C)

 

�@ �K� � 4�x ��� � x�x �� � x� � 4K�; (3.15)

then we get the following relation for the vector field �@ �
K�:

 Q1
�@:K� �

2
3D1�

�@: �@:K� 1
6Q1D1�

�@: �@:K � 0; (3.16)

where D1 � � �@: This CI equation is similar to the gauge-
fixed wave equation for the vector field �@ �K� [6,24]. We
are now in a position to write a CI system for the dS field
K��. In order to accomplish this, we first determine the CI
equation that corresponds to UIRs of the dS group
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(Appendix D):
 

�Q2 � 4���Q2 � 6�K�� �D2�@2:K��

� 1
3D2�D1�

�@: �@:K� 1
3����Q0 � 6� �@: �@:K � 0:

(3.17)

Finally, a CI system is obtained from (3.12) with respect to
(3.9) defined by
 

�Q2 � 4���Q2 � 6�K�� �D2�@2:K�� �
1
3D2�D1�

�@: �@:K

�1
3����Q0 � 6� �@: �@:K � 0;

Q1
�@:K� �

2
3D1�

�@: �@:K� 1
6Q1D1�

�@: �@:K � 0;

K0 � 0:

(3.18)

It is important to note that by imposing the following
conditions on the tensor field K��, (which are necessary
for the UIRs of dS group)

 K 0 � 0 � �@:K;

the CI system (3.18) becomes

 �Q2 � 4��Q2 � 6�K�� � 0:

It is clear that this conformally invariant field corresponds
to the two representations of discrete series, namely, �	

2;1

and �	
2;2 [Eq. (2.12)], in other words it is the physical

representation of the dS group. At this point it is clear
that the parameter p does have a physical significance. It is
indeed spin. In the following, we only consider the tensor
field that corresponds to the representations of discrete
series �	

2;2 which have the Minkowskian limit i.e.

 �Q2 � 6�K�� � 0; �@:K � 0 �K0: (3.19)

IV. DE SITTER FIELD SOLUTIONS

The general solution of Eq. (3.19) can be written in the
following form [4,25]:

 K � ��1 � S �Z1K �D2Kg; (4.1)

where Z1 is a constant five-dimensional vector, �1 is a
scalar field, and K and Kg are two vector fields. By using
divergenceless and transversality conditions, we obtain
K0 � 0, which results in

 2�1 � Z1:K � �@:Kg � 0: (4.2)

Conditions x:K � 0 � x:Kg are used to obtain the above
equation. By substituting K�� in (3.19) we have [4]

 

8>><
>>:
�Q0 � 6��1 � �4Z1:K; �I�

�Q1 � 2�K � 0; �II�

�Q1 � 6�Kg � 2�x:Z1�K �III�:

(4.3)

Using conditions x:K � 0 � �@:K, Eq. (4.3)-II reduces to
Q0K � 0. From this reduced form and Eq. (4.3)-I, we can
write

 �1 � �
2
3Z1:K; Q0�1 � 0; (4.4)

and from Eq. (4.2), we have

 

�@:Kg �
1
3Z1:K: (4.5)

We choose the following form for the vector field K [the
solution of Eq. (4.3)-II] [2,26]

 K � �Z2�2 �D1�3; (4.6)

where Z2 is another five-dimensional constant vector, �2

and�3 are two scalar fields. SubstitutingK into Eq. (4.3)-II
results in

 Q0�2 � 0: (4.7)

It is clear that �2 is a massless minimally coupled scalar
field. Using the divergenceless condition,�3 can be written
in terms of �2

 �3 � �
1
2�Z2: �@�2 � 2x:Z2�2�: (4.8)

So we can write

 K � �Z2�2 �
1
2D1�Z2: �@�2 � 2x:Z2�2�; (4.9)

and

 �1 � �
2
3Z1:� �Z2�2 �

1
2D1�Z2: �@�2 � 2x:Z2�2��: (4.10)

According to the following identity (Appendix E):

 �Q1 � 6��1�x:Z1�K �
1
6��x:Z1�K �

1
9D1�Z1:K��; (4.11)

the Eq. (4.3)-III leads to

 Kg �
1
3��x:Z1�K �

1
9D1�Z1:K��; (4.12)

where x:Kg � 0 and �@:Kg �
1
3Z1:K.

Using the Eqs. (4.9), (4.10), and (4.12), we can rewrite
K�� as the following form:

 K ���x� �D���x; @; Z1; Z2��2; (4.13)

where D is the projector tensor

 D �x; @; Z1; Z2� � ��
2
3�Z1:� S �Z1 �

1
3D2�

1
9D1Z1:

� x:Z1��� �Z2 �
1
2D1�Z2: �@� 2x:Z2��;

(4.14)

and �2 is a massless minimally coupled scalar field. We
should briefly recall the Gupta-Bleuler quantization of the
massless minimally coupled scalar field [10]

 �H��X� � 0:

As proved by Allen [27], the covariant canonical quantiza-
tion procedure with positive norm states fails in this case.
The Allen’s result can be reformulated in the following
way: the Hilbert space generated by a complete set of
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modes (named here the positive modes, including the zero
mode) is not dS invariant,

 H �

�X
k�0

�k�k;
X
k�0

j�kj
2 <1

�
;

where�k is defined in [10]. This means that it is not closed
under the action of the de Sitter group. Nevertheless, one
can obtain a fully covariant quantum field by adopting a
new construction [10,11]. In order to obtain a fully cova-
riant quantum field, we add all the conjugate modes to the
previous ones. Consequently, we have to deal with an
orthogonal sum of a positive and negative inner product
space, which is closed under an indecomposable represen-
tation of the de Sitter group. The negative values of the
inner product are precisely produced by the conjugate
modes: h�k; �


ki � �1, k � 0. We do insist on the fact

that the space of solution should contain the unphysical
states with negative norm. Now, the decomposition of the
field operator into positive and negative norm parts reads

 ��X� �
1���
2
p ��p�X� ��n�X��; (4.15)

where

 �p�X� �
X
k�0

ak�k�X� � H:c:;

�n�X� �
X
k�0

bk�

k�X� � H:c:

(4.16)

The positive mode �p�X� is the scalar field as was used by
Allen. The crucial departure from the standard QFT based
on canonical commutation relation lies in the following
requirement on commutation relations:

 akj�> � 0; �ak; a
y
k0 � � kk0 ;

bkj�> � 0; �bk; b
y
k0 � � �kk0 ;

(4.17)

where j �i is the Gupta-Bleuler vacuum state. In the next
section the Gupta-Bleuler vacuum state is used to calculate
the two-point function of the physical part of linear gravity.

V. TWO-POINT FUNCTION

In the course of intensive studies by various scientists
the following modalities related to linear gravity have been
suggested. In the mainstream approach, it has been found
the graviton propagator in the linear approximation for
largely separated points has a pathological behavior (in-
frared divergence) and violates the dS invariance [28–30].
Some authors have suggested that infrared divergence
could be exploited in order to create the instability of the
dS space [31,32]. Tsamis and Woodard have considered a
field operator for linear gravity in dS space in terms of flat
coordinates [33], these cover only one-half of the dS
hyperboloid. They have examined the possibility of quan-

tum instability and they have found a quantum field, which
breaks dS invariance.

Antoniadis, Iliopoulos, and Tomaras [34] have shown
that the pathological large-distance behavior of the gravi-
ton propagator on a dS background does not manifest itself
in the quadratic part of the effective action in the one-loop
approximation. This means that the pathological behavior
of the graviton propagator may be gauge dependent and so
should not appear in an effective way as a physical quan-
tity. Recently this result has been also confirmed by several
authors [12,13,35–38].

The important result of the method used in this paper,
i.e. using the Gupta-Bleuler vacuum, is the calculation of
the physical graviton two-point function that is dS invari-
ant and free of any divergences. In Appendix F, the gravi-
ton two-point function is expressed in terms of the dS
intrinsic coordinates, which is also dS invariant and free
of any divergences. This two-point function can be used for
calculation of quantum effects of gravity in the interaction
cases.

Pursuing our method, the two-point function W is
defined by [4]

 W ���0�0 �x; x
0� � h�jK���x�K�0�0 �x

0�j�i; (5.1)

where x, x0 2 XH. This function which is a solution of the
wave Eq. (3.19) with respect to x or x0, can be found simply
in terms of the scalar two-point function. We consider the
following possibility for the transverse two-point function

 W �x; x0� � ��0W 0�x; x
0� � SS0�:�0W 1�x; x

0�

�D2D02W g�x; x0�; (5.2)

where D2D
0
2 � D02D2 and W 1 and W g are transverse

functions. At this stage it is shown that calculation of
W �x; x0� could be initiated from either x or x0 without
any difference that means each choices result in the same
equation for W �x; x0�. We first consider the choice x. In
this case W �x; x0� must satisfy the Eq. (3.19), therefor it is
easy to show that

 

8>><
>>:
�Q0 � 6��0W 0 � �4S0�0:W 1; �I�

�Q1 � 2�W 1 � 0; �II�

�Q1 � 6�D02W g � 2S0�x:�0�W 1 �III�:

(5.3)

Using the condition @:W 1 � 0; Eq. (5.3)-I leads to

 �0W 0�x; x
0� � �2

3S
0�0:W 1�x; x

0�: (5.4)

The solution of the Eq. (5.3)-II can be written as the
combination of two arbitrary scalar two-point functions
W 2 and W 3 in the following form:

 W 1 � �:�0W 2 �D1D
0
1W 3:

Substituting this in Eq. (5.3)-II and using the divergence-
less condition we have
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 D01W 3 � �
1
2�2�x:�

0�W 2 � �0: �@W 2�; Q0W 2 � 0:

This means that W 2 is the massless minimally coupled
two-point function. Putting W 2 �Wmc, we have

 W 1�x; x0� � ��:�0 �
1
2D1��0: �@� 2x:�0��W mc�x; x0�:

(5.5)

Similar to (4.11) using the following identity

 �Q0 � 6��1�x:�0�W 1 �
1
6��x:�

0�W 1 �
1
9D1��0:W 1��;

the Eq. (5.3)-III leads to

 D02W g�x; x0� �
1
3S
0�19D1�0:� x:�0�W 1�x; x0�: (5.6)

According to Eqs. (5.4), (5.5), and (5.6) it turns out that
the two-point function can be written in the following
form:

 W ���0�0 �x; x0� � ����0�0 �x; @; x0; @0�W mc�x; x0�; (5.7)

where
 

����0�0 �x;@;x0; @0� � �
2
3S
0��0:��:�0 � 1

2D1��0: �@� 2�0:x��

�SS0�:�0��:�0 � 1
2D1��0: �@� 2�0:x��

� 1
3D2S

0�19D1�
0:� x:�0�

� ��:�0 � 1
2D1��

0: �@� 2�0:x��: (5.8)

On the other hand with the choice x0, the two-point
function (5.2) satisfies Eq. (3.19) (with respect to x0), and
we obtain

 

8>><
>>:
�Q00 � 6��W 0 � �4S�:W 1; �I�

�Q01 � 2�W 1 � 0; �II�

�Q01 � 6�D2W g � 2S�x0:��W 1 �III�:

Using the condition @0:W 1 � 0; we have
 

�W 0�x; x
0� � �2

3S�:W 1�x; x
0�;

D2W g�x; x0� �
1
3S�

1
9D
0
1�:� x

0:��W 1�x; x0�;

W 1�x; x0� � ��0:��
1
2D
0
1��: �@

0 � 2x0:���Wmc�x; x0�;

where the primed operators act on the primed coordinates
only. In this case, the two-point function can be written in

the following form:

 W ���0�0 �x; x
0� � �0���0�0 �x; @; x

0; @0�W mc�x; x
0�;

where
 

�0���0�0 �x;@;x
0; @0� � �2

3S�
0�:��0:�� 1

2D
0
1��: �@

0 � 2�:x0��

�SS0�:�0��:�0 � 1
2D
0
1��: �@

0 � 2�:x0��

� 1
3D
0
2S�

1
9D
0
1�:� x

0:��

� ��:�0 � 1
2D
0
1��: �@

0 � 2�:x0��:

In a few steps ahead, it is shown that this equation is none
other than Eq. (5.8).

The minimally coupled scalar field two-point function in
the Gupta-Bleuler vacuum is [39]

 W mc�x; x0� �
i

8�2 
�x
0 � x00���1�Z�x; x0��

� #�Z�x; x0� � 1��; (5.9)

with

 
�x0 � x00� �

8><
>:

1 x0 > x00;
0 x0 � x00;
�1 x0 < x00:

(5.10)

Equations (5.4), (5.5), (5.6), and (5.9) after relatively
simple and straightforward calculations can be written as
(Appendix A)

 �0�0�0W 0�x; x
0� �

1

3
S0
�
�0�0�0 �

4

1�Z2 �x:�
0
�0 �

� �x:�0�0 �
�
Z
d
dZ

Wmc�Z�; (5.11)

 

W 1��0 �x; x
0� �

1

2

�
3�Z2

1�Z2 �x
0:����x:�

0
�0 � �Z���:�

0
�0 �

�

�
d
dZ

W mc�Z�; (5.12)

 

D2�D
0
2�0W g��0 �x; x

0� � �
1

54�1�Z2�2
SS0

�
Z�1�Z2��1� 3Z2�����

0
�0�0 �

12Z

1�Z2 �21� 2Z2 � 3Z4��x0:����x
0:���

� �x:�0�0 ��x:�
0
�0 � � 12Z�1�Z2��0�0�0 �x

0:����x0:��� � 24Z�2�Z2�����x:�0�0 ��x:�
0
�0 �

�Z�1�Z2��17� 9Z2����:�
0
�0 ����:�

0
�0 � � �79� 62Z2 � 45Z4����:�

0
�0 ��x:�

0
�0 ��x

0:���
�

�
d
dZ

Wmc�Z�; (5.13)

where

 Q0Wmc�Z� �
3i

8�2 
�x
0 � x00���1�Z��1�Z�� � 0:
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Substituting Eqs. (5.11), (5.12), and (5.13) in (5.2) yields
 

W ���0�0 �x; x0� � �
2Z

27�1�Z2�2
SS0

�
�1�Z2��3Z2 � 2�����0�0�0 � 3�1�Z2��0�0�0 �x

0:����x0:���

� 3�1�Z2�����x:�
0
�0 ��x:�

0
�0 � �

3

1�Z2 �21� 2Z2 � 3Z4��x0:����x
0:����x:�

0
�0 ��x:�

0
�0 �

� �1�Z2��11� 9Z2����:�
0
�0 ����:�

0
�0 � �

2

Z
�20�Z2 � 9Z4����:�

0
�0 ��x:�

0
�0 ��x

0:���
�
d
dZ

Wmc�Z�;

(5.14)

in which we have

 

d
dZ

Wmc�Z� �
i

8�2

Z� 2

Z� 1

�x0 � x00��Z� 1�: (5.15)

Equation (5.14) is the explicit form of the two-point func-
tion in ambient space notations. This equation satisfies the
traceless and divergenceless conditions
 

�@:W � �@0:W � 0 and

W �0
���0 �x; x

0� �W �
��0�0 �x; x

0� � 0:

The two-point function (5.14) is obviously dS-invariant
and free of any divergences. The ambient space notation
clearly exhibits this fact that the gravitational field, K��,
can be written in terms of the minimally coupled scalar
field directly Eq. (4.13). It should be noted that the Gupta-
Bleuler quantization of the minimally coupled scalar field,
irrespective of choice of ambient space notation, does
completely eliminate the infrared divergence in the scalar
two-point function [10]. In Appendix F, the intrinsic coun-
terpart of (5.14) is calculated.

VI. CONCLUSION

It was pointed out that Einstein’s theory of gravitation,
in the background field method, g�� � gBG

�� � h��, can be
considered as a massless symmetric tensor field of rank-2
on a fixed background, such as dS space. Contrary to the
Maxwell equation, the Einstein’s equation of gravitation,
as well as equation of h��, is not conformally invariant.

In this paper we used Dirac’s six-cone formalism to
obtain CI massless spin-2 wave equation in dS space which
corresponds to UIRs of the dS group [n � 2 in (3.3)]. It
was shown that the intrinsic counterpart of CI wave equa-
tion with conformal-degree �1 [n � 1 in (3.3)] is similar
to what Barut and Xu have obtained in Minkowski space.
This, however, is not a physical state of the dS group. Barut
and Böhm [19] have shown that for the physical represen-
tation of the conformal group, the value of the conformal
Casimir operator is 9. But according to (3.1) for the tensor
field of rank-2 and conformal-degree 0, this value becomes
8 on the cone. Therefore, the tensor field of rank-2 does not
correspond to the UIRs of the conformal group (physical
state of group). In other words, the tensor field that carries
the physical representations of the conformal group must
be a tensor field of higher rank. In the forthcoming paper

we will consider a mixed symmetry rank-3 tensor field
�abc with degree 0 that transforms simultaneously under
the action of dS and conformal groups.

In addition to obtaining the CI wave equation in dS
space, we have shown that the physical part of the linear
gravity, in ambient space notations, can be written as the
product of a generalized symmetric rank-2 polarization
tensor and a massless minimally coupled scalar field.
Using the Gupta-Bleuler quantization we have calculated
the physical graviton two-point function, which is dS-
invariant and free of any divergences. This two-point func-
tion can be used to calculate the quantum effects of gravity
in the interaction cases, which will be considered in forth-
coming papers.
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APPENDIX A: SOME USEFUL RELATIONS

In this appendix, some useful relations are given. The
action of the Casimir operatorsQ1 andQ2 can be written in
the more explicit form

 Q1K� � �Q0 � 2�K� � 2x�@:K � 2@�x � K; (A1)

 

Q2K�� � �Q0 � 6�K�� � 2Sx�@ �K� � 2S@�x �K�

� 2���K
0 (A2)

 Q1D1 � D1Q0; (A3)

 �Q0 � 2�x� � x�Q0 � 6x� � 2 �@�; (A4)

 

�@ ��Q0 � 2� � Q0
�@� � 8 �@� � 2Q0x� � 8x�; (A5)

 x�Q0�Q0 � 2� � �Q0 � 2��Q0x� � 4x� � 4 �@��; (A6)

 �Q0Q2; Q2Q0�K�� � 4S�x� � �@�� �@:K�; (A7)

the transverse divergence �@� can be written with respect to
@� as the following:

 

�@ � � @� � x�x � @ � @� � x� � x � @x�: (A8)
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To obtain the two-point function, the following identities
are used:

 

�@ �f�Z� � ��x0:���
df�Z�
dZ

; (A9)

 ����0�� � �::�0 � 3�Z2; (A10)

 �x:�0�0 ��x:�
0�0 � � Z2 � 1; (A11)

 �x:�0���x
0:��� � Z�1�Z2�; (A12)

 

�@ ��x:�0�0 � � ��:�0�0 ; (A13)

 

�@ ��x0:��� � x��x0:��� �Z���; (A14)

 

�@ ����:�0�0 � � x����:�0�0 � � ����x:�
0
�0 �; (A15)

 �0��0 �x
0:��� � �Z�x:�

0
�0 �; (A16)

 �0��0 ���:�
0
�0 � � �0�0�0 � �x:�

0
�0 ��x:�

0
�0 �; (A17)

 Q0f�Z� � �1�Z2�
d2f�Z�

dZ2 � 4Z
df�Z�
dZ

: (A18)

APPENDIX B: CI WAVE EQUATION WITH n � 1

We show that the CI wave equation for the tensor field
�ab with n � 1 does not transform according to the UIRs
of the dS and conformal groups.

The CI system (3.3) with n � 1, i.e. for the tensor field
with degree �1, reads as

 �Q0 � 2���� � 0; (B1)

using the transversality condition, ua�ab � 0, we get

 �Q0 � 2�x:�� � 0; (B2)

 �Q0 � 2�x:�:x � 0: (B3)

Note that the relation (3.3) is used.
Multiplying (B1) and (B2) by x� results in

 2x:�� � � �@ ���; (B4)

 2x:�:x � � �@ ��:x: (B5)

The divergence of K�� leads to

 

�@ �K� � �@ ��� � 5x:�� � 5x�x:�:x� x� �@ �� � x:

(B6)

Combining the Eq. (B4)–(B6) leads to

 

�@ �K� � 3�x:�� � x�x:�:x�: (B7)

After some calculations one finds
 

�Q0 � 2�K�� � 2� �@� � 2x��x:�� � 2� �@� � 2x��x:��

� 2� �@� � 2x��x�x:�:x� 2x�� �@� � 2x��x �� � x � 0:

(B8)

Substituting Eq. (B7) into Eq. (B8) leads exactly to (3.10).
In order to express Eq. (3.9) in terms of the intrinsic
coordinates the following relation is used [35]:
 

r�r� � � � r�h�1����l �
@x�

@X�
@x�

@X�
� � �

@x�

@X�
@x�1

@X�1
� � �

�
@x�l

@X�l
Trpr �@�

� Trpr �@� � � �Trpr �@�K�1����l

where the transverse projection defined by

 �TrprK��1����l � ��1
�1
� � � ��l�lK�1����l

guarantees the transversality in each index. Applying this
procedure to a transverse second rank, symmetric tensor
field, leads to

 r�r�h�� �
@x�

@X�
@x�

@X�
@x�

@X�
@x�

@X�
Trpr �@�Trpr �@�K��;

where we have
 

Trpr �@�Trpr �@�K��� �@�� �@�K���x�K���x�K���

�x�� �@�K���x�K���x�K���

�x�� �@�K���x�K���x�K���

�x�� �@��x�K���x�K���:

Thus we can write

 r�r
�h�� � �h��

! �@� �@�K�� � 2K�� � 2Sx� �@ �K�; (B9)

 r�r � h� ! �@� �@ �K� � x� �@ �K�; gdS�� ! ���:

(B10)

Using the above statements and Q0 � � �@� �@� the in-
trinsic counterpart of (3.10) can be easily derived.

APPENDIX C: SOME DETAILS ABOUT EQS. (3.15)
AND (3.16)

The condition (3.14) for the tensor field with degree zero
leads to

 @:�� � �x � @x ���; (C1)

 @:�5 � �x � @x ��5: (C2)

Combining (3.13) and (C2) results in

 @:�:x� x � @x:�:x � 0: (C3)
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In this case we rewrite (B6) in the following form:

 

�@:K� � 4���:x� x�x:�:x� � � �@:�� � x:��

� x�x:�:x� x� �@:�:x�: (C4)

According to relations (A8), (C1), and (C3), the second
parenthesis vanishes, and therefore we get Eq. (3.15).

Finally according to (3.15) and (A1), we can write the
following relations for the vector field �@:K�:

 Q1
�@:K� � �Q0 � 2� �@:K� � 2x� �@: �@:K; (C5)

 �Q0 � 2� �@:K� � 4��Q0 � 2�x:�� � �Q0 � 2�x�x:�:x�:

(C6)

After some calculation it is easy to show that
 

�Q0� 2��x:��� x�x:�:x� � �
1
6�D1�Q0� 4D1�� 12x��

� � �@:�:x� 4x:�:x�: (C7)

Note that

 

�@: �@:K � 4� �@:�:x� 4x:�:x�: (C8)

By substituting (3.15) and (C8) into (C7), we get (3.16).

APPENDIX D: DETAILS OF CALCULATION OF
EQ. (3.17)

For symmetric rank-2 field �ab, the CI system (3.12)
results in

 Q0�Q0 � 2���� � 0; Q0�Q0 � 2��55 � 0: (D1)

Using conditions K0 � 0 and (3.13), we get

 Q0�Q0 � 2�x:�:x � 0; (D2)

 Q0�Q0 � 2�x:�� � 0: (D3)

Taking the divergence of (3.16) leads to

 Q0�Q0 � 2� �@:�:x � 0: (D4)

The action of operator Q0�Q0 � 2� on the dS field can be
written in more explicit form:
 

Q0�Q0 � 2�K�� � Q0�Q0 � 2�Sx��� � x

�Q0�Q0 � 2�x�x�x �� � x: (D5)

According to (A4) and (A5), the above equation can be
written as follows:

 Q0�Q0 � 2�K�� � �4�3x� � �@���Q0 � 2��� � x

� 4�3x� � �@���Q0 � 2��� � x

� 4x��3x� � �@���Q0 � 2�x �� � x

� 4�3x� � �@���Q0 � 2�x�x �� � x;

(D6)

or we can write

 Q0�Q0 � 2�K�� � �4�3x� � �@���Q0 � 2��� � x

� �3x� � �@���Q0 � 2� �@ �K�

� 4x��3x� � �@���Q0 � 2�x �� � x:

(D7)

Note that identity (3.15) is used.
Multiplying (D3) by x� results in

 �Q0 � 2��x:�:x� �@:�:x� � 0: (D8)

Substituting the divergence of (3.15) into the above equa-
tion leads to

 �Q0 � 2�x:�:x � 1
12�Q0 � 2� �@ � �@ �K: (D9)

So we can rewrite (D7) as follows:

 �Q0 � 2�Q0K�� � �4�3x� � �@���Q0 � 2��� � x

� �3x� � �@���Q0 � 2� �@ �K�

� 1
3x��3x� � �@���Q0 � 2� �@: �@:K:

(D10)

Multiplying the above equation by x� leads to
 

�Q0 � 2��� � x �
1
4�Q0 � 2� �@ �K� �

1
3x� �@ � �@ �K

� 1
12x��Q0 � 2� �@ � �@ �K

� 1
6

�@� �@ � �@ �K: (D11)

Finally combining (D10) and (D11) leads to
 

�Q0 � 2�Q0K�� �Q0Sx� �@ �K� �Q0S �@� �@ �K�

� 2Sx� �@ �K� � 2S �@� �@ �K� � 4x�x� �@: �@:K

� 1
3S

�@� �@� �@: �@:K� 5
3Sx� �@� �@: �@:K

� 2��� �@: �@:K� 1
3���Q0

�@: �@:K � 0: (D12)

It is easy to show that if we rewrite Eq. (3.17) in terms of
Q0, we will get back exactly to Eq. (D12). Note that for this
calculation the following relations have been used:

 �Q2 � 4��Q2 � 6�K�� � Q0�Q0 � 2�K��

� 4S�Q0x� �@:K� � 3x� �@:K�

� �@� �@:K� � x�x� �@: �@:K�;

(D13)

 

�Q2 � 4�D2�@2:K� � S��3Q0x� �@:K� �Q0
�@� �@:K�

� 6 �@� �@:K� � 14x� �@:K�

� 2x�x� �@: �@:K� 2��� �@: �@:K

� 2x� �@� �@: �@:K�; (D14)

 D2�D1�
�@: �@:K � S� �@� �@� � x� �@�� �@: �@:K: (D15)
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APPENDIX E: DETAILS ON EQ. (4.12)

Using (A1), it is easy to show that

 D1�Z1:K� �
1
6�Q1 � 6��D1�Z1:K��; (E1)

 x�Z1:K� �
1
6�Q1 � 6��x�Z1:K��; (E2)

 Z1: �@K �
1
6�Q1 � 6��Z1: �@K �

1
3D1�Z1:K��; (E3)

 �Q1 � 6���x:Z1�K� � 2�x�Z1:K� � Z1: �@K�: (E4)

The conditions x:K � �@:K � 0 and Q0K � 0, are used to
obtain the above equations.

Substituting Eqs. (E2) and (E3) in (E4) we have
 

�Q1 � 6���x:Z1�K� �
1
3�Q1 � 6��13D1�Z1:K�

� x�Z1:K� � Z1: �@K�; (E5)

or

 �x:Z1�K �
1
3�

1
3D1�Z1:K� � x�Z1:K� � Z1: �@K�: (E6)

Finally according to Eqs. (E1) and (E4), we obtain

 �x:Z1�K �
1
6�Q1 � 6��19D1�Z1:K� � �x:Z1�K�: (E7)

This automatically leads to Eq. (4.12).

APPENDIX F: TWO-POINT FUNCTION IN DS
INTRINSIC COORDINATES

In order to compare our results with the work of the other
authors [12,13], we write the two-point function in dS
space (maximally symmetric) in terms of bitensors.
These are functions of two points �x; x0� and behave like
tensors under coordinate transformations at each points.

As mentioned in [4], any maximally symmetric bitensor
can be expressed as a sum of products of three basic
tensors. The coefficients in this expansion are functions
of the geodesic distance ��x; x0�, that is the distance along
the geodesic connecting the points x and x0 [note that
��x; x0� can be defined by an unique analytic extension
also when no geodesic connects x and x0]. In this sense,
these fundamental tensors form a complete set. They can
be obtained by differentiating the geodesic distance:

 n� � r���x; x0�; n�0 � r�0��x; x0�;

and the parallel propagator

 g��0 � �c�1�Z�r�n�0 � n�n�0 :

The geodesic distance is implicitly defined for Z � �x �
x0, by (1) Z � cosh��� if x and x0 are timelike separated,

(2) Z � cos��� if x and x0 are spacelike separated. The
basic bitensors in ambient space notations are found
through

 

�@ ���x; x0�; �@0�0��x; x
0�; ��:�0�0 ;

restricted to the hyperboloid by

 T ��0 �
@x�

@X�
@x0�

0

@X0�
0 T��0 :

For Z � cos���; one can find
 

n� �
@x�

@X�
�@���x; x

0� �
@x�

@X�
�x0 � ������������������

1�Z2
p ;

n�0 �
@x0�

0

@X0�
0

�@�0��x; x0� �
@x0�

0

@X0�
0

�x � �0�0 ����������������
1�Z2
p ;

r�n�0 �
@x�

@X�
@x0�

0

@X0�
0 �

%
��
0�0

�0
�@% �@�0��x; x0�

� c�Z�
�
n�n�0Z�

@x�

@X�
@x0�

0

@X�
0 �� � �0�0

�
;

with c�1�Z� � � 1���������
1�Z2
p . For Z � cosh���, n� and n� are

multiplied by i and c�Z� becomes � i���������
1�Z2
p . In both cases

we have

 g��0 � �Z� 1�n�n�0 �
@x�

@X�
@x0�

0

@X0�
0 �� � �

0
�0 ;

and the two-point functions are related through

 Q���0�0 �
@x�

@X�
@x�

@X�
@x0�

0

@X0�
0

@x0�
0

@X0�
0 W ���0�0 :

Considering the above expressions the two-point func-
tion (5.14) takes the following form:
 

Q���0�0 �X;X0� ��
2

27�1�Z2�
SS0�Z�3Z2� 2�g��g0�0�0

� 3Z�1�Z2��g0�0�0n�n��g��n�0n�0 �

�Z�11� 9Z2�g��0g��0 � �40� 32Z

� 20Z2� 6Z3� 9Z4� 9Z5�n�n�n�0n�0

� ��40� 9Z2� 9Z4�g��0n�n�0 �

�
d
dZ

W mc�Z�: (F1)

The two-point function (F1) is obviously dS-invariant, and
appearance of the factors Z�Z� 1�, Z2�Z� 1�,
Z3�Z� 1� make it free of any divergences.
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