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We investigate the intermediate and late-time behavior of the massive Dirac spinor field in the
background of static spherically symmetric brane-world black hole solutions. The intermediate asymp-
totic behavior of the massive spinor field exhibits a dependence on the field’s parameter mass as well as
the multiple number of the wave mode. On the other hand, the late-time behavior power-law decay has a
rate which is independent of those factors.
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I. INTRODUCTION

Nowadays it is widely believed that extra dimensions
play a significant role in the construction of a unified
theory of the four fundamental forces of nature. In such
models it is often the case that our Universe can be treated
as a submanifold to which the standard model is confined,
embedded in a higher dimensional spacetime. If one takes
the volume of the extra dimensions spacetime to be suffi-
ciently large, one is able to lower the fundamental quantum
gravity scale to the electrovac scale of the order of a TeV. It
is thus of interest to construct black hole solutions in such
brane-world models. The difficulties arising in such at-
tempts stem from the fact that, in general, brane dynamics
generates Weyl curvatures which in turn backreact on the
brane dynamics. We can look at the problem in question by
projecting the Einstein equations onto the brane. This
approach was introduced in Refs. [1,2]. It is also of interest
to think of a four-dimensional brane-world black hole
solution as a slice that intersects a bulk black hole [3–5].
In Ref. [6] the possibility was raised of finding a regular
Randall-Sundrum (RS) brane-world on which a static
spherically symmetric black hole, surrounded by realistic
matter, is located. This was achieved by slicing a fixed five-
dimensional bulk black hole spacetime. On the other hand,
studies of spherically symmetric brane-world solutions
with induced gravity were extended to include nonlocal
bulk effects [7]. The scalar as well as the axial gravitational
perturbations of what we shall call ‘‘brane-world black
holes’’ were studied in Ref. [8].

An important question for black hole physics is the
investigation of how various fields decay in the spacetime
outside a collapsing body. The importance arises from the
fact that, regardless of the details of the gravitational
collapse and features of the collapsing body, the outcome
of this process, i.e. the resultant black hole is characterized

by just a few parameters such as mass, charge, and angular
momentum. The first researches in this direction were
carried by Price in Ref. [9] while the scalar perturbations
on the Reissner-Nordstrøm (RN) background were consid-
ered in [10]. It was found that charged scalar hair decayed
more slowly than neutral hair [11–13], while the late-time
tails in the gravitational collapse of a massive field in the
background of the Schwarzschild solution were reported
by Burko [14] and in the Reissner-Nordstrøm solution at
intermediate late-time were considered in Ref. [15]. The
very late-time tails of the massive scalar fields in the
Schwarzschild and nearly extremal Reissner-Nordstrøm
black holes were obtained in Refs. [16,17]. It was shown
that the oscillatory tail of scalar field decays like t�5=6 at
late-time. The power-law tails in the evolution of a charged
massless scalar field around the fixed background of a
dilaton black hole were studied in Ref. [18], while the
case of a massive scalar field was treated in [19]. The
analytical proof of the intermediate and late-time behavior
of that in the case of dilaton gravity with arbitrary coupling
constant was provided in Ref. [20]. On the other hand, the
problem of the late-time behavior of massive Dirac fields
were studied, respectively, in the spacetime of the
Schwarzschild, Reissner-Nordstrøm, and Kerr-Newman
black hole [21–23]. Reference [24] was devoted to the
analytical studies of the intermediate and late-time decay
pattern of massive Dirac hair on a spherically symmetric
dilaton black hole, in dilaton gravity theory with arbitrary
coupling constant �.

The growth of interest in unification scheme such as
superstring/M theory triggered in turn an interest in the
decay of hair in the spacetimes of n-dimensional black
holes. The no-hair and uniqueness property for static holes
is by now quite well established [25]. The decay mecha-
nism for massless scalar hair in the n-dimensional
Schwarzschild spacetime was given in Ref. [26]. The
decay pattern of scalar massive fields in the spacetime of
the n-dimensional static charged black hole was discussed
in Ref. [27]. It was shown that the intermediate asymptotic
behavior of the hair in question was of the form
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t��l�n=2�1=2�. A numerical experiment for n � 5 and n � 6
confirmed these results. In Ref. [28] the authors obtained
fermion quasinormal modes for the massless Dirac fermion
in the background of the higher dimensional
Schwarzschild black hole.

As far as the brane-world black holes are concerned,
Ref. [29] was devoted to studies of the intermediate and
late-time behavior of the massive scalar field in the back-
ground of a static spherically symmetric brane-world black
hole. Among other things, it was shown that the late-time
power-law decay rate is proportional to t�5=6. The massless
fermion excitations on a tensional 3-brane embedded in
six-dimensional spacetime were studied in [30].

The main aim of our paper will be to clarify what kind of
mass-induced behavior plays the dominant role in the
asymptotic late-time tails as a result of decaying massive
Dirac spinor hair in the background of the brane-world
black hole.

The paper is organized as follows. In Sec. II we gave the
analytic arguments concerning the decay of massive Dirac
hair in the background of the considered black hole.
Section III will be devoted to a summary and discussion.

II. THE DECAY OF DIRAC HAIR IN THE
BACKGROUND OF THE BLACK HOLE BRANE

SOLUTION

A. Spinor fields

We shall begin our analysis by recalling the general
properties of the massive Dirac equation in an
n-dimensional spherically symmetric background [24].
Namely, we shall study the massive Dirac equation given
by the relation

 ���r� �m� � 0; (1)

where r� is the covariant derivative r� � @� �
1
4!

ab
� �a�b, � and a are tangent and spacetime indices.

There are related by ea�, a basis of orthonormal one-forms.
The quantity !ab

� � !ab are the associated connection
one-forms satisfying dea �!b

a ^ eb � 0. On the other
hand, �� are Dirac matrices fulfilling the relation
f�a; �bg � 2�ab.

If a metric takes the product form:

 g��dx�dx� � gab�x�dxadxb � gmn�y�dymdyn; (2)

then Dirac operator 6D satisfies a direct sum decomposition

 6D � 6Dx � 6Dy: (3)

If one defines a Weyl conformally rescaled metric by
g�� � �2 ~g�� one finds that

 6D � ���1=2��n�1� ~6D ~ ;  � ���1=2��n�1� ~ : (4)

Because a spherically symmetric line element is neces-
sarily conformally flat, a static metric, spherically sym-

metric metric of the form

 ds2 � �A2dt2 � B2dr2 � C2d�2
n�2; (5)

where A � A�r�, B � B�r�, C � C�r� are functions only of
the radial variable r. The transverse metric d�2

n�2 depends
neither on t nor r. It is conformal to an ultrastatic metric,
the factor of which is conformally flat. This allows us to
solve the Dirac equation by a succession of conformal
transformations and direct sum decompositions. The as-
sumption that � is a spinor eigenfunction on the �n�
2�-dimensional transverse manifold �, leads to the equa-
tion:

 6D�� � ��: (6)

In the case of the �n� 2�-dimensional sphere the eigen-
values for spinor � were found in Ref. [31]. They imply

 �2 �

�
l�

n� 2

2

�
2
; (7)

where l � 0; 1; . . .
Having in mind the properties given above, one may

suppose that

 6D � m ; (8)

and take the form of the spinor  to be

  �
1

A1=2

1

C�n�2�=2
� ��: (9)

If one carries out the explicit calculations it turns out that

 ��0@t � �
1@x�� � A

�
m�

�
C

�
�; (10)

where we have denoted by

 dy �
B
A
dr; (11)

the radial optical distance (i.e., the Regge-Wheeler radial
coordinate). On the other hand, the gamma matrices �0, �1

satisfy the Clifford algebra in two spacetime dimensions.
One should remark that having in mind a Yang-Mills gauge
field A�, an identical result can be provided on the trans-
verse manifold �. Namely, we have

 6D�;A�� � ��; (12)

where 6D�;A� is the Dirac operator twisted by the connec-
tion A�.

Finally, if we take into account that  has the form as
 / e�i!t one obtains a second order equation for �, that is

 

d2�

dy2
�!2� � A2

�
m�

�
C

�
2
�: (13)
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B. Dadhich-Maartens-Papadopoulous-Rezania
(DMPR) brane-world black hole solution

We treat first the case of the static spherically symmetric
black hole localized on a three-brane in five-dimensional
gravity in the Randall-Sundrum model [32]. Having in
mind the effective field equations on the brane one gets
the following brane-world black hole metric [1]:
 

ds2 � �

�
1�

2M

M2
pr
�

q2

~M2
pr2

�
dt2 �

dr2

�1� 2M
M2
pr
� q2

~M2
pr2�

� r2d�2; (14)

where q is a dimensionless tidal parameter arising from the
projection onto the brane of the gravitational field in the
bulk, ~Mp is a fundamental five-dimensional Planck mass
while Mp is the effective Planck mass in the brane-world.
Typically, one has ~Mp � Mp. In what follows we shall
concentrate on the negative tidal charge which is claimed
[1] to be the more natural case. Thus, the roots of g00 � 0
are respectively r� and r�. Namely, they imply

 r	 �
M
~M2
p

�
1	

�����������������������
1�

qM4
p

M2 ~M2
p

vuut �
: (15)

Expressing the negative charge asQ, for simplicity, we can
rewrite the roots as follows:

 r	 � M
�
1	

����������������
1�

Q

M2

s �
: (16)

Our main aim will be to analyze the time evolution of a
massive Dirac spinor field in the background of the brane-
world black hole by means of the spectral decomposition
method. In Refs. [15,33] it was argued that the asymptotic
massive tail is due to the existence of a branch cut placed
along the interval �m 
 ! 
 m. Thus, an oscillatory
inverse power-law behavior of the massive spinor field
arises from the integral of the Green function ~G�y; y0;!�
around the branch cut. Consider, next, the time evolution of
the massive Dirac spinor field provided by the relation

 ��y; t� �
Z
dy0�G�y; y0; t��t�y

0; 0� �Gt�y; y
0; t���y0; 0��;

(17)

for t > 0, where the Green’s function G�y; y0; t� implies

 

�
@2

@t2
�
@2

@y2 � V
�
G�y; y0; t� � ��t���y� y0�: (18)

By means of the Fourier transform [33] ~G�y; y0;!� �R
1
0� dtG�y; y

0; t�ei!t, Eq. (18) can be reduced to an ordinary
differential equation. The Fourier transform is well defined
for Im!  0, while the corresponding inverse transform
yields

 G�y; y0; t� �
1

2	

Z 1�i

�1�i


d! ~G�y; y0;!�e�i!t; (19)

for some positive number 
. By virtue of the above the
Fourier component of the Green’s function ~G�y; y0;!� can
be rewritten in terms of two linearly independent solutions
for the homogeneous equation. Namely, it reduces to

 

�
d2

dy2 �!
2 � ~V

�
�i � 0; i � 1; 2; (20)

where ~V � A2�m� �
C�

2.
The boundary conditions for �i are described by purely

ingoing waves crossing the outer horizon H� of the static
black hole �1 ’ e�i!y as y! �1, while �2 should be

damped exponentially at i�. Thus, �2 ’ e�
������������
m2�!2
p

y at y!
1.

Suppose now that the observer and the initial data are
situated far away from the considered brane black hole. Let
us rewrite Eq. (20) in the more convenient form using the
change of variables

 �i �
�

�1� r�
r �

1=2�1� r�
r �

1=2
; (21)

where i � 1, 2. Then, we expand Eq. (20) as a power series
of r	=r neglecting terms of order O��!=r�2� and higher.
We obtain the following:

 

d2

dr2
��

�
!2 �m2 �

2!2�r� � r�� �m2�r� � r�� � 2�m�1� r��
r

�
�2 � 2�mr� �m2r�r�

r2

�
� � 0: (22)

The solution of Eq. (22) may be obtained in terms of Whittaker functions. Two basic solutions are needed to construct the
Green function, with the condition that j ! j m, i.e., ~�1 � M�; ~��2 ~!r� and ~�2 � W�; ~��2 ~!r�. The parameters of them
imply
 

~� �
����������������������������������������������������������������
1=4� �2 � 2�mr� �m2r�r�

q
;

� �
!2�r� � r�� � �m�1� r�� �

m2

2 �r� � r��

~!
;

~!2 � m2 �!2:

(23)

Having all this in mind, we reach to the following form of the spectral Green function:
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 Gc�x; y; t� �
1

2	

Z m

�m
dw

�
~�1�x; ~!e	i�~�2�y; ~!e	i�

W� ~!e	i�

�
~�1�x; ~!�~�2�y; ~!�

W� ~!�

�
e�iwt

�
1

2	

Z m

�m
dwf� ~!�e�iwt; (24)

where W� ~!� stands for Wronskian.
Let us analyze first, the intermediate asymptotic behav-

ior of the massive spinor field with the range of parameters
M� r� t� M=�mM�2. The intermediate asymptotic
contribution to the Green function integral gives the fre-
quency equal to ~! � O�

���������
m=t

p
�, which in turns implies that

�� 1. Using the fact that � results from the 1=r term in
the massive spinor field equation of motion, it illustrates
the effect of backscattering off the spacetime curvature. In
the case under consideration the backscattering is negli-
gible. Thus, we find the following:

 f� ~!� �
22 ~��1���2 ~����12� ~��

~���2 ~����12� ~��
�1� e�2 ~��1�	i�

� �rr0��1=2�� ~� ~!2 ~�; (25)

where one applied the fact that ~!r� 1. We also have in
mind that f� ~!� can be approximated using the fact that
M�a; b; z� � 1 as z tends to zero. Consequently, the result-
ing spectral Green function reduces to the form as

 

Gc�r; r
0; t� �

23 ~���3=2�

~�
����
	
p

���2 ~����12� ~���� ~�� 1�

~���2 ~����12� ~��

� �1� e�2 ~��1�	i��rr0��1=2�� ~�
�
m
t

�
�1=2�� ~�

� J�1=2�� ~��mt�: (26)

Taking into account the limit when t� 1=m we conclude
that the spectral Green function yields

 

Gc�r; r0; t� �
23 ~��1

~�
����
	
p

���2 ~����12� ~���� ~�� 1�

~���2 ~����12� ~��

� �1� e�2 ~��1�	i��rr0��1=2�� ~�m ~�t�1� ~�

� cos
�
mt�

	
2
� ~�� 1�

�
: (27)

We remark that Eq. (27) exhibits an oscillatory inverse
power-law behavior. In our case the intermediate times of
the power-law tail depends only on ~� which in turn is a
function of the multiple number of the wave modes.

The other pattern of decay of massive spinor Dirac hair
is expected when �� 1, for the late-time behavior.
Namely, when the backscattering off the curvature is taken
into account. Under the assumption that �� 1, f� ~!� may
be rewritten in the form as

 f� ~!� �
��1� 2 ~����1� 2 ~��

2 ~�
�rr0�1=2�J2 ~��

������������
8� ~!r
p

�J�2 ~��
�������������
8� ~!r0
p

� � I2 ~��
������������
8� ~!r
p

�I�2 ~��
�������������
8� ~!r0
p

��

�
���1� 2 ~���2���2 ~����12� ~�� ��

2 ~���2 ~����12� ~�� ��
�rr0�1=2��2 ~��J2 ~��

������������
8� ~!r
p

�J2 ~��
�������������
8� ~!r0
p

�

� e�2 ~��1�I2 ~��
������������
8� ~!r
p

�I2 ~��
�������������
8� ~!r0
p

��; (28)

where we used the limit M�; ~��2 ~!r� � ��1� 2 ~���
�2 ~!r�1=2�� ~�J ~��

������������
8� ~!r
p

�. One should notice that the first
part of Eq. (28), the late-time tail, is proportional to t�1. It
occurs that we shall concentrate on the second term of the
right-hand side of Eq. (28). For the case under considera-
tion it can be brought to the form:

 Gc�2��r; r0; t� �
M
2	

Z m

�m
dwei�2	��wt�ei’; (29)

where the phase ’ is defined by the relation

 ei’ �
1� ��1�2 ~�e�2	i�

1� ��1�2 ~�e2	i� ; (30)

while M is given by

 M �
���1� 2 ~���2���2 ~��

2 ~���2 ~��
�rr0�1=2

��J2 ~��
������������
8� ~!r
p

�J2 ~��
�������������
8� ~!r0
p

�

� I2 ~��
������������
8� ~!r
p

�I2 ~��
�������������
8� ~!r0
p

��: (31)

The saddle point integration allows one to find accurately
the asymptotic behavior. This method is applicable in our
case because of the fact that at very late time both terms
eiwt and e2	� are rapidly oscillating, which in turn means
that the spinor waves are mixed states consisting of the
states with multipole phases backscattered by spacetime
curvature. Most of them cancel with each other which have
the inverse phase. The saddle point is found to exist at the
following value:
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 a0 �

�	�!2�r� � r�� � �m�1� r�� �
m2

2 �r� � r�����
2
p
m

�
1=3
:

(32)

Then, the resultant form of the spectral Green function
yields
 

Gc�r; r0; t� �
2
��
2
p��
3
p m2=3�	�5=6�2m2�r� � r��

� 2�m�1� r���m
2�r� � r���

1=3�mt���5=6�

� sin�mt�~��r;m�~��r0;m�: (33)

The above form of the spectral Green function concludes
our investigations of the late-time behavior of massive
Dirac hair in the background of the DMPR brane-world
black hole. The form of it envisages the fact that the late-
time behavior of the fields in question is independent on
the field parameter mass as well as the number of the wave
mode. The late-time pattern of decay is proportional to
�5=6.

C. Casadio-Fabbri-Mazzacurati (CFM) brane black
hole solution

Our next task will be to consider a general class of the
spherically symmetric static solution to five-dimensional
equations of motion by considering the general form of the
line element provided by the metric

 ds2 � �A�r�dt2 �
1

B�r�
dr2 � r2d�2: (34)

Casodio et al. [2] obtained two types of analytic solutions
by fixing either A�r� or B�r�. The solution will be given in
terms of the Arnowitt-Deser-Misner (ADM) mass M and
the parametrized post-Newtonian (PPN) parameter 
which affects the perihelion shift and the Nordtvedt effect
[34]. The momentum constraints are identically satisfied
by the metric coefficients and the Hamiltonian constraints
can be written out [2]. Setting A�r� � �1� 2M

r � the result-
ing metric yields

 ds2 � �

�
1�

2M
r

�
dt2 �

�1� 3M
2r �

�1� 2M
r ��1�

�M
2r �

dr2 � r2d�2;

(35)

where � � 4� 1. A convenient form of the equation of
motion for a massive Dirac field can be obtained by the
transformation:

 �i �
�1� 3M

2r �
1=4

�1� 2M
r �

1=2�1� �M
2r �

1=4
�; (36)

where i � 1, 2. As in the preceding section, let us expand
Eq. (18) as a power series ofM=r neglecting terms of order
O��!=r�2� and higher. It then follows directly that one has

 

d2

dr2 ��
�
!2 �m2 �

!2 ~a�m2 ~b� 2�m
r

�
�2 � �Mm�3� �� � 3

4M
2�m2

r2

�
� � 0; (37)

where ~a � M
2 �5� �� and ~b � m

2 ��� 3�.
Thus, the two basic solutions which are needed to con-

struct the Green function, with the condition that j ! j m
are given by ~�1 � M�; ~��2 ~!r� and ~�2 � W�; ~��2 ~!r�, with
the following parameters:

 ~� �

�������������������������������������������������������������������������������
1=4� �2 � �Mm�3� �� �

3

4
M2�m2

s
;

� �
!2 ~a�m2 ~b� 2�m

2 ~!
; ~!2 � m2 �!2:

(38)

The preceding section arguments can be repeated. The
conclusion is that the spectral Green function of the inter-
mediate late-time behavior of massive Dirac spinor fields
with the new parameters of the Whittaker functions given
by the relation (38). Consequently, the next step will be to
calculate the late-time behavior of the considered field. It
can be verified that the stationarity of the integral will be
achieved for the parameter

 a0 �

�
	�!2 ~a�m2 ~b� 2�m�

2
���
2
p
m

�
1=3
: (39)

By virtue of the saddle point method, on evaluating the
adequate expressions, we find that the spectral Green func-
tion provides the following:
 

Gc�r; r0; t� �
2
���
2
p���
3
p m2=3�	�5=6�4Mm2 � 2�m�1=3�mt���5=6�

� sin�mt� ~ �r;m� ~ �r0; m�: (40)

One can observe that the dominant role in the late-time
behavior is played by the term proportional to �5=6. On
the other hand, let us consider that B�r� � �1� 2�M

r � for
the other model of the brane-world black hole. It implies
the following line element:
 

ds2 �
1

�

�
�� 1�

��������������������
1�

2�M
r

s �
2
dt2 �

dr2

�1� 2�M
r �
� r2d�2:

(41)

Next, let us change coordinates as follows:

 �i �
�1=2�

��� 1�
�����������������
1� 2�M

r

q
�1=2�1� 2�M

r �
1=2
; (42)

where i � 1, 2, Then, expand Eq. (18) as a power series of
M=r neglecting terms of order O��!=r�2� and higher. It
yields
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d2

dr2��
�
!2�2�2�m2�

4�M�!2�1��2��m2�� 2�m
r

�
�2� 8mM��� 4M2m2�2

r2

�
�� 0; (43)

where �2 � ��� 1�2 � 3.
Equation (43) can be brought to the form of Whittaker’s

equation. Two basic solutions are needed to construct the
Green function. The additional requirement that j ! j m,
implies that they are of the form ~�1 � M�; ~��2 ~!r� and
~�2 � W�; ~��2 ~!r�. The parameters of the Whittaker func-
tions are given by
 

~� �
����������������������������������������������������������������������
1=4� �2 � 8mM��� 4M2m2�2

q
;

� �
4�M�!2�1� �2� �m2� � 2�m

2 ~!
;

~!2 � m2 �!2�2�2:

(44)

On the other hand, from the considerations presented in the
preceding case, the stationarity of 2	��!t can be ob-
tained for the parameter equal to

 a0 �

�
	�4�M�!2�1� �2� �m2� � 2�m�

2
���
2
p
m

�
1=3
: (45)

Summing it all up, one obtains the asymptotic late-time
spectral Green function in the form
 

Gc�r; r0; t� �
2
���
2
p���

3
p
�2���� 1�2 � 3�

m2=3�	�5=6

� �4�Mm2���� 1�2 � 3� � 2�m�1=3

� �mt���5=6� sin�mt�~��r;m�~��r0; m�: (46)

As in the previous cases the dominant role in the asymp-
totic late-time decay of massive Dirac hair in the spacetime

of the CFM brane black hole plays the oscillatory tail with
the decay rate proportional to t�5=6.

III. CONCLUSIONS

In our paper we have considered the problem of the
asymptotic tail behavior of massive Dirac hair in the space-
time of various brane-world black hole solutions. Our main
aim was to reveal what type of mass-induced behaviors
play the main role in the asymptotic intermediate and late-
time decay pattern of the black hole hair in question. In our
considerations we took into account two brane-world black
hole solutions given in Refs. [1,2]. It was shown that in the
case of intermediate asymptotic behavior one gets the
oscillatory power-law dependence which varied with the
multiple number of the wave mode l as well as with the
mass of the Dirac fields. As in the case of ordinary Einstein
static spherically symmetric black hole spacetimes this
pattern of decay is not the final one. At very late-times
the resonance backscattering off the spacetime curvature
emerges, which in turn is independent on the angular
momentum parameter and the field parameter m. The
late-time asymptotic pattern of the decay is of the form
t�5=6. It should be interesting to find a general proof of this
pattern of decay for massive Dirac fields in the spacetime
of the static spherically symmetric black object. The in-
vestigations in this direction are in progress and will be
published elsewhere.
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