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The properties of the electric field of a two-body system consisting of a Reissner-Nordström black hole
and a charged massive particle at rest have recently been analyzed in the framework of first order
perturbation theory following the standard approach of Regge, Wheeler, and Zerilli. In the present paper
we complete this analysis by numerically constructing and discussing the lines of force of the ‘‘effective’’
electric field of the sole particle with the subtraction of the dominant contribution of the black hole. We
also give the total field due to the black hole and the particle. As the black hole becomes extreme an effect
analogous to the Meissner effect arises for the electric field, with the ‘‘effective field’’ lines of the point
charge being expelled by the outer horizon of the black hole. This effect existing at the level of test field
approximation, i.e. by neglecting the backreaction on the background metric and electromagnetic field due
to the particle’s mass and charge, is here found also at the complete perturbative level. We point out
analogies with similar considerations for magnetic fields by Bičák and Dvořák. We also explicitly show
that the linearization of the recently obtained Belinski-Alekseev exact solution coincides with our solution
in the Regge-Wheeler gauge. Our solution thus represents a bridge between the test field solution, which
neglects all the feedback terms, and the exact two-body solution, which takes into account all the
nonlinearity of the interaction.
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I. INTRODUCTION

We recently presented a perturbative solution describing
a two-body system consisting of a Reissner-Nordström
black hole with mass M and charge Q and a charged
massive particle with mass m and charge q at rest [1,2].
The system of the Einstein-Maxwell equations was solved
by using the first order perturbation approach formulated
by Zerilli [3] based on the tensor harmonic expansion of
both the gravitational and electromagnetic fields and using
the Regge-Wheeler gauge condition [4]. Closed form ex-
pressions for both the perturbed metric and electromag-
netic field have been explicitly given, including the
contribution of both the ’’electromagnetically induced
gravitational perturbation’’ and ’’gravitationally induced
electromagnetic perturbation’’ [5,6].

The results discussed in [1,2] gave answers to a problem
whose investigation started long ago by Hanni and Ruffini

[7]. They obtained the solution for a charged particle at rest
in the field of a Schwarzschild black hole in the case of test
field approximation, i.e. under the conditions q=m� 1,
m � 0 and q�M, q� Q, by using the vector harmonic
expansion of the electromagnetic field in curved space. The
conditions above imply the solution of the Maxwell equa-
tions only in a fixed Schwarzschild metric, since the per-
turbation to the background geometry given by the
electromagnetic stress-energy tensor is second order in
the particle’s charge and the effect of the particle’s mass
is there neglected. As a result, no constraint on the position
of the test particle follows from the Einstein equations and
the Bianchi identities: the position of the particle is totally
arbitrary.

This same test field approximation has been applied to
the case of a Reissner-Nordström black hole by Leaute and
Linet [8]. In analogy with the Schwarzschild case, they
used the vector harmonic expansion of the electromagnetic
field holding the background geometry fixed. However,
this ‘‘test field approximation’’ is not valid in the present
context. In fact, in addition to neglecting the effect of the
particle mass on the background geometry, this treatment
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also neglects the electromagnetically induced gravitational
perturbation terms linear in the charge of the particle which
would contribute to modifying the metric as well.

The inclusion of the mass in such a simplified analysis,
neglecting the feedback terms, is due to Bonnor [9]. He
studied the condition for the equilibrium involving the
black hole and particle parameters Q, M, q, m as well
as their separation distance b. He found the constraint

 m �
qQb

Mb�Q2

�
1�

2M

b
�
Q2

b2

�
1=2
: (1)

It follows that equilibrium exists independent of the sepa-
ration if and only if the black hole is extreme, i.e.
jQj=M � 1, and the particle has the same ratio jqj=m �
1. In the general nonextreme case jQj=M< 1 there is
instead only one position of the particle which corresponds
to equilibrium, for given values of the charge-to-mass
ratios of the bodies. In this case the particle charge-to-
mass ratio satisfies jqj=m> 1, corresponding to a naked
singularity.

The simplest special case of a massive neutral particle at
rest near a Schwarzschild black hole has been studied in [2]
in the framework of first order perturbation theory. We first
showed explicitly that a perturbative solution for this prob-
lem free of singularities cannot exist. We then gave the
explicit form of the perturbation corresponding to a stable
configuration when there is the presence of a ‘‘strut’’
between the particle and the black hole, corresponding to
a conical singularity.

We then solved in [2] the general case of a charged
massive particle at rest in a Reissner-Nordström back-
ground by using both the vectorial and tensorial perturba-
tions to describe the electromagnetic and gravitational
perturbed fields, respectively. The perturbed metric we
derived is spatially conformally flat, free of singularities.
The perturbed electromagnetic field satisfies the Gauss’
theorem, a fact that guarantees the correctness of the
adopted boundary conditions. The equilibrium condition
for the system turned out to be the same as the condition (1)
obtained by Bonnor in his simplified approach. This is
surprising, since our result has been obtained within a
more general framework, and both the gravitational and
electromagnetic fields are different from those used by
Bonnor.

We analyze in the present paper the properties of the
perturbed electric field with special attention to the con-
struction of the lines of force of the electric field. The two
cases have been considered of the sole particle, with the
subtraction of the dominant contribution of the black hole,
as well as of the total field due to the black hole and the
particle. As the black hole becomes extreme an effect
similar to the ordinary Meissner effect for magnetic fields
in the presence of superconductors arises: the electric field
lines of the point charge are expelled outside the outer
horizon.

The analogous phenomenon of expulsion of a magnetic
field from extreme charged black holes was studied by
Bičák and Dvořák [10] in the same framework of first order
perturbation theory, still adopting the Regge-Wheeler
gauge. They used the Hamiltonian formalism developed
by Moncrief [11–13] instead of the Zerilli’s approach. The
equivalence between these two different treatments of
perturbations have been extensively investigated by
Bičák [14]. They constructed the axially symmetric mag-
netic field of a current loop in the equatorial plane of an
extreme Reissner-Nordström black hole as well as of a
magnetic dipole placed on the polar axis, and the electro-
magnetic and gravitational fields occurring when a general
nonextreme Reissner-Nordström black hole is placed in an
asymptotically uniform magnetic field, finding in all cases
that no line of force crosses the horizon as the black hole
approaches the extreme condition.

The analogies between the phenomenon of expulsion of
a magnetic field from extreme charged black holes and the
ordinary magnetic Meissner effect was analyzed by Bičák
and Ledvinka [15] also in the context of superconducting
branes and extremal black holes in string theory, starting
from developments of the evidence for the Meissner effect
for extremal black hole solutions in string theory and
Kaluza-Klein theory by Chamblin, Emparan and Gibbons
[16]. It is appropriate to remark that in contrast to the
magnetic Meissner effect considered by Bičák and
Dvořák, the effective ‘‘electric Meissner effect’’ consid-
ered in the present article has no classical analogue, as far
as we know, and is a pure general relativistic effect.

Recently an important progress has been achieved by
Belinski and Alekseev [17]. They have obtained an exact
two-body solution of the Einstein-Maxwell equations in
explicit analytic form for the system consisting of a
Reissner-Nordström black hole and a naked singularity,
by using the monodromy transform approach [18].
Technical details on the construction of the solution have
been given in [19]. They have shown that an equilibrium
without intervening struts or tensions is possible for such a
system at selected values of the separating distance be-
tween the sources.

More recently Manko [20] have recalled the existence
in the literature of an exact electrostatic multisoliton solu-
tion to the Einstein-Maxwell equations corresponding
to a Reissner-Nordström black hole in equilibrium with a
naked singularity [21], obtained by using the Sibgatullin’s
integral equation method [22]. In contrast to the Belinski-
Alekseev work, where an explicit analytic condition for the
equilibrium was obtained, the equilibrium configurations
were discussed in [21] only numerically. In fact, many
difficulties were encountered there in relating the set of
parameters of the solution to the physical parameters, i.e.
the physical masses and charges as well as the separation
distance between the bodies. Manko has indeed obtained in
[20] out of this formalism the analytic expression of the
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Belinski-Alekseev solution by very long algebraic
manipulations.

We show in the appendix that the Belinski-Alekseev
solution, once linearized with respect to the mass and
charge of the naked singularity, coincides with our solu-
tion. In this limit also the equilibrium condition obtained
by Belinski and Alekseev exactly reduces to our equilib-
rium condition. Our first order result therefore confirms the
validity and offers a tool for the physical interpretation of
the Belinski-Alekseev solution.

In Sec. II we review the properties of our solution
derived in [1,2]. In Sec. III we provide a definition of the
electric field lines following [7], drawing them both in the
case of the ’’effective’’ electric field of the sole particle and
of the total field due to the hole and particle. We then apply
the concept of induced charge density on the horizon
introduced in [7], discussing how to overcome the prob-
lems related to its definition due to the difficulty of having
well behaved horizon fields. The embedding diagram cor-
responding to the effective field of the particle is also
shown, allowing to visualize the effect of the spacetime
curvature. The ‘‘electric Meissner effect’’ arising as the
black hole becomes extreme is discussed in Sec. IV, and we
finally proceed to the general conclusions.

II. THE ANALYTIC SOLUTION FOR THE
PERTURBED METRIC AND ELECTROMAGNETIC

FIELD

Let us briefly summarize the results and the properties of
the solution derived in [1,2]. In standard Schwarzschild-
like coordinates the Reissner-Nordström black hole metric
is
 

ds2 � �f�r�dt2 � f�r��1dr2 � r2�d�2 � sin2�d�2�;

f�r� � 1�
2M

r
�
Q2

r2 ; (2)

with associated electromagnetic field

 F � �
Q

r2 dt ^ dr: (3)

The horizons are located at r	 �M	
���������������������
M2 �Q2

p



M	 �; we consider the case jQj �M and the region
r > r� outside the outer horizon, with an extremely
charged hole corresponding to jQj �M (which implies
� � 0) where the two horizons coalesce.

We have considered in [1,2] a perturbation of the
Reissner-Nordström solution due to a point charge of
mass m and charge q at rest at the point r � b on the polar
axis � � 0. We will denote by a tilde the quantities which
refer to the total electromagnetic and gravitational fields, to
first order of the perturbation

 

~g �� � g�� � h��; ~F�� � F�� � f��; (4)

while the corresponding quantities without the tilde refer to

the background Reissner-Nordström geometry (2) and
electromagnetic field (3). It is worth noting that the pertur-
bation will be small if m and so q are sufficiently small
with respect to the black hole mass and charge whereas the
charge-to-mass ratio need not to be small. The metric
describing such a two-body system to first order of the
perturbation is given by [1,2]
 

d~s2 � ��1� �H f�r�dt2 � �1� �H 

� �f�r��1dr2 � r2�d�2 � sin2�d�2�; (5)

where
 

�H � 2
m
br
f�b��1=2 �r�M��b�M� � �2 cos�

�D

� �2
m
br
f�b��1=2 @ �D

@ cos�
;

�D � ��r�M�2 � �b�M�2 � 2�r�M��b�M�

� cos�� �2sin2�1=2;

(6)

and the condition j �H j � 1 must be satisfied according to
the validity of the perturbation approach.

The condition of having no singularities on the symme-
try axis leads to the following equilibrium condition for the
system

 m � qQ
bf�b�1=2

Mb�Q2 ; (7)

involving the black hole and particle parameters as well as
their separation distance b. If the black hole is extreme (i.e.
jQj=M � 1), then the particle must also have the same
ratio jqj=m � 1, and equilibrium exists independent of the
separation; the solution thus reduces to the linearized form
of the well known exact solution by Majumdar and
Papapetrou [23,24] for two extreme Reissner-Nordström
black holes. In the general nonextreme case jQj=M< 1
there is instead one and only one position of the particle
which corresponds to the equilibrium (7), for given values
of the charge-to-mass ratios of the bodies. In this case the
particle charge-to-mass ratio must satisfy the condition
jqj=m> 1.

The total perturbed electromagnetic field in its original
form (see Eqs. (224)–(225) of [2]) turned out to be

 

~F �
�
�
Q�1� �H 0=2�

r2 � ftr

�
dt ^ dr� ft�dt ^ d�;

(8)

where �H 0 � �2q�2=�Q�Mb�Q2�,

 ftr � @rV; ft� � @�V; (9)

and V denotes the first order electrostatic potential
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 V �
1

r

�
Mr�Q2

2Q
�H �

Q �H 0

2r

�
: (10)

As already noted in [2] this solution apparently does not
satisfy Gauss’ theorem (see Eq. (232) of [2])

 � �
Z
S

� ~F ^ dS � 4��Q�1� �H 0=2� � q#�r� b�;

(11)

where � is the flux of the electric field obtained by
integrating the dual of the electromagnetic form (8) over
a spherical 2-surface S centered at the origin where the
black hole charge Q is placed and with variable radius (r
greater or lesser than b), the function #�x� denoting the
step function. In order to get the correct result, in [2] (see
Eq. (236) there) we have added to the electrostatic poten-
tial the extra term �V � �Q �H 0=�2r�, which is a solution
of the l � 0 mode homogeneous Maxwell equations. But
due to the coupling of the system of Einstein-Maxwell
equations the latter term gave back a modification of the
metric function �H by the additional constant term �H 0. In
[2] we (only) argued the existence of a suitable gauge
transformation to remove the constant term �H 0 in this
metric, keeping at the same time the Gauss’ theorem
satisfied. Actually a direct inspection of Eqs. (8) and (11)
shows that the most natural and simplest way to proceed is
to replace (formally) the black hole charge parameter
according to Q! Q�1� �H 0=2�. As a result, substituting
this relation into both solutions for the metric and electro-
magnetic field leads to
 

d~s2 � ��1� �H � k�r�f�r�dt2 � �1� �H � k�r�

� f�r��1dr2 � �1� �H �r2�d�2 � sin2�d�2�;

k�r� �
�H 0Q2

r2f�r�
; (12)

and

 

~F �
�
�
Q

r2 � ftr

�
dt ^ dr� ft�dt ^ d�; (13)

which identically satisfy Gauss’ theorem � � 4��Q�
q#�r� b�.

Finally we note that the total perturbed electrostatic
potential

 Vtot �
1

r

�
Mr�Q2

2Q
�H �

Q �H 0

2r
�Q

�
(14)

obtained by summing the first order potential (10) and the
own contribution VBH � Q=r of the black hole itself can be
conveniently written as the sum of the electrostatic poten-
tial Vtest of the particle alone obtained by Leaute and Linet
[8] within the test field approximation, plus the black hole
contribution VBH, plus some interaction terms Vint repre-
senting the ‘‘gravitationally induced’’ as well as ‘‘electro-

magnetically induced’’ electrostatic potential

 Vtot � Vtest � VBH � Vint; (15)

where
 

Vtest �
q
br
�r�M��b�M� � �2 cos�

�D
�
qM
br

;

Vint � �

�
1

2

�
1�

r
b

�
�H �

qQ

Mb�Q2

�
1�

M

b

��
Q
r
:

(16)

III. ELECTRIC FIELD LINES AND THE INDUCED
CHARGE ON THE HORIZON

The electric field associated with an observer with four-
velocity U is given by

 E�U�� � ~F��U
�: (17)

Correspondingly, the electric field lines are defined as the
integral curves of the differential equation

 

dx�

d�
� E�U��; (18)

where � is an affine parameter for the curves. We select the
static observers with respect to the metric (12), whose four-
velocity is given by

 U �
1����������
�~gtt
p @t � f�r��1=2

�
1�

�H � k�r�
2

�
@t; (19)

to first order of the perturbation. Equation (18) thus be-
comes

 

dr
d�
� E�U�r;

d�
d�
� E�U��; (20)

leading to the equation

 � E�U�rd�� E�U��dr � 0: (21)

From the Gauss’ theorem we have that integrating the
dual of the electromagnetic form (13) over a spherical 2-
surface S centered about the black hole gives

 � �
Z
S

� ~F ^ dS � 4��Q� q#�r� b� 
 ��0� ���1�;

(22)

where the superscripts (0), (1) refer to the zeroth order and
first order terms, respectively. In this case the only non-
vanishing components of � ~F are
 

� ~F�� � �r
2 sin�

�
��1� �H �

Q

r2 � ftr

�

 � ~F�0��� �

� � ~F�1���;

� ~Fr� � f�r��1 sin�ft� 

� ~F�1�r�;

(23)

so that the flux across a generic 2-surface S is given by
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 � �
Z
S
�� ~Fr�drd��

� ~F��d�d�: (24)

Therefore, as the electromagnetic field components do not
depend explicitly on �, if S is a generic revolution surface
around the symmetry z-axis we can write

 � � 2�
Z
S
�� ~Fr�dr�

� ~F��d�; (25)

so that the elementary flux across an infinitesimal closed
surface, limited by the two spherical caps � 2 �0; 2�,
� � �0 and r � r0 and� 2 �0; 2�, � � �0 � d� and r �
r0 � dr), is given by

 d� � 2��� ~Fr�dr�
� ~F��d�: (26)

The lines of constant electric flux (d� � 0) are then
defined as those curves solutions of the equation

 0 � � ~Fr�dr�
� ~F��d�: (27)

The important property is that for a static spacetime and
using a static family of observers the constant flux lines
coincide with the electric lines of force [25]. In fact, we
have

 

� ~F�� � �

�������
�~g
p

U0
E�U�r; � ~Fr� �

�������
�~g
p

U0
E�U��; (28)

and Eq. (27) reduces exactly to the form (21).
Figure 1 shows the lines of force of the total electric field

of the whole system consisting of the black hole and

particle for charges of the same sign both in the nonext-
reme [see Fig. 1(a)] and the extreme [see Fig. 1(b)] case.

We turn now to the study of the ‘‘effective field’’ of the
perturbation induced by the massive charged particle on
the background electric field. We have to provide a sat-
isfactory definition of such a field from both geometrical
and physical point of view, separating the contribution due
to the particle alone (which is first order) from the black
hole one. From the definition (17) of the perturbed electric
field components we see that the contraction of the elec-
tromagnetic tensor with the observer four-velocity gener-
ates various first order terms which contribute to the
electric field as well. In order to identify the field repre-
senting the net perturbation, i.e. with the black hole con-
tribution being subtracted, we rather use the flux
equation (26). We require that the integration over a spheri-
cal 2-surface S centered at the origin gives the first order
contribution ��1� � 4�q#�r� b� only to the total electric
flux (22), i.e. the charge of the particle only (up to the 4�
factor)

 d��1� � 2��� ~F�1�r�dr�
� ~F�1���d�: (29)

The ‘‘effective field’’ lines corresponding to the perturba-
tion with the contribution of the black hole electric field
being subtracted are thus defined as the lines of constant
flux d��1� � 0, namely

 0 � � ~F�1�r�dr�
� ~F�1���d�: (30)

FIG. 1. Lines of force of the total electric field of the black hole and particle in the X–Z plane (X � r sin�, Z � r cos� are Cartesian-
like coordinates) for charges of the same sign q=Q � 0:1 and fixed parameter values b=M � 3 and (a) Q=M � 0:8 and
(b) Q=M � 1, respectively. The equilibrium condition (7) then implies that the ratio between the masses of the black hole and
particle are given by (a) m=M � 0:06 and (b) m=M � 0:1 respectively. The black hole horizon is located at (a) r�=M � 1:6 and
(b) r�=M � 1 respectively.

CHARGED MASSIVE . . .. II. ANALYSIS OF THE . . . PHYSICAL REVIEW D 77, 064020 (2008)

064020-5



In Fig. 2 we show the behavior of the lines of force of the
effective electric field of the sole particle in the nonextreme
case for the same choice of parameters adopted in Fig. 1(a).

A. The induced charge on the black hole horizon

Following Hanni and Ruffini [7] we now compute the
induced charge on the surface of the black hole horizon.
Some lines of force intersect the horizon. If the particle is
positively charged, at angles smaller than a certain critical
angle the induced charge is negative and the lines of force
cross the horizon. At angles greater than the critical angle
the induced charge is positive and the lines of force extend
out of the horizon. At the critical angle the induced charge
density vanishes and the lines of force of the electric field
are tangent to the horizon. The total electric flux through
the horizon and thus the total induced charge are zero.

The induced charge density on the horizon 	H��� is
defined in such a way that the amount of induced charge
on an infinitesimal portion of the horizon sphere r � r�
between � � �0 and � � �0 � d� equals 1=�4�� times the
elementary flux across the same surface

 

1

4�
d�

��������r�

�
1

4�
2�� ~F�1���

��������r�

d� � 2�r2
�	

H��� sin�d�;

(31)

implying

 

� ~F�1���jr�
r2
� sin�

� 4�	H���: (32)

This can be identified with the surface version of the
Gauss’ law. The corresponding expression for the critical
angle ��crit� comes from the condition 	H���crit�� � 0.
Hence it results

 	H��� �
q

4�r�

�2

Mb�Q2

�
��1� cos2�� � 2�b�M� cos�

�b�M� � cos�2
; (33)

 ��crit� � arccos
�
b�M�

���������������������������������
�b�M�2 � �2

p
�

�
: (34)

Assuming then the black hole and particle both have
positive charge, one can evaluate the total amount of
negative charge induced on the horizon by the particle

 Q���ind �
Z

�
	H���d� � 2�r2

�

Z ��crit�

0
	H��� sin�d�

� �q
�r�

Mb�Q2 cos��crit�; (35)

where d� �
����������������g��g��
p d�d� and � is the spherical cap

0 � � � ��crit�.
The use of Gauss’ law (32) to define the induced charge

density on the horizon requires some care, although it has
been formulated in terms of the flux which is well defined
everywhere including the horizon. Introduce an orthonor-
mal frame adapted to the static observers (19)

 

et̂ � U; er̂ �
1�������
~grr
p @r;

e�̂ �
1�������
~g��
p @�; e�̂ �

1���������
~g��

p @�:

(36)

Both et̂ and er̂ become null vectors on the horizon r�.
Therefore the observer is no more a physical observer and
he cannot lead to the determination of the components of
the electric fields. The frame itself is no more a physical
frame; hence an alternative procedure is needed.

The first attempt to evaluate the electromagnetic fields in
a well-behaved frame at the horizon is due to Znajek [26]
and Damour [27]. Their main idea consists of surrounding
the black hole by a special surface which is considered as
the boundary of the black hole itself. Such a surface was
identified with the horizon, since what happens inside the
hole cannot affect at all the exterior region, and all the
needed boundary conditions for physical quantities are
imposed there. Znajek and Damour thus introduced a
fictitious surface charge density as well as a surface current
to terminate the electric as well as magnetic field compo-
nents on the horizon.

FIG. 2. Lines of force of the effective electric field of the sole
particle in the nonextreme case for the same choice of parame-
ters as in Fig. 1(a). As explained in the text this ‘‘effective field’’
is obtained by subtracting the dominant contribution of the black
hole own electric field to the total perturbed field, thus represent-
ing the net effect of the perturbation induced by the massive
charged particle on the background field.
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Another possibility which has been pursued by Thorne
and collaborators (see e.g. the monograph [28]) consists of
identifying the boundary of the black hole with a surface
located slightly outside the event horizon, known as
‘‘stretched horizon,’’ endowed with surface density of
charge and electric current. It is timelike and is chosen so
that it coincides with an equipotential surface of the lapse
function � � �SH � const (�SH � 1) of a family of ex-
ternal reference observers with respect to which the fields
are measured, typically the zero angular momentum ob-
servers (ZAMOs) for stationary axisymmetric spacetimes.
Their lapse function (which in our case is simply � �����������
�~gtt
p

) goes to zero at the horizon, leading to the patho-
logical behavior of their adapted frame discussed above; in
contrast, a freely falling observer crosses the horizon in a
finite proper time and measures fields which are all finite
there. From the transformation laws between electric and
magnetic field quantities in these two frames it follows that
the radial components as measured by ZAMOs remain
finite, while the tangential ones blow up as 1=� near the
horizon. This divergence is eliminated by a regularization
procedure consisting of multiplying the ill-defined field
components by the lapse function, so obtaining well-
behaved horizon fields [29]. When evaluated at the
stretched horizon these renormalized tangential fields are
equal to the true-horizon fields defined by Znajek and
Damour, to within fractional errors of order �SH, and are
defined in such a way that in the limit �! 0 they do not
depend on the chosen position �SH of the stretched hori-
zon. Obviously, does not exist any special membrane with
physical properties outside the horizon of a black hole: the
‘‘membrane paradigm’’ is only a useful mathematical tool.

In our derivation, however, this problem has been by-
passed using the flux equation which is well defined all the
way to the horizon and has allowed us to obtain the charge
density following the same procedure introduced by Hanni
and Ruffini.

B. Embedding diagram

The plots of Figs. 1 and 2 actually show a distorted view
of the behavior of the electric field lines; we should rather
look at their projection onto the corresponding embedding
diagram, which gives the correct geometry allowing us to
visualize the spacetime curvature.

The perturbed metric (12) can be visualized as a 2-
dimensional hyperboloid embedded in the usual euclidean
3-space with respect to the static observers (19) by sup-
pressing the temporal and azimuthal dependence. The
induced metric of the constant time slice of the world sheet
of the equatorial plane � � �=2 is given by

 

�2�d~s2 � �1� �H � k�r�f�r��1dr2 � �1� �H �r2d�2;

(37)

where �H has to be evaluated at � � �=2. For r > r� the

coordinate r is spacelike, so this metric can be embedded
into the 3-dimensional euclidean space. The flat-space line
element written in cylindrical-like coordinates is given by

 

�3�ds2 � d
2 � 
2d�2 � dz2: (38)

For the embedding surface in the parametric form 
 �

�r�, z � z�r� the corresponding line element becomes

 

�2�ds2 � �rrdr2 � 
2d�2; (39)

where

 �rr �
�
dz
dr

�
2
�

�
d

dr

�
2
: (40)

Comparison with (37) implies
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FIG. 3. The lines of force of the effective electric field of the
sole particle are shown on an embedding diagram in the non-
extreme case. The choice of the parameters is the same as in
Fig. 2. The projection of this embedding diagram onto the plane
z � 0 is also shown, and corresponds to the plot of Fig. 2 (the
number of lines has been reduced for the sake of clarity). Note
that the coordinate z defined by Eq. (42) must not be confused
with the Cartesian-like coordinate Z of Figs. 1 and 2. It is
interesting to compare and contrast this diagram obtained by
direct integration of the embedding equations with the remark-
able similarity of the qualitative picture drawn out of first
principles by J. A. Wheeler (lower right-hand side of Fig. 13,
p. 58 of [32]), where the simplest problem of a charged test
particle at rest near a Schwarzschild black hole was examined.
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 �rr � �1�
�H � k�r�f�r��1; 
 � r

�
1�

�H

2

�
;

(41)

to first order of the perturbation. The relation 
 � 
�r� is
already given by the second equation and one can then
numerically integrate the first equation, which is equivalent
to

 

�
dz
dr

�
2
� �f�r��1 � 1�1� �H � k�r� � k�r� � r@r

�H ;

(42)

with the initial condition z�r�� � 0.
Figure 3 shows the embedding diagram of the lines of

force of the effective electric field of the sole particle for
the same choice of parameters as in Fig. 2. In the curved
space the electric field is strictly radial at the horizon and
the lines of force intersect the event horizon orthogonally.

IV. EXTREMELY CHARGED HOLE AND THE
‘‘ELECTRIC MEISSNER EFFECT’’

So far the discussion has covered the case of a nonext-
reme black hole with jQj<M. Consider now the case
jQj �M (implying � � 0) of an extremely charged hole.
Equation (33) shows that the induced charge density on the
horizon degenerates to zero for every value of the angle �;
the critical angle (34) approaches the value �=2 and the
amount of negative charge (35) induced on the horizon
vanishes identically. Therefore no lines of force cross the
horizon, remaining tangent to it for every value of the polar
angle, since every angle becomes critical: as the black hole
approaches the extreme condition the electric field lines are

thus pulled off the outer horizon and never intersect it when
the black hole becomes extreme. The situation is summa-
rized in Fig. 4, where the behavior of the lines of force of
the effective electric field of the sole particle in the extreme
case is shown for the same choice of parameters as in
Fig. 1(b).

It is worth noting that such an effect also occurs when
treating the problem in the simplified approach of the test
field approximation, whose hybrid nature has been already
discussed in [2]. The components (23) of the dual of the
electromagnetic tensor become in this case

 

� ~Ftest
�� � �r

2 sin�
�
�
Q

r2 � @rVtest

�
;

� ~Ftest
r� � f�r��1 sin�@�Vtest;

(43)

the corresponding induced charge density on the horizon
	Htest��� is then easily evaluated from Eq. (32) and turns out
to be related to Eq. (33) by

 	H��� �
�b

Mb�Q2 	
H
test���: (44)

Equation (44) thus implies that the critical angle is the
same as (34) and that the induced charge density on the
horizon exhibits the same feature as above. This is quite
remarkable, since our result has been obtained within a
more general framework, and both the gravitational and
electromagnetic fields are different from those correspond-
ing to the test field solution. Therefore, we conclude that
the electric Meissner effect is already present in the test
field approximation, and it is confirmed at the perturbative
level, taking into account all the feedback terms on both the
background gravitational and electromagnetic fields due to
the particle’s mass and charge.

By using Eqs. (35) and (44) the total amount of negative
charge induced on the horizon by the particle in the case of
test field is thus given by

 Q���ind test �
Mb�Q2

�b
Q���ind � �q

r�
b

cos��crit�; (45)

which is always greater than (35) for every fixed value of
jQj=M< 1, the multiplicative factor ranging from 1<
�Mb�Q2�=��b�<M=� for r� < b<1 and corre-
spondingly 1> q=m>M=Q, as from Eq. (7). In the
extreme case jQj=M � 1 the induced charge vanishes in
both cases.

The ‘‘electric Meissner effect’’ described above is suit-
able to a conceptual interpretation in terms of the nature of
the Reissner-Nordström solution. When the black hole is
not extreme the particle induces charge on the horizon, and
accordingly the electric field lines terminate on it. When
the black hole becomes extreme no further charge induc-
tion is possible without turning the black hole into a naked

FIG. 4. Lines of force of the effective electric field of the
particle alone in the extreme case for the same choice of
parameters as in Fig. 1(b). No lines of force intersect the black
hole horizon in this case, leading to the ‘‘electric Meissner
effect.’’
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singularity, and coherently the electric field lines no longer
cross the horizon. Therefore, in a sense, the black hole
rejects to turn itself into a naked singularity.

V. CONCLUSIONS

The properties of the electric field of the charged two-
body system consisting of a Reissner-Nordström black
hole and a charged massive particle at rest, recently ob-
tained in the framework of first order perturbation theory
adopting the Regge-Wheeler gauge, have been further
investigated. The analysis of the field lines carried out
using the definition of the constant flux surfaces has shown
the existence of the ‘‘electric Meissner effect,’’ namely, the
phenomenon of expulsion of the lines of force from the
outer horizon as the hole becomes extreme, once the
dominating background contribution due to the hole’s
own electric field is properly subtracted. This analysis
thus extends to the electric field analogous results found
by Bičák and Dvořák [10] concerning magnetic fields.
They showed that the Reissner-Nordström black hole be-
haves like a ‘‘superconductor’’ as approaching the extreme
condition in the presence of a magnetic field, in close
similarity with the ordinary magnetic Meissner effect.
The electric Meissner effect has instead introduced a novel
concept, since it has no classical analogue and is a pure
general relativistic effect.

The electric Meissner effect is a feature already present
within the test field approximation, i.e. by neglecting the
backreaction on the background metric and electromag-
netic field due to the particle’s mass and charge, as already
pointed out by Ruffini [30]. This result by itself has justi-
fied addressing this problem in the more general Zerilli
approach, duly taking into account all the first order per-
turbations. Our solution thus provides a useful tool to
explore the limits of validity of the test field approach,
which has been largely used in the current literature.

Recently Belinski and Alekseev [17] obtained an exact
two-body solution to the Einstein-Maxwell equations for a
Reissner-Nordström black hole in equilibrium with a
naked singularity. We have shown in the appendix that
the Belinski-Alekseev solution, once linearized with re-
spect to the mass and charge of the naked singularity,
coincides with our solution. In this limit also their equilib-
rium condition exactly reduces to our equilibrium condi-
tion. Our first order result therefore confirms the validity
and offers a tool for the physical interpretation of the
Belinski-Alekseev solution, taking advantage from the
unambiguity in the definition of masses and charges as
well as of the distance between the bodies due to the
linearity of the interaction.

Our solution thus represents a ‘‘bridge’’ between the test
field solution, which neglects all the feedback terms, and
the exact two-body solution, which takes into account all
the nonlinearity of the interaction.

It is well known that, classically, a two-body system of
massive charged particles with masses M1 and M2 and

charges Q1 and Q2 can be in equilibrium for any value of
their radial distance ifQ1Q2 � M1M2. This result has been
proved to hold also in the fully relativistic case if and only
if the objects have Q1 � M1 and Q2 � M2, i.e. are both
extremely charged black holes [23,24]. Actually an equi-
librium exists for any number of collinear extreme bodies,
and the solution can be further extended to the case of
angular momentum [31]. The nonextreme case is very
different: the classical result can never be obtained even
in the perturbative regime. There is always only one equi-
librium configuration allowed, which has no classical
counterpart. The nature of the equilibrium has to be further
studied and has certainly to do with the extended field
description of the black hole and the naked singularity,
which is described in the general relativistic perturbation
approach by a convergent series of infinite multipoles
expressible in a closed analytic form.
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APPENDIX: THE LINEARIZED FORM OF THE
BELINSKI-ALEKSEEV SOLUTION

The Belinski-Alekseev solution in Weyl cylindrical co-
ordinates �t; 
; z;�� is given by

 ds2 � �Hdt2 � f�d
2 � dz2 �

2

H
d�2; (A1)

with electromagnetic 4-potential

 A � ��dt; (A2)

using the notation of [17], but maintaining our signature
conventions; the functions H, f, and � depend on coor-
dinates 
 and z only. It is useful to introduce bipolar
coordinates consisting of two pairs of spheroidal coordi-
nates �r1; �1� and �r2; �2�, in terms of which the metric
functions take their most simple form
 

H �D�2��r1 �m1�
2 � 	2

1 � �
2sin2�2

� ��r2 �m2�
2 � 	2

2 � �
2sin2�1;

f �D2��r1 �m1�
2 � 	2

1cos2�1
�1

� ��r2 �m2�
2 � 	2

2cos2�2
�1;

� �D�1��e1 � ���r2 �m2� � �e2 � ���r1 �m1�

� ��m1 cos�1 �m2 cos�2�;

(A3)

where

 D � r1r2 � �e1 � �� � cos�2��e2 � �� � cos�1�:

(A4)

The relations between bipolar coordinates and Weyl coor-
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dinates are given by
 


 �
�����������������������������������
�r1 �m1�

2 � 	2
1

q
sin�1;

z � z1 � �r1 �m1� cos�1;


 �
�����������������������������������
�r2 �m2�

2 � 	2
2

q
sin�2;

z � z2 � �r2 �m2� cos�2:

(A5)

The quantities m1, m2 and e1, e2 represent interacting
masses and physical charges of the two Reissner-
Nordström sources, which are located along the symmetry
axis at the points z � z1 and z � z2 respectively. The
parameters �, 	1, and 	2 are determined by the relations
 

	2
1 � m2

1 � e
2
1 � 2e1�;

	2
2 � m2

2 � e
2
2 � 2e2�;

� �
m2e1 �m1e2

‘�m1 �m2
;

(A6)

with ‘ � z2 � z1 characterizing the distance between the
sources. The functions (A3) satisfy the system of Einstein-
Maxwell equations if the following equilibrium condition
holds

 m1m2 � �e1 � ���e2 � ��: (A7)

The solution (A1) and (A2) thus describes the field of a
Reissner-Nordström black hole in equilibrium with a
naked singularity whose mass, charge and distance pa-
rameters must satisfy the equilibrium condition (A7). Let
the black hole be located about the origin z1 � 0, whereas
the naked singularity be at the point z2 � ‘. Before pro-
ceeding with the linearization of the solution it is conve-
nient to express all functions in terms of a single coordinate
patch, inverting the relations (A5)
 

r1;2 � m1;2 �
1

2
�R�1;2 � R

�
1;2�;

�1;2 � arctan
�


z

R�1;2 � R
�
1;2����������������������������������������������

�R�1;2 � R
�
1;2�

2 � 4	2
1;2

q �
;

(A8)

where

 R	1 �
��������������������������������

2 � �z	 	1�

2
q

;

R	2 �
�����������������������������������������

2 � �z� ‘	 	2�

2
q

:

(A9)

Assume that the mass m2 and charge e2 of the naked
singularity are small if compared with black hole mass
m1 and charge e1, the ratio e2=m2 remaining finite. The
equilibrium condition (A7) thus gives

 �‘�m2��m1m2 � e1e2� � �m1e2 �m2e1�e2; (A10)

to first order. Belinski and Alekseev showed that this
relation reproduces exactly our equilibrium condition (7)
if the rest mass parameter �2 is introduced instead of the

mass m2 as smallness parameter in the linearization pro-
cedure defined by the relation

 m2 � �2

���������������������������������������������������
1�

2m1

‘�m1
�

e2
1

�‘�m1�
2

s
�

e1e2

‘�m1
; (A11)

Equation (A11) thus takes the form

 m1 �
e2

1

‘�m1
�
e1e2

�2

���������������������������������������������������
1�

2m1

‘�m1
�

e2
1

�‘�m1�
2

s
; (A12)

or equivalently

 

e2

�2
�
‘m1 � �2

1

e1L
; L2 � ‘2 � �2

1;

�2
1 � m2

1 � e
2
1;

(A13)

which coincides with Eq. (7) with the identification ‘ �
b�m1, m1 �M, e1 � Q, �2 � m, e2 � q.

The linearized expressions for the constants (A6) turn
out to be

 	1 � �1 ��2
�1

L
; 	2 � i�2

�1

e1
; � � �2

�2
1

e1L
:

(A14)

Substitute these quantities into the solution (A3), after
replacing the bipolar coordinates with Weyl coordinates
using the transformations (A8); retaining terms up to the
linear order in �2 the metric functions and electrostatic
potential then take the form

 H � H0 ��2H1; f � f0 ��2f1;

� � �0 ��2�1;
(A15)

where

 H0 �
�S�1 � S

�
1 �

2 � 4�2
1

�2m1 � S�1 � S
�
1 �

2 ; f0 �
�2m1 � S�1 � S

�
1 �

2

4S�1 S
�
1

;

�0 �
2e1

2m1 � S�1 � S
�
1

; S	1 �
�������������������������������

2 � �z	 �1�

2
q

;

(A16)

are the corresponding background functions. After long
calculations the first order terms turn out to be given by
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H1 � H0

�
�0

2Le1S�1 S
�
1

�m1�S
�
1 � S

�
1 �

2 � 2�2
1�S
�
1 � S

�
1 �

� �H
�
;

f1 � f0

�
�1� 2H0f0�

�S�1 � S
�
1 �

2

2LS�1 S
�
1

� 2
m1

e1

�0

L
�1�H0f0�

� �H
�
;

�1 � �0

� �H

4e2
1

�m1�S�1 � S
�
1 � � 2�2

1 �
�2

1

Le2
1

�
S�1 � S

�
1

4LS�1 S
�
1

�S�1 � S
�
1 �

2 � 4�2
1

2m1 � S
�
1 � S

�
1

�
; (A17)

where
 

�H �
2

L
‘�S�1 � S

�
1 � � �1�S�1 � S

�
1 �

S2�2m1 � S�1 � S
�
1 �

;

S2 �
�����������������������������

2 � �z� ‘�2

q
:

(A18)

In order to compare this solution with our solution it is
convenient to express both the perturbed metric and elec-
tromagnetic field in terms of Schwarzschild-like coordi-
nates centered about the black hole using the first
transformation of (A5), whose linearized form is given by

 


 �
����������������������������������
�r1 �m1�

2 � �2
1

q
sin�1 ��2

�2
1

L
sin�1����������������������������������

�r1 �m1�
2 � �2

1

q ;

z � �r1 �m1� cos�1: (A19)

The linearized form of the metric (A1) thus becomes
exactly as in Eq. (12) with the identifications ‘ �
b�m1, m1 �M, e1 � Q, �2 � m, e2 � q and by sup-
pressing the subscript 1 on the coordinates r1 and �1. The
linearized electromagnetic field is the same as in Eqs. (13).
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