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I. INTRODUCTION

In four dimensions, stationary black hole spactimes have
been studied by many authors and these studies are known
as uniqueness theorems of black holes [1]. Israel showed
that the only static, asymptotically flat vacuum solution
with a regular event horizon is the Schwarzschild solution
specified only by its mass [2]. Shortly afterward, he gen-
eralized the theorem to the situation with an electromag-
netic field [3], i.e., he presented the proof that the only
static, asymptotically flat electrovac solution with a regular
nondegenerate event horizon is the Reissner-Nordström
solution with two parameters, the mass m and the electric
charge q which are subject to the inequality m2 > q2.
Bunting and Masood-ul-Alam succeeded in proving these
two theorems without the assumption of a single connected
component of a black hole [4,5] by using the positive
energy theorem [6,7]. On the other hand, for nonstatic
and stationary space-times, the Einstein-Maxwell system
can be reduced to a two-dimensional boundary value prob-
lem. The field equation is derived by the Ernst potential
associated with the axial Killing vector field. The essential
part in showing the uniqueness theorem for stationary
black holes is that two solutions with the same asymptotic
condition are isometric to each other. Carter [8] showed
that the infinitesimally neighboring vacuum solutions
with the same asymptotic conditions are equal, and
Robinson generalized its theorem to the stationary electro-
vac system [9]. Thereafter, using so-called Robinson iden-
tity, Robinson also succeeded in proving the uniqueness of
the vacuum Kerr family [10] with m2 > a2 among all
asymptotically flat, stationary, and axisymmetric black
hole solutions with a nondegenerate event horizon, i.e.,
showing that two arbitrary, not necessarily infinitesimally
neighboring, solutions with the same boundary conditions
are equal to each other. In the electromagnetic system,
Mazur derived the divergence identity (Mazur identity)
[11], which is based on the Ernst equation describing a
nonlinear sigma model on the symmetric space
SU�1; 2�=S�U�1� �U�2��, and showed that the only pos-

sible and axisymmetric black hole solution to the Einstein-
Maxwell equations is the Kerr-Newman solution specified
by the mass m, the angular momentum j, and the electric
charge q with the constraint m2 > j2=m2 � q2.

In recent years, studies of black holes in higher dimen-
sions have attracted much attention in the context of string
theory and the brane world scenario. In fact, it has been
predicted that higher-dimensional black holes would be
produced in a future linear collider [12,13]. Such physical
phenomena are expected not only to give us a piece of
evidence for the existence of extra dimensions but also to
help us to draw some information toward quantum gravity.
Studies on stationary black hole solutions are important
since we may detect the Hawking radiation after the for-
mation of stationary black holes in a collider.

A striking feature of asymptotically flat stationary black
hole solutions in five dimensions is that they admit event
horizons with nonspherical topologies in contrast to four
dimensions. For instance, the topology of the event horizon
in higher dimensions cannot be uniquely determined [14–
16] in contrast to four-dimensional ones, which is re-
stricted only to the two sphere [17,18]. In five dimensions,
however, the possible geometric types of the horizon to-
pology are S3 and S1 � S2 [14], and in dimensions higher
than five, more complicated [15,16]. The black ring solu-
tions with the horizon topology S1 � S2, which rotate
along the S1 direction, were found by Emparan and Reall
as solutions to the five-dimensional vacuum Einstein equa-
tions [19]. This is the first example of a black hole solution
with nonspherical topology. In addition to the black ring
solution, the rotating black hole solution with S3 horizon
topology had been already found by Myers and Perry [20].
Remarkably, within some range of the parameters, there is
one black hole and two black rings with the same values of
the mass and the angular momentum, which means the
violation of the uniqueness known in four dimensions.
Subsequently, other black ring solutions were found. The
black ring solutions with a rotating two sphere were found
by Mishima and Iguchi [21], and moreover, one with two
angular momenta was constructed by Pomeransky and
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Sen’kov [22] by using the inverse scattering method [23–
34].

For the asymptotically flat, static solutions of
higher-dimensional vacuum Einstein equations, the
Schwarzschild-Tangherlini solution [35] is the unique so-
lution [36], and moreover, is stable against linear perturba-
tions [37]. It has been shown that the five-dimensional
Myers-Perry solution is unique if the topology is restricted
to S3 and the spacetime admits three commuting Killing
vectors [38]. Hence it is natural to ask whether the
Pomeransky-Sen’kov black ring solution is also unique
under the assumptions of the existence of three commuting
Killing vector fields and the horizon topology of S1 � S2.
As mentioned above, however, there are two different
black ring solutions for the same mass and the same
angular momenta. Therefore, we must add some additional
information to consider the boundary value problem for
black ring solutions. One of the examples is the rod struc-
ture introduced by Harmark [39]. By introducing the rod
structure, Hollands and Yazadjiev [40] applied the discus-
sion of Morisawa and Ida to the case of nonspherical
horizon topology and showed that two asymptotically flat
and five-dimensional black hole solutions with the same
topology, the same mass, the same angular momenta, and
the same rod structure are isometric to each other.

In this article, we study the boundary value problem for
stationary black ring solutions to the five-dimensional
vacuum Einstein equations. Assuming the existence of
two additional commuting axial Killing vector fields and
the horizon topology of S1 � S2, we show that the only
asymptotically flat black ring solution with a regular hori-
zon is the Pomeransky-Sen’kov black ring solution. Our
proof consists of two steps: First, we present a more
general black ring solution than the Pomeransky-Sen’kov
black ring solution in the sense that the solution, in general,
has a conical singularity and is characterized by indepen-
dent four parameters, i.e., the mass, two angular momenta,
and an additional parameter. By the requirement of the
absence of a conical singularity on the solution, it coin-
cides with the Pomeransky-Sen’kov black ring solution.
Second, following the discussion in Refs. [38,40], two
arbitrary asymptotically flat black ring solutions with the
same mass, the same two angular momenta, and the same
ratio of the radius of S2 to the radius of S1 as the solution
are isometric. Hence we can conclude that the only asymp-
totically flat black ring solution without a conical singu-
larity to the five-dimensional vacuum Einstein equations is
the Pomeransky-Sen’kov black ring solution.

The remainder of this article is organized as follows: In
Sec. II we present general black ring solutions with four
parameters. In Sec. III, we study the rod structure of the
solutions. In Sec. IV, we give a short explanation of the
Mazur identity. In Sec. V, using the Mazur identity, we
show that an arbitrary asymptotically black ring solution
with the same mass, the same two angular momenta, and

the same rod structure as our solution are isometric to it. In
Sec. VI, we state the final results and the theorem.

II. GENERAL BLACK RING

The metric of the general black ring solution, which in
general has a conical singularity, is given by

 ds2 � �
H�y; x�
H�x; y�

�dt���2 �
F�x; y�
H�y; x�

d�2

� 2
J�x; y�
H�y; x�

d�d �
F�y; x�
H�y; x�

d 2

�
2k2H�x; y�

�x� y�2�1� ��2

�
dx2

G�x�
�
dy2

G�y�

�
; (1)

where the C-metric coordinates x, y run the ranges of
�1 � x � 1 and ����

�����������������
�2 � 4�
p

�=2 � y <1 or�1<
y � �1, respectively. The solution has four independent
parameters satisfying the inequalities 0 � � < 1, 2

���
�
p
�

� < 1� �, k > 0, and c � b < 1 with

 c �

�����������������
�2 � 4�
p

1� �
: (2)

The function G appearing in the metric is defined as

 G�x� � �1� x2��1� �x� �x2�: (3)

Since the other functions H, J, F and the one-form � have
considerably complicated forms, we do not write them
here. The explicit expressions of them are given in the
appendix. As will be mentioned later, under the choice of
the parameters:

 b �
2c

1� c2 ; (4)

which is the condition for a conical singularity inside the
black ring to vanish, the metric reduces to that of the
Pomeransky-Sen’kov black ring solution.

III. BOUNDARY CONDITIONS

A. Rod structure

In this section, we give the rod structure of the black ring
solution obtained in Sec. II. To investigate the rod struc-
ture, we introduce the canonical coordinates defined by

 �2 � �
4k4G�x�G�y�

�x� y�4�1� ��2
; (5)

 z �
k2�1� xy��2� �x� y��� 2xy��

�x� y�2�1� ��
: (6)

Then, the metric can be written in the form

 ds2 � g��dx
�dx� � ~f�d�2 � dz2�; (7)
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where �, � run t, �,  . The metric functions g�� and ~f
depend only on the coordinates � and z.

(i) The semi-infinite spacelike rod ��1;�ck2	 and the
finite rod �ck2; k2	 have the direction v � �0; 0; 1�,
i.e., for � � 0, z 2 ��1;�ck2	 and � � 0, z 2
�ck2; k2	, g��v� � 0 holds. Since these give g  �
0, � � 0, z 2 ��1;�ck2	 and � � 0, z 2 �ck2; k2	
denote the  -axis, i.e., the plane invariant under the
rotation associated with the Killing vector @ . For

� � 0 and z 2 ��1;�ck2	, the periodicity of the
angular variable  becomes

 � � lim
�!0

2�

��������������������
�2 ~f

g��v�v�

vuut � 2�: (8)

To cure conical singularities in the region z 2
�ck2; k2	, one must impose the following condition
on the parameters in the solutions:

 � � lim
�!0

2�

��������������������
�2 ~f

g��v�v�

vuut � 2�

���������������������������������������������������������������������������������������������������������
���1� b���1� c�2�c�� b��2�1� c�2 � c���2

�1� b��1� c�2�c�� b�2��1� c�2 � c���2

s
; (9)

where the constant � is defined by

 � � 4
��� q���� 2� q���� 2� q�
��� q���� 2� q���� 2� q�

(10)

with

 q �
�����������������
�2 � 4�

p
: (11)

The periodicities (8) and (9) of  require putting the
parameters as

 b �
2c

1� c2 ; (12)

 b � 

c�����������������������������������������������

4� 8c2 � 4c4 � c2�2
p : (13)

It should be noted that the solution with the parame-
ters (12) exactly coincides with the solutions without
a conical singularity obtained by Pomeransky and
Sen’kov, which describe the rotating black ring in
two orthogonal planes independently, although the
choice of the remainder parameters (13) yields sin-
gular solutions.

(ii) The finite timelike rod ��ck2; ck2	 corresponds to
an event horizon with topology S1 � S2 since @ 
vanishes on both sides of this rod. One sees that
g��v� � 0 for � � 0 and z 2 ��ck2; ck2	. v de-
notes the eigenvector with respect to the eigenvalue
of zero and can be written in the form of v �
�1;�1;�2�, where

 �1
2 �

�1� b��b� c��2b�1� c�2 � �1� b�c�	�2b�1� c2� � �1� b�c�	

2�1� b�b�1� c�2�2b�1� c�2 � �1� b�c�	�2b�1� c2� � �1� b�c�	k2 ; (14)

 �2
2 �

�1� b��2b�1� c2� � �1� b�c�	

��1� b��2b�1� c2� � �1� b�c�	
�
�1� c�2�2b�1� c2� � c�	2�2b�1� c�2 � �1� b�c�	2

c2�4b2�1� c2�2 � �1� b2�c2�2	2k2 : (15)

Here the two constants �1 and �2 denote the
angular velocities of the horizon along the direc-
tions @� and @ , respectively.

(iii) The semi-infinite spacelike rod �k2;1	 has the
direction v � �0; 1; 0�. Since these give g�� � 0,
� � 0, z 2 �k2;1	means the�-axis, i.e., the plane
under a rotation with respect to the Killing vector
field @�. The periodicity of the angular variable �
is computed as

 �� � lim
�!0

2�

��������������������
�2 ~f

g��v�v�

vuut � 2�: (16)

B. Asymptotic behavior

Next, we introduce the coordinates �r; �� defined by � �
r2

2 sin2� and z � r2

2 cos2�. In the asymptotic region r! 1,
the metric behaves as

 ds2 ’

�
�1�

8M

3�r2

�
dt2 �

2J�sin2�

�r2 dtd��
2J cos2�

�r2 dtd�� dr2 � r2�d�2 � sin2�d�� cos�d 2�; (17)
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where the Arnowitt-Deser-Misner (ADM) mass M and ADM angular momenta J�, J are given by

 M �
3�b�1� c���1� b2�c2�2 � 4�1� c2�2b2	k2

2�1� b��2b�1� c�2 � �1� b�c�	�2b�1� c2� � �1� b�c�	
; (18)

 J�
2 �

2�2�1� b�b�b� c��1� c�2��1� b�c�� 2b�1� c�2	

��1� b�c�� 2b�1� c2�	

�
��1� b�c�� 2b�1� c�2	2��1� b2�c2�2 � 4b2�1� c2�2	2k6

��1� b�2�1� b�c2�2 � 4b�1� b2��1� c�c�� 4b2�1� b��1� c�3�1� c�	3
; (19)

 J 
2 �

16�2b2�1� b�c4�1� c�2�

�1� b���1� b�c�� 2b�1� c�2	2
�

��1� b2�c2�2 � 4b2�1� c2�2	2k6

��1� b�c�� 2b�1� c2�	3��1� b�c�� 2b�1� c2�	
: (20)

IV. MAZUR IDENTITY

Here we give the brief review on the formalism devel-
oped in Ref. [38], where it is shown that the Myers-Perry
solution is unique within a class of the five-dimensional
asymptotically flat solutions with the horizon topology
of S3 and additional two commuting spacelike Killing
vectors. We consider the five-dimensional space-times ad-
mitting two commuting Killing vector fields 	I � @I�I �
�; �. Then, the metric can be written in the form

 g � f�1
ijdx
idxj � fIJ�dx

I � wIidx
i��dxJ � wJjdx

j�;

(21)

where i, j run 1, 2, 3 and f � det�fIJ�. The rescaled three-
dimensional metric 
ij, and the metric functionswIi and fIJ
are independent of � and  . The twist potentials !I are
defined by

 d!I � ��	� ^ 	 ^ d	I�: (22)

Then, the vacuum Einstein equations reduce to the system
of the five scalar fields fIJ and!I on the three-dimensional
space:

 D2fIJ � fKLDfIK �DfJL � f�1D!I �D!J; (23)

 D2!I � f�1Df �D!I � fJKDfIJ �D!J; (24)

and the Einstein equations for the three-dimensional space:

 

�
�Rij �
1
4f
�2f;if;j �

1
4f
IJfKLfIK;ifJL;j

� 1
2f
�1fIJ!I;i!J;j; (25)

where D is the covariant derivative with respect to the
metric 
ij and � denotes the inner product by 
ij. Here
we assume the existence of another Killing vector field, a
timelike Killing vector field 	3 � @t which commutes with
the other Killing vector fields 	I�I � �; �. Here we con-
sider the case where two spaces orthogonal to all Killing
vector fields 	t and 	I�I � �; � are integrable. From the
Frobenius conditions, wI1 � wI2 � 0. Hence the metric can
be written in Weyl-Papapetrou-type form:

 

ds2 � f�1e2��d�2 � dz2� � f�1�2dt2

� fIJ�dxI � wI3dt��dx
J � wJ3dt�: (26)

All the metric functions depend only on � and z. The
differential equations of the scalar fields are given by the
axisymmetric solutions of Eqs. (23) and (24) on the ab-
stract flat three surface with metric

 ~
 � d�2 � dz2 � �2d’2; (27)

which is written in the cylindrical coordinates. Namely,
D2 ~� and D ~� �D ~ are replaced with ~�;�� � �

�1 ~�;� �
~�;zz and ~�;�

~ ;� � ~�;z
~ ;z, respectively. Once the five po-

tentials fIJ and !I are obtained from Eqs. (23) and (24),
Eq. (25) reduces to the equations with respect to the
gradient of the metric function �:
 

2

�
�;� �

1

4
f�2��f;��2 � �f;z�2	

�
1

4
fIJfMN�fIM;�fJN;� � fIM;zfJN;z�

�
1

2
f�1fIJ�!I;�!J;� �!I;z!J;z�; (28)

 

1

�
�;z �

1

4
f�2f;�f;z �

1

4
fIJfMNfIM;�fJN;z

�
1

2
f�1fIJ!I;�!J;z; (29)

 wI3;� � �f�1fIJ!J;z; (30)

 wI3;z � ��f
�1fIJ!J;�: (31)

This system is described by the following action which is
invariant under the global SL�3;R� transformation:

 S �
Z
d�dz��14f

�2�@f�2 � 1
4f
IJfKL@fIK � @fJK

� 1
2f
�1fIJ@!I � @!J	: (32)

Here, we introduce the SL�3;R� matrix � defined by
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 ��
f�1 �f�1!� �f�1! 

�f�1!� f��� f
�1!�!� f� � f

�1!�! 

�f�1! f� � f�1!�! f  � f�1! ! 

0
B@

1
CA;

(33)

where it is noted that this matrix is symmetric �t� � ��
and unimodular �det � � 1�. Since we choose the Killing
vector fields 	� and 	 to be spacelike, all the eigenvalues
of � are real and positive. Therefore, there exists an
SL�3;R� matrix g such that

 � � gtg: (34)

The square root matrix g is determined up to the global
SO�3� transformation. In fact, under the rotation g! �g
for any � 2 SO�3�, � is invariant. Hence, the action
describes a nonlinear sigma model on the symmetric space
SL�3;R�=SO�3�. We define a current matrix as

 Ji � ��1@i�; (35)

which is conserved if the scalar fields are the solutions of
the equation of motion derived by the action (32). Then, the
action (32) can be written in terms of J and � as follows

 S �
1

4

Z
d�dz�tr�JiJi�

�
1

4

Z
d�dz�tr���1@i���1@i��: (36)

Let us consider two sets of the field configuration ��0	 and
��1	 satisfying Eqs. (23) and (24). We denote the difference
between the value of the functional obtained from the field
configuration ��1	 and the value obtained from ��0	 as a
bull’s eye 
 , e.g.,

 J


i � Ji�1	 � J

i
�0	; (37)

where the subscripts
�0	 and

�1	 denote the quantities asso-
ciated with the field configurations ��0	 and ��1	, respec-
tively. The deviation matrix � is defined by

 � � �



��1
�0	 � ��1	�

�1
�0	 � 1; (38)

where 1 is the unit matrix. Using the relation between the

derivative of the deviation matrix and the J


i:

 Di� � ��1	J


i��1
�0	 ; (39)

where D is a covariant derivative associated with the
abstract three-metric ~
. The Mazur identity as the integra-
tion over the region � � f��; z�j� � 0;�1< z<1g is
given by

 

Z
@�
�@atr�dSa �

Z
�
�habtr�MatMb�d�dz; (40)

where a, b run �, z, and h � d�2 � dz2. The matrix M is
defined by

 M a � g�1t
�0	 J


ag�1	: (41)

It should be noted that the right-hand side of the identity

(40) is positive except the case of J


i � 0. Therefore, we

must have J


i � 0 if the boundary conditions under which

the left-hand side of Eq. (40) vanishes are imposed at @�.
Then, from Eq. (39), � is a constant matrix over the region
�. To show that the limiting value of � is zero on at least
one part of the boundary is sufficient to obtain the coinci-
dence of two solutions ��0	 and ��1	.

V. BOUNDARY CONDITIONS AND COINCIDENCE
OF SOLUTIONS

As is shown in Fig. 1, the boundary integral in the left-
hand side of the Mazur identity (40) is decomposed to the
integrals over the segments of the rod and the integral over
the infinity as follows:

FIG. 1. The left figure shows the rod structure of the five-dimensional rotating black ring solution with asymptotic flatness. The
vectors on the rods denote their directions. The right figure shows the black ring solution on the ��; z�-plane with the three-dimensional
�t; �;  � part suppressed.
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 Z
@�
�@atr�dSa �

Z �ck2

�1
�
@tr�

@z
dz�

Z ck2

�ck2
�
@tr�

@z
dz

�
Z k2

ck2
�
@tr�

@z
dz�

Z 1
k2
�
@tr�

@z
dz

�
Z
@�1

�@atr�dSa; (42)

where @�1 in the last term denotes the infinity. Now
consider the line integrals of the twist one-forms d!I�I �
�; � over the z-axis in the canonical coordinates ��; z�.
The twist one-forms vanish on the  -invariant planes and
the �-invariant plane by its definition, i.e., the values of
twist potentials are constant on the z-axis. Hence this can
be expressed in the form

 

Z ck2

�ck2
!I;zdz � �!I�z�	

z�ck2

z��ck2 (43)

on the z-axis. On the other hand, the left-hand side of
Eq. (43) can be written in terms of the Komar integral as
follows:

 

1

4�2

Z
H
�d	I �

4

�
JI; (44)

where H denotes the spatial cross section of the event
horizon and JI�I � �; � are angular momenta associated
with the spacelike Killing vectors 	I�I � �; �. Using the
ambiguity of the twist potentials !I in addition to a con-
stant, without loss of generality, we always put their values
on the z-axis such that

 !I�z� �
2JI
�

(45)

for z 2 �ck2;1	, and

 !I�z� � �
2JI
�

(46)

for z 2 ��1;�ck2	. We estimate the integrals over the
five boundaries and show that they vanish under the pref-
erable boundary conditions.

(i)  -invariant planes: f��; z�j� � 0;�1< z � �ck2g
and f��; z�j� � 0; ck2 � z � k2g. The boundary in-
tegral over these regions is given by

 

Z �ck2

�1
�
@tr�

@z

����������0
dz � ��tr�j��0	

�ck2

�1 ; (47)

 

Z k2

ck2
�
@tr�

@z

����������0
dz � ��tr�j��0	

k2

ck2 ; (48)

respectively.
We assume that for �! 0, the five scalar fields
behave as

 f  �A	 ’ f
�2�
  �A	�

2 �O��4�; (49)

 f���A	 ’ f
�0�
���A	 �O��

2�; (50)

 f� �A	 ’ f
�2�
� �A	�

2 �O��4�; (51)

 !��A	 ’ !
�0�
��A	 �O��

2�; (52)

 ! �A	 ’ !
�0�
 �A	 �O��

2�; (53)

where A runs 0, 1 and the coefficients f�2k�IJ�A	 and!�2k�I�A	

defined by fIJ�A	 �
P
1
k�0 f

�2k�
IJ�A	�

2k, !I�A	 �P
1
k�0 !

�2k�
I�A	�

2k are independent of �. The boundary
condition (49) comes from the requirement that � �
0, z 2 ��1;�ck2	 and � � 0, z 2 �ck2; k2	 are the
 -invariant plane, i.e., the plane invariant under the
rotation with respect to the axial Killing vector @ .
The regularity on the invariant plane requires the
other conditions (50)–(53). Hence, for �! 0,
�tr� behaves as

 

�tr� ’
�!

 �0�
 �

2

f�2�  �0	f
�2�
  �1	f

�2�
  �0	�

3
�

1

f�2�2  �0	f
�2�2
  �1	f

�0�2
���0	f

�0�
���1	�

� ��!

 �0�
 �

2��f�2�  �1	f
�0�
���1	f

�4�
�0	 � f

�2�
  �0	f

�0�
���0	f

�4�
�1	 � f

�2�
  �0	f

�2�
  �1	f

�2�
���0	f

�0�
���1	� � �!


 �0�
� �

2f�2�  �0	f
�2�2
  �1	f

�0�
���0	

� 2!

 �0�
 f

�2�
  �0	f

�2�
  �1	f

�0�
���0	�!


 �2�
 f

�0�
���1	 �!


 �0�
� f

�2�
� �1	�	 �O��� � O���; (54)

where f�4�
�A	

:� f�2����A	f
�2�
  �A	 � f

�2�2
� �A	, and in the last

equality we used Eq. (45) for the two solutions ��0	
and ��1	 with the same angular momenta.

(ii) �-invariant plane:f��; z�j� � 0; ck2 < z<1g. The
boundary integral over the region is

 

Z 1
ck2
�
@tr�

@z

����������0
dz � ��tr�j��0	

1
ck2 : (55)

We assume that for �! 0, the five scalar fields
behave as
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 f���A	 ’ �
2f�2����A	 �O��

4�; (56)

 f  �A	 ’ f
�0�
  �A	 �O��

2�; (57)

 f ��A	 ’ �
2f�2� ��A	 �O��

4�; (58)

 !��A	 ’ !
�0�
��A	 �O��

2�; (59)

 ! �A	 ’ !
�0�
 �A	 �O��

2�; (60)

where the boundary condition (56) comes from the
requirement that � � 0, z 2 �ck2;1	 is the
�-invariant plane. The regularity on the invariant
plane, i.e., the finiteness of the scalar fields, requires
the other conditions (57)–(60). Hence, for �! 0,
�tr� behaves as

 

�tr� ’
�!

 �0�
� �

2

f�2����0	f
�2�
���1	f

�2�
���0	�

3
�

1

f�2�2���0	f
�2�2
���1	f

�0�2
  �0	f

�0�
  �1	�

� ��!

 �0�
� �

2��f�2����1	f
�0�
  �1	f

�4�
�0	 � f

�2�
���0	f

�0�
  �0	f

�4�
�1	 � f

�2�
���0	f

�2�
���1	f

�2�
  �0	f

�0�
  �1	� � �!


 �0�
 �

2f�2����0	f
�2�2
���1	f

�0�
  �0	

� 2!

 �0�
� f

�2�
���0	f

�2�
���1	f

�0�
  �0	�!


 �2�
� f

�0�
  �1	 �!


 �0�
 f

�2�
 ��1	�	 �O��� � O���; (61)

where we also used Eq. (45) for the two solutions
��0	 and ��1	 with the same angular momenta.

(iii) Horizon:f��; z�j� � 0;�ck2 < z < ck2g. The
regularity on the horizon requires the following
behavior of the five scalar fields for �! 0:

 f���A	 ’ f
�0�
���A	 �O��

2�; (62)

 f  �A	 ’ f
�0�
  �A	 �O��

2�; (63)

 f ��A	 ’ f
�0�
 ��A	 �O��

2�; (64)

 !��A	 ’ !
�0�
��A	 �O��

2�; (65)

 ! �A	 ’ !
�0�
 �A	 �O��

2�: (66)

Therefore, �tr� on the horizon behaves as

 �tr� � O���: (67)

(iv) Infinity:@�1 � f��; z�j
����������������
�2 � z2

p
! 1 with

z=
����������������
�2 � z2

p
finiteg. From the analysis in Ref. [39],

the asymptotic flatness requires that the metric in
the canonical coordinates behaves as

 f���A	 ’ �
����������������
�2 � z2

q
� z�

�
1�

~f�2����A	

2
����������������
�2 � z2

p �

�O
�

1

�2 � z2

�
; (68)

 f  �A	 ’ �
����������������
�2 � z2

q
� z�

�
1�

~f�2�  �A	

2
����������������
�2 � z2

p �

�O
�

1

�2 � z2

�
; (69)

 f ��A	 ’ �
�2

��2 � z2�3=2
�O

�
1

�2 � z2

�
; (70)

 !��A	 ’ ~!�0���A	 �O
�

1����������������
�2 � z2

p �
; (71)

 ! �A	 ’ ~!�0� �A	 �O
�

1����������������
�2 � z2

p �
(72)

for
����������������
�2 � z2

p
! 1 with z=

����������������
�2 � z2

p
finite, where �

is a gauge-invariant constant. For two solutions
with the same masses M, the functions ~f�2����A	 and
~f�2�  �A	 can be written in the form

 

~f�2����A	 �
4

3�
�M� 
�;

~f�2�  �A	 �
4

3�
�M� 
�;

(73)

where the constant 
 is not gauge invariant. The
ambiguity in the choice of the parameter 
 means
that the coordinate z is uniquely determined up to
the translation z! z� � as far as the coordinate �
conjugate to z is fixed at infinity. Since in our proof
we choose the coordinate z such that the horizons
are located on ��ck2; ck2	 for two configurations
��0	 and ��1	, we choose the same values of 
 for
the two solutions. Under the choice of this gauge,
�tr� behaves as
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�tr� ’
1

4
��~f


�2�
���

2 � �~f


�2�
  �

2 � ~f


�2�
��

~f


�2�
  	

�

�2 � z2

�O
�

1

�2 � z2

�
� O

�
1

�2 � z2

�
(74)

in the neighborhood of the infinity. Hence in the
neighborhood of @�1,

 �@atr�dSa � O
�

1����������������
�2 � z2

p �
: (75)

From (i)–(iv), the boundary integral (42) vanishes on
each segment of the rod and the infinity. The deviation
matrix � is constant and has asymptotic behavior as �!
0. Hence � vanishes over @�. Thus the two configurations
��0	 and ��1	 coincide with each other.

VI. CONCLUSIONS AND DISCUSSIONS

The rigidity theorem of the four-dimensional black hole
space-times states that asymptotically flat, stationary, ana-
lytic space-times assure the existence of an axial Killing
vector field [41]. Recently, the rigidity theorem was gen-
eralized to higher-dimensional space-times [42]. In par-
ticular, the rigidity theorem in five dimensions guarantees
at least one axial Killing vector field. As conjectured by
Reall [43], there may exist black hole solutions admitting
only two commuting Killing vector fields, although all of
the five-dimensional stationary black hole solutions found
so far have three mutually commuting Killing vector fields.
Hence, at this stage, it is natural to concentrate on asymp-
totically flat black hole solutions to the five-dimensional
vacuum Einstein equations admitting three commuting
Killing vector fields. One of the authors and Ida [38]
showed that the only black hole solution with a regular
event horizon homeomorphic to S3 is the five-dimensional
Myers-Perry black hole solution in this class. However, it is
impossible to generalize this theorem to the solutions with
horizon topology S1 � S2 since there are two black ring
solutions with different shapes for the same mass and the
same angular momenta [19,22]. Hence, we introduce the
rod structure [39] in order to consider the uniqueness of
black rings as the boundary value problem. For instance,
one of the candidates is rod structure introduced by
Harmark [39]. As mentioned in Sec. III, the black ring
solution has the following rod structure:

 �i� ��1; z1	; v � �0; 0; 1�;

�ii� �z1; z2	; v � �1;�1;�2�;

�iii� �z2; z3	; v � �0; 0; 1�;

�iv� �z3;1	; v � �0; 1; 0�;

(76)

which is characterized by four segments �zi; zi�1	 �i �
0; 1; � � � ; 3; z0 � �1; z4 � 1� and eigenvectors v with
respect to a zero eigenvalue of the three-dimensional ma-
trix g�� for each segment. The constants �1 and �2 mean
the angular velocities of the horizon in the directions of @�
and @ , respectively.

Hollands and Yazadjiev showed the following theorem
in Ref. [40].

Theorem 1—Consider two stationary, asymptotically
flat, vacuum black objects space-times of the five dimen-
sions with commuting two axial Killing vector fields and a
timelike Killing vector field. Then, if both solutions have
the same topology, the same rod structure, and the values of
the mass M and angular momenta J1, J2, they are
isometric.

However, even if we restrict the horizon topology to
S1 � S2, this theorem does not imply the uniqueness of the
Pomeransky-Sen’kov black ring solution within the class
of these solutions since there may exist another black ring
solution without a conical singularity for the same asymp-
totic charges, mass, and two angular momenta. Our end of
this article is to prove the uniqueness of the Pomeransky-
Sen’kov black ring solution by showing that the black rings
different from that of the Pomeransky-Sen’kov black ring
solution must have conical singularities: First, we show the
existence of the asymptotically flat black ring solution with
conical singularities and without curvature singularities
such that under the condition of no conical singularity,
they coincide with the Pomeransky-Sen’kov black ring
solution; next, once this black ring solution is given, using
the theorem 6 obtained by Hollands and Yazadjiev, we can
show the uniqueness of the black ring solution (1) in this
class of the solutions admitting three mutually commuting
Killing vector fields, i.e., a timelike Killing vector field and
two axial Killing vector fields. However, we should note
the following point. If we apply the Hollands-Yazadjiev’s
theorem to this black ring solution (1), it seems to be
specified by the asymptotic charges M, J�, J and the
two additional parameters c, k appearing in the rod data,
although all of these parameters are not independent. In the
proof in Sec. V the only four parameters M, J�, J , and c
appear, where M, JI�I � �; � denote the mass and angu-
lar momenta, respectively, and the constant c has the
geometrical meaning of the ratio of the radius of S2 to
the radius of S1. In terms of these parameters, we obtain the
following result:

Corollary 1—Consider asymptotically flat black ring
solutions to the five-dimensional vacuum Einstein
equations admitting three commuting Killing vector fields,
i.e., two axial Killing vector fields and a timelike Killing
vector field. Then, in this class of solutions, the only
solution with the horizon topology of S1 � S2 is the black
ring solution (1) specified by a mass M, two angular
momenta J�, J , and the ratio c of the radius of S2 to the
radius of S1.
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In particular, if we impose that the black ring solutions
do not admit a conical singularity, we obtain the main
result in this article:

Theorem 2—The only asymptotically flat, five-
dimensional black ring solution with commuting two axial
Killing vector fields and a timelike Killing vector field and
without a conical singularity is the Pomeransky-Sen’kov
solution.
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APPENDIX: EXPLICIT EXPRESSIONS OF
METRIC FUNCTIONS

The one-form � that appeared in the general black ring
metric (1) is defined by

 � � ��d��� d ;

where

 

�� �
s2

2s3k

32s1
2�H�y; x�

��������������������������������������������
b�1� b��bQ� 4q�Q

2Y3

s
� f�8bq3Q2s1

2�b� 1��1� b��s1
2Sx�y� 1�2 � 4TyA

�
xy��x� 1��2

� 4b2q2Qs1
4s3�s3Sxs2

2�y� 1�2�1� b� � 2C�x s2
2�y� 1�2 � 4s0SyA�xy�b� 1���x� 1��	�2

� �8TyTx2Q3q3�b� 1��1� b�2�1� y��3 � 4bs3q2Q2�1� b� � �8TyqA�xys1�b� 1��x� 1� � 2B�y T2
xTys2

2

� 2A�xyA�xys1
2�b� 1� � s3TyTx2s2

2�1� b��1� y���2 � 2b2qQs1
2s2s3

3�1� b���s1
2SySx2�y� 1�

� 2A�xyA�xys2 � 8A�xySyq�x� 1���� b3Sx2s1
4Sys3

5s2
2s0�1� y�	�� 8s3

3bq3s2Q2Tx�1� b�2�1� y�2�x� 1��2

� 4b2s3
5q2s2

2QSxs1�1� y�2�1� b��x� 1��g;

� � �
bQ�1� b�2q2s2

2s3k�1� x��1� x�
4s1H�y; x�

������������������������
�

�1� b�Y3�

s
�
�4q2Q2�b� 1��1� b��2 � b2s2

2s0
2s1

2s3
2�

�2�1� b�qQ�� bs0
2s1

2�2

� �4q2Q2�b� 1��1� b���q� 2y� ��Ty�2 � 4bqs1s3Q�y�2 � 2�� 2y2�� 4y� q2y��Q� 4bq��

� b2s0s2s3
3s1

3��� q� 2y�Sy�:

The functions H, J, F are defined as

 

H�x; y� �
Qs2

2

64Ys1
2�
f4C�y bq2Qs1

4�x� 1�2�b� 1��y� 1���2 � ��4Ty2B�x q2TxQ2�b� 1��1� b��2

� 4qbA�xyA
�
xyQs1

2s3
2�b� 1��1� b��� b2Sy

2SxB
�
x s1

4s3
4	�� 4C�y bq

2Qs3
4�x� 1�2�1� b��1� y��g;

J�x; y� �
�1

8�x� y�s1
2Y2k

��������������������������������������������������
Q�1� b�

2b�bQ� 4q��1� b���

s
f�bQ� 4q�k3�1� b��qs3�1� y��x� 1��8bq2Qs1

2��b� 1��y� 1�

� �x� 1��2q�b� 1�Q�s3Dxy�1� b� � s1s0
2TyTx��� s3bs1

2s0�s0Dxy�b� 1� � s2s3
2SySx���

2

� ��8q3TyTxQ
3�1� b��b� 1�2�s3A

�
xy�1� b� � 4q�y� 1��x� 1�s1��

3

� 4q2s3
3SxQ

2bs1Sy�b� 1��1� b��s1A
�
xy�b� 1� � 2s2TyTx��

2

� 2q�b� 1�Tys3
3b2Qs1

2s2s0
2Tx�s2A

�
xy�1� b� � 2s1SySx��� s3

5Sxb
3s2

2s1
4Sys0�s0A

�
xy�b� 1�

� 4q�y� 1��x� 1�s2���� �1� b�s3�2qQ�b� 1��� bs2
2s3

2��4Tyq
2A�xyQ

2Tx�b� 1��1� b��2

� 4bqQs1s2s3
2SxSyTyTx�� b2s1

2s2
2s3

4SxSyA�xy��s2
2bg;
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F�x;y� �
��1� b�b3k2A�xyA�xy�bQ� 4q�s3

2Sys2
2

8SxB�x TyY2

� �8�q2Qs1�b� 1��x� 1��� s3�2Qq�b� 1���4q�x� 1� � Sxs1��� s1Sxbs2
2s3

2��2

�
k2�1� b�TxA�xys2

2b

16Ty2B�2
x �x� y�Sx2s1

2Y2� f�16b2s3
2q2QSy

2s1
4Sx�x� 1��x� 1��b� 1��bQ� 4q���

�B�x �4Q
2�b� 1�q2�Sx

2s1
4�b� 1��y� 1�C�y � 32q2Ty�x� 1�2�bQ� 4q�B�y

� 8s1
2qTy�b� 1��y� 1��x� 1��bQ� 4q�Sx��

2� 4bs3
2qSxQs1

2s2
2�b� 1��y� 1�

� �4q�bQ� 4q��x� 1�Ty� s1
2C�y Sx��� Sx

2s1
4b2s2

4s3
4C�y �y� 1�	g

� �4q2Q�y� 1�Ty�b� 1��x� 1�B�x ��� bs3
4�x� 1�SxSyC

�
y � �

bs2
2A�xyTxk2

16Y2�s1
2Sx2�x� y�B�2

x Ty2

� ��bs1
4�x� 1�SxSyC

�
y �� 4q2Q�1� y�Ty�1� b��x� 1�B�x ��

� f�128B�x B
�
y q

4�2Q2Ty�b� 1�2�x� 1�2�bQ� 4q��2� 16Qs3
2q2Sx��b� 1��x� 1��bQ� 4q�

� �2qQTyB
�
x �b� 1��1� b��1� y��� s3

2b�s2
2B�x �1� b��1� y�Ty� bSy

2s1
2�b� 1��x� 1��	�

� s3
4B�x C

�
y Sx

2�1� b��2qQ�b� 1��� bs2
2s3

2�2�1� y�g �
k2�1� b�A�xyA�xyTxqs2

2b�b� 1�

4�x� y�B�2
x Ty2Sx2s1

2Y2

� �2�qQTyB
�
x � bs1

2s3
2SySx� � f4Q�q�b� 1��x� 1��bQ� 4q�

� �2QqTyB
�
x ��8B�y q�x� 1� � s1

2�b� 1��y� 1�Sx��� bSxs3
2s1

2�s2
2Ty�y� 1�B�x � 2Sy

2s1s3b�x� 1��	�

� s3
2B�x Sx�1� b��1� y��2qQ�b� 1��� bs2

2s3
2�

� �2qQ�2�bQ� 4q��x� 1�Ty� s1
2�b� 1��y� 1�Sx��� bSxs1

2s2
2s3

2�y� 1�	g �
2k2SyTx2H�x;y�

QY�x� y�2TyB�x Sx

� f32q2�bQ� 4q�B�y �x� 1��x� 1�SybQ�b� 1����B�x Sx�y� 1��1� y��1� b��2qQ�b� 1��� bs2
2s3

2�2g;

where the several polynomials are defined by

 A�xy � q2xy� 2q��1� xy� � �2� x���2� y��; (A1)

 A�xy � q2xy� 2q�1� xy� � �2� x���2� y��; (A2)

 B�x � 2� bq� 2bx� qx� b�� x�; (A3)

 B�x � �2� bq� 2bx� qx� b�� x�; (A4)

 B�y � 2� bq� 2by� qy� b�� y�; (A5)

 B�y � �2� bq� 2by� qy� b�� y�; (A6)

 C�x � �4b� 2q� 2qx� bq2x� 2b�� 2bx�� bx�2;

(A7)

 C�x � 4b� 2q� 2qx� bq2x� 2b�� 2bx�� bx�2;

(A8)

 C�y � �4b� 2q� 2qy� bq2y� 2b�� 2by�� by�2;

(A9)

 C�y � 4b� 2q� 2qy� bq2y� 2b�� 2by�� by�2;

(A10)

 

Dxy � q4xy� �4xy� 2�2xy� 2�x� 2�y� 4�q2

� �2� ���2� ���2� x���2� y��; (A11)

 Sx � 2� x�� qx; (A12)

 Sy � 2� y�� qy; (A13)

 Tx � �2� x�� qx; (A14)

 Ty � �2� y�� qy; (A15)

and the constants are defined by

 Q � �4� �2 � q2; (A16)

 s0 � 2� q� �; (A17)

 s1 � 2� q� �; (A18)

 s2 � �2� q� �; (A19)
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 s3 � �2� q� �; (A20)

 

Y � 32bq2Q�b� 1��bQ� 4q���

� �1� b��2�b� 1�qQ�� bs2
2s3

2�2; (A21)

 � �
�1� b��2�1� b�qQ�� bs2

2s3
2�

�1� b��2�1� b�qQ�� bs0
2s1

2�
: (A22)

Apparently, here are seven parameters �, �, q, c, �, b, k.

These parameters obey the following three relations:

 q �
�����������������
�2 � 4�

p
; (A23)

 c � q=�1� ��; (A24)

 � � 4
��� q���� 2� q���� 2� q�
��� q���� 2� q���� 2� q�

: (A25)

Thus the four of them are independent.
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