
Can one detect passage of a small black hole through the Earth?
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The energy losses of a small black hole passing through the Earth are examined. In particular, we
investigate the excitations in the frequency range accessible to modern acoustic detectors. The main
contribution to the effect is given by the coherent sound radiation of the Cherenkov type.
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I. INTRODUCTION

Primordial black holes could arise at the early stages of
the Universe evolution when the matter density was very
high. But which of them could survive since those times?
The problem is that too light primordial black holes have
already evaporated due to their thermal radiation. Well-
known estimates [1] demonstrate that the masses of the
survivors should exceed 1015 g.

As a step to study the possibility to detect the passage of
so small black hole through the Earth (or some other
planet, or the Moon), we analyze here the effects arising
during such a passage with a velocity comparable to that of
the planet.

It turns out that for a supersonic black hole, i.e. for that
with velocity exceeding the speed of sound, the main effect
is a coherent excitation of sound waves in the matter, the
acoustic analogue of Cherenkov radiation. These waves
can be in principle observed by seismic measurements.

II. SOUND GENERATION BY A SUPERSONIC
BLACK HOLE

A. Coherent Cherenkov-type effect

We start with the dynamics of mechanical deformations
and excitation of sound waves caused by the passage of a
primordial black hole through matter. The deformation can
be conveniently described by the displacement vector u
with respect to the positions of the matter points in the
absence of a black hole. For small deformations u satisfies
the linear wave equation:

 

�u� c2
s�u � g: (1)

Here g is the gravitational acceleration created by the black
hole, and cs is the speed of sound. We note that only the
longitudinal sound modes are excited by the gravitational
force since g is the gradient of a scalar potential: g � r�.

The gravitational acceleration g satisfies the Gauss law:

 rg � �4�G�M��r� vt� � ���: (2)

Here M and v are the black hole mass and velocity,
respectively; the deviation �� of matter density from its
equilibrium value in the absence of a black hole is related
to the displacement vector as follows:

 �� � ��ru:

The divergence of Eq. (1) is

 

� � c2
s� � 4�G� � �4�GM��r� vt�; (3)

where  � ru. The corresponding equation for the
Fourier transforms  k reads

 

� k � " _ k � c
2
sk

2 k � 4��G k

� �4�MG exp��ikvt�; (4)

we have introduced here an infinitesimal damping " which
corresponds to the retarded solution and is equivalent to a
small viscosity term in the wave equation. The solution of
Eq. (4) is

  k �
4�GM exp��i!t�

!2 � i!"� c2
sk

2 � 4�G�
; (5)

with ! � kv � kkv.
The decelerating force applied to the black hole is equal

to

 Mg � �4�i�MG
Z

k k exp�i!t�
d3k
�2��3k2 : (6)

The radiation intensity, or the rate of energy loss by the
black hole due to its elastic interaction with matter, is

 Iel � �Mgv �
Z �4�GM�2�i!

!2 � i!"� c2
sk2 � 4�G�

d!d2k?
�2��3vk2 :

(7)

Now we use the well-known relation

 

1

x� i"
� P

1

x
� i���x�;
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where P is the principal value of an integral. Here the
contribution of the principal value is an odd function of
! and therefore vanishes after integration over!. Thus, we
obtain
 

Iel � 4�GM�2�
Z d2k?

vk2

Z 1
0
��!2�1� c2

s=v
2�

� c2
sk2
? � 4�G��!d!: (8)

This is clearly a Cherenkov-type effect which is, in par-
ticular, demonstrated by the fact, that the condition v > cs
has to be satisfied in order to have a nonvanishing effect. In
our case the black hole moves faster than sound, v > cs,
and the �-function gives a nonvanishing contribution only
if k? >!p=cs, where !2

p � 4�G�. Then,

 Iel �
2��GM�2�

v�1� c2
s=v

2�

Z k2
1

�!p=cs�2

dk2
?

k2

� 2��GM�2�=v
Z k2

1

�!p=cs�2

dk2
?

k2
? �!

2
p=v2 : (9)

This integral diverges logarithmically at large momentum
transfers from the black hole to the matter, when the
scattering gets inelastic. Fortunately, if we are interested
in the total energy losses, elastic plus inelastic (see below),
the exact value k2

1 of such critical momentum transfers is
inessential.

B. Inelastic scattering: Total mechanical losses

We start here with the opposite limiting case, that of
large momentum transfers, when the matter can be consid-
ered as a collection of free particles (of mass m, number
density n, and mass density � � mn). The differential
cross section for scattering of a black hole on such a
particle is

 

d�
d�
�

1

4

�
GM

v2

�
2 1

sin4�=2
: (10)

The corresponding decelerating force looks formally as

 F �
Z
�v2�1� cos��d� � 2��

�GM�2

v2

Z �

0
d�

cos�=2

sin�=2
:

(11)

In fact, the typical scattering angles here are small, so that

 

Z �

0
d�

cos�=2

sin�=2
� ln

�2
max

�2
min

� ln
k2
?max

k2
?min

:

Obviously, k?max ’ 1=a, where a is the typical interatomic
distance in the matter. As to the minimum momentum
transfer k?min at which one can neglect the binding of
the matter constituents, it coincides as obviously, at least
in the order of magnitude, with the maximum momentum
transfer k2

1 at which the interaction of a black hole with
matter remains elastic [see Eq. (9)]. Thus, the rate of

inelastic energy loss by a black hole is

 Iinel � Fv � 2��GM�2�=v ln
1

k2
1a

2 : (12)

Finally, the total rate of energy loss is

 Itot � Iel � Iinel � 4��GM�2�=v ln
cs
!pa

: (13)

With the accepted logarithmic accuracy, this total rate is
independent of the critical momentum transfer k1. On the
other hand, for any reasonable choice of k1, the elastic
energy loss dominates strongly, Iel � Iinel. It is worth
mentioning also that the logarithm in (13) is really large,
about 35. An expression for Itot close to (13), but with a
different logarithmic factor, was obtained previously by
Penanen [2].

To estimate the energy �E released by a black hole
passing through the Earth, this rate should be multiplied
by the time of the passage, � � L=v. For numerical esti-
mates we assume that the equilibrium density of matter is
� � 6 g=cm3, the path L is about the Earth diameter, L	
104 km, and the velocity of a black hole is v	 30 km=s.
At last, for a black hole with mass M	 1015 g this energy
loss constitutes about

 �E	 4
 109 J: (14)

Let us note that this energy is much smaller than that
released at the explosion of a 10 kt atomic bomb

 �Ebomb 	 5
 1013 J: (15)

Besides, when comparing the energy released by a black
hole [not only (14), but also some other contributions to it
considered below] with the energy of an atomic bomb, one
should keep in mind that the source of �Ebomb is practi-
cally pointlike, while �E is spread along a path L	
104 km. Of course, the energy released by a black hole is
extended not only in space, but in time: it takes several
minutes for the black hole to cross the Earth, and the
release of energy in an atomic bomb or in an earthquake
happens in much shorter time intervals. This extension of
the effect both in space and time will make the intensity of
the black hole signal to be much more difficult to detect.

C. Frequency spectrum of excitations and sensitivity of
seismic detectors

To detect a mini-black hole passing through the Earth,
one has to study seismic vibrations induced by this pas-
sage. The sensitivity of appropriate seismic detectors is
confined to the frequencies in the interval around !min 	
0:1 Hz and !max 	 10 Hz.

To determine the frequency distribution of the acoustic
Cherenkov radiation, we come back to formula (8) and
perform at first integration over k?. With v� cs and
!� !p, the result is
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 dIel � 4��GM�2��=v�
d!
!
: (16)

Thus, the total intensity of the vibrations in the frequency
interval !min �!max is

 I � 4��GM�2�=v ln
!max

!min
: (17)

For the discussed frequency interval, 0:1� 10 Hz, the total
energy released constitutes

 �E! � 4��GM�2L�=v2 ln
!max

!min
	 5
 108 J; (18)

or about 1=10 of the total energy (14).
Let us estimate now the typical amplitudes of vibrations

caused by a black hole passage. To simplify the problem,
we assume that a black hole enters the Earth along the
normal to its surface. Simple geometrical consideration
demonstrates that the energy density inside the
Cherenkov cone, at the moment when this cone touches
the seismograph, can be estimated as I=��l2v�. Here l is
the distance from the point of entrance to the seismograph;
we assume (rather conservatively) that the energy is spread
homogeneously inside the cone, but not concentrated close
to its surface. With the energy density �!2a2 of the matter
vibrations, l	 100 km, and!	 1 Hz, we obtain the value
of vibration amplitude:

 a	
GM
!vl

	 10�6 cm: (19)

III. CONVERSION OF BLACK HOLE RADIATION
INTO SOUND WAVES

One more source of the energy transfer from a light
black hole to the matter (though not its kinetic energy
discussed above, but the internal one) is the black hole
radiation. Of course, for our purpose we have to consider
the emission of � and e� only (but not gravitons and
neutrinos). Using the results of [3], we obtain under the
same assumptions (M	 1015 g, L	 104 km, and v	
30 km=s) the following estimate for the total radiation
loss of such a black hole:

 �Erad 	 1:5
 1012 J: (20)

One of the possible mechanisms for the conversion of
radiation into sound waves, which permits of rather reli-
able theoretical analysis, is as follows. The radiation ab-
sorbed by matter increases the temperature along the path
of the source. This results in the inhomogeneous and non-
stationary thermal expansion of the matter and thus in the
emission of acoustic waves. The matter is treated as a
liquid (the case of a solid medium could be considered
analogously), and the well-known relations

 _�� div�v � 0; � _v � �rp (21)

result in the following equation:

 ��� �p � 0; (22)

for density � and pressure p. The variations of density,
pressure, and temperature are related as follows:

 �� �
�
@�
@p

�
T
�p�

�
@�
@T

�
p
�T �

1

c2
s
�p� �	�T; (23)

here 	 � �1=��@�=@T�p is the coefficient of thermal
expansion. This allows one to eliminate � from (22):

 

1

c2
s

�p��p� �	 �T � 0: (24)

Neglecting the thermal conductivity, we rewrite � _T as
W=C, where W is the power density and C is the specific
heat. Thus, such effect due to heating is described by the
following equation for pressure (derived previously in
Ref. [4]):

 

1

c2
s

�p� �p �
	
C

_W: (25)

A black hole can be treated as a pointlike source of
radiation with intensity I, so that in our case W � I��r�
vt�.

Let us consider now the mechanical energy of the mat-
ter:

 Em �
Z � p2

2�c2
s
�
�v2

2

�
dV: (26)

The intensity of the sound radiation coincides with the rate
of energy loss:

 

dEm
dt
�
Z �p _p

�c2
s
� �v _v

�
dV �

Z �p _p

�c2
s
� vrp

�
dV: (27)

We use here the Euler equation � _v � �rp to rewrite the
last term. Then, integrating by parts and using the continu-
ity equation we arrive at

 

dEm
dt
�
Z p
�

�
_p

c2
s
� _�

�
dV �

Z 	pW
�C

dV: (28)

With a pointlike source W � I��r� vt�, the integration is
performed easily:

 

dEm
dt
�
	I
�C

p�vt�; (29)

where p�vt� is the pressure at the point of the black hole
location. Now the Fourier transformed equation (25) is

 p!;k �
	I
C
��i!�

2���!� kv�
k2 � �!� i"�2=c2

s
: (30)

Here we have introduced again an infinitesimal damping ".
With "! 0, the frequency Fourier component of the pres-
sure at the black hole location is
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 p! �
Z dk
�2��3

p!;k �
	I
C

Z dk
�2��2

�i!��!� kv�
k2 � �!� i"�2=c2

s

!
	I!
C

Z dk
�2��2

���!� kv���k2 �!2=c2
s�

�
	I!
4vC

Z 1
0
dk2
?��k

2
? �!

2=v2 �!2=c2
s� �

	I!
4vC

:

(31)

The intensity of the sound radiation at given frequency! is
related to p! as follows:

 

dEm
dtd!

d! � 2
	I
�C

p!
d!
2�

; (32)

the overall factor 2 in this expression corresponds to the
fact that frequencies of both signs, ! and �!, are taken
here into account. Finally, we arrive at the following result
for the spectral intensity of the sound waves:

 

dEm
dtd!

�

�
	I
C

�
2 !

4�v�
: (33)

The total energy radiated in this way at the frequency!,
during the passage of a black hole through the Earth, can be
conveniently written as

 

dEm
d!

�

�
	�Erad

C

�
2 !

4�L�
; (34)

we go over in this expression from the intensity I of the
black hole radiation to the total energy �Erad emitted
during the passage through the Earth: �Erad � IL=v.

Curiously, this sound radiation occurs only if v > cs, as
it is obvious from the last line of Eq. (31). In other words,
this is also a sort of Cherenkov effect.

The total energy for frequencies !<!max is, according
to (34),

 E!m �
�
	�Erad

C

�
2 !2

max

8�L�
: (35)

With C � 1 J g�1 K�1, !max � 10 Hz, and 	 �
0:5
 10�4 K�1, we obtain E!m 	 1 J. So, this effect is
much less than that of the Cherenkov sound radiation (18).

There is in fact one more mechanism by which the
energy of black hole radiation is transformed into the
mechanical energy of matter. It is as follows. Of course,
in the rest frame of a black hole its radiation is isotropic, so
that the total momentum of radiated particles is equal to
zero. However, it is not so in the rest frame of the Earth. In
it the momentum carried away by particles radiated by a
black hole with velocity v per unit time can be estimated as
Iv=c2 (here c is the speed of light). All this momentum is
absorbed by the matter together with the radiation itself.
Therefore, the effective force of interaction between the
black hole and matter is

 F	
Iv

c2 	
�Eradv2

c2L
: (36)

Thus, the total energy transferred due to this pressure from
the black hole to matter along the path L can be estimated
as

 �Epr 	 FL	 �Erad
v2

c2 	 10�8�Erad 	 104 J: (37)

However, the portion of energy released in this way in
the frequency region !<!max 	 100 Hz is much less. Its
crude estimate looks as follows. The typical absorption
length r0 for � and e� is in our case about 3 cm. Simple
estimates demonstrate that the relative concentration of the
defects in matter created by this radiation is small every-
where. (In this respect as well, our problem of the seismic
waves, generated by the black hole radiation, differs from
that for the underground explosion of an atomic bomb: in
the last case the region of complete destruction of the
matter is measured at least by meters.) Thus, in the present
case r0 is the only length scale at our disposal. This region
of radius r0 propagates in the matter with the velocity v of
a black hole. Then the typical frequency of thus created
perturbations in the matter can be estimated as

 !0 	 v=r0 	 106 Hz: (38)

The frequencies !, we are interested in, are much smaller,
!max  !0. It looks natural to assume that in our low-
frequency (‘‘infrared’’) region the radiation intensity is
governed by the phase space considerations. With the
essentially two-dimensional propagation of the perturba-
tion around the line of flight of a black hole, the phase
space can be considered also as a two-dimensional one.
Then one can assume that the frequency spectrum in the
low-frequency region of interest looks as !2=!2

0, and the
‘‘useful’’ portion of black hole radiation, which directly
induces seismic vibrations in the frequency interval 1�
100 Hz, can be estimated as

 �E!pr 	 Erad
v2

c2

!2
max

!2
0

; (39)

which is negligibly small. Anyway, even the total energy
(37) transferred in this way is less than the useful part (18)
of the sound Cherenkov radiation.

One more effect we wish to mention is as follows. It was
pointed out long ago [5] that, due to the positron annihila-
tion and the capture of Compton- and �-electrons by a
cosmic-ray electron-photon shower, an excess of electrons
arises in this shower. Because of the excess, a shower gets
effectively charged, creates correspondingly a macro-
scopic electromagnetic field, and radiates coherently.

Obviously, analogous effects take place in principle
during the passage of a radiating black hole through the
Earth (of course, the intensities of electrons and positrons
emitted by a black hole itself are equal). Let us estimate the
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field created in this way by a black hole. We assume that
the excess of electrons created here per second is about the
same as the total production rate of particles by a black
hole _N. Then the magnetic field at the distance on the order
of the absorption length r0 from the black hole can be
estimated as

 B	 e
v
c

_N
cr0

: (40)

It falls down as 1=r2 with the distance from the black hole.
With _N 	 1021 s�1, v	 30 km=s, and r0 	 3 cm, this
magnetic field is about 0.3 Gs only. The possibility to use
such a signal for detecting the passage of a light black hole
through the Earth does not look realistic.

To summarize, the seismic signal of the passage of a
light black hole through the Earth in the frequency interval

1� 100 Hz is strongly dominated by the sound Cherenkov
radiation, and its total energy in this interval can be esti-
mated as

 �E! 	 5
 108 J: (41)

We wish to point out in conclusion that, though the
effects of radiation damage contribute negligibly into the
seismic signal, they can create quite a distinct pattern in
crystalline material. The dose deposited is estimated as

 

�Erad

�Lr2
0

	 105 Gy �1 Gy�Gray� � 1 J=kg�: (42)

It creates a long tube of heavily radiative damaged mate-
rial, which should stay recognizable for geological time.
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