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I. INTRODUCTION

There is a broad consensus that general relativity and
ordinary differential geometry should be replaced by non-
commutative (NC) geometry at some point between cur-
rently accessible energies of about 1–10 Tev (projected for
the LHC at CERN) and the Planck scale, which is 1015

times higher. A tremendous effort has thus been spent to
understand theories defined over the NC spacetime in
recent years [1]. A significant portion of these works are
devoted to constructing a consistent theory of gravity on
NC spacetime [2]. The principal obstacle in this formula-
tion comes from negotiating general coordinate invariance.
Different approaches to the problem can be broadly clas-
sified on the manner in which the diffeomorphism invari-
ance of general relativity has been treated in the NC
setting. In [3] a deformation of Einstein’s gravity was
studied using a construction based on gauging the non-
commutative SO�4; 1� de Sitter group and the Seiberg-
Witten (SW) map [4] with subsequent contraction to
ISO�3; 1�. Construction of a noncommutative gravitational
theory was proposed based on a twisted diffeomorphism
algebra [5,6]. On the other hand the theory has been for-
mulated based on true physical symmetries [7–9] by re-
sorting to a class of restricted coordinate transformations
that preserve the NC algebra. The restriction corresponds
to the formulation of NC gravity in the context of uni-
modular gravity [10]. Remarkably, the formulations of the
NC gravity theories are based mainly on the NC extensions
of the gauge theories of gravity [11].

Though there are still unsolved conceptual problems
[12–14], the development of NC gravity has reached a
mature stage. For instance, it has been an established fact
that the leading order corrections to physically relevant
quantities start from the second order in the NC parameter
� [8,9]. Keeping in view the estimated order of magnitude
of � [15], the NC correction to gravity is indeed small. It
will nonetheless be important in situations where singular-
ities appear, as, for example, in black hole physics. This
explains the recent interest in obtaining the corrected form

of solutions of Einstein’s equations in the NC setting.
Recently the corrections to the exterior Schwarzschild
solution have been computed [16] following [3]. Since
this approach gives us the first direct method of introducing
such NC corrections, applications of the same to other
solutions of Einstein’s equations will obviously be
welcome.

It is well known that the Schwarzschild solution corre-
sponds to the gravitational field of a spherically symmetric
neutral mass distribution. If the distribution also carries a
charge, the corresponding solutions are given by the
Reissner–Nordstrom (R–N) metric. A natural step forward
will be to compute the NC corrections to the R–N solu-
tions. This is all the more important because it allows us to
check the consistency of the formalism in the sense that
tuning the charge of the distribution to zero one should
obtain the NC Schwarzschild from the NC R–N solutions
just as in the commutative manifold. Considering the com-
plex issues involving the formulating NC gravity, this
consistency requirement is indeed nontrivial and worthy
to be addressed. Apart from this, the R–N solutions are
important due to their intrinsic interest [17] specifically in
the context of their recent applications in Hawking radia-
tion [18–20]. We therefore propose to construct the NC R–
N solutions following [3] in the present paper.

We assume a canonical (i.e. constant) noncommutative
algebra

 �x�; x�� � i���: (1)

Functions defined over this noncommutative space-time
can be represented by ordinary functions with the product
rule modified by ?-multiplication

 �̂�x� ?  ̂�x� � ��̂ ?  ̂��x� � e�i=2� ���@�@0��̂�x� ̂�x0�jx0�x:

(2)

The ?-multiplication is associative but not commutative.
The space-time of noncommutative theory will be taken to
be of Minkowski type, endowed with spherical noncom-
mutative coordinates. A deformation of the gravitational
field is constructed by gauging the noncommutative de
Sitter SO�4; 1� group [3] and using the Seiberg-Witten
(SW) map [4]. The deformed gravitational gauge poten-
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tials (tetrad fields) êa��x;�� are obtained by contraction of
the noncommutative gauge group SO�4; 1� to the Poincaré
(inhomogeneous Lorentz) group ISO�3; 1�. The fields are
expanded in perturbative series where the different terms
of the series are obtained from the commutative solution of
the metric. We find the deformed gauge fields up to the
second order in the noncommutativity parameters ���

[3,16]. The correction terms require the commutative tet-
rad fields of the de Sitter gauge theory of gravitation over
Minkowski spacetime. We found these solutions using a
spherically symmetric ansatz [21] and solving the corre-
sponding Einstein equations. From the NC tetrad fields
êa��x;�� we construct the NC Reissner–Nordstrom metric
ĝ���x;��. Naturally, the nontrivial correction starts from
the second order. We explicitly calculate this leading NC
correction term to the Reissner–Nordstrom metric. These
solutions will be used to discuss some physical consequen-
ces of the theory.

Before proceeding further let us note that the perturba-
tive expression of the tetrad fields only involves the com-
mutative tetrad field solutions. Thus electromagnetic
interaction appears in our analysis at the commutative level
only. Of course NC effects will appear in the dynamics of
the electromagnetic field which is however not discussed
here. In our calculation we follow the convention of the
signature: �, �, �, � and also the units G � c � 1.

The organization of our paper is as follows. Section II is
devoted to the computation of the tetrad fields of the
commutative de Sitter SO�4; 1� gauge theory which leads
to the R–N metric. These expressions will be subsequently
used in the computation of the NC corrections. In Sec. III
the results for the deformed gauge potentials (tetrad fields)
valid up to the second order of the expansion in � are
reviewed. Based on these results, we calculate the compo-
nents of the deformed Reissner–Nordstrom metric follow-
ing the definition of real metric of [3]. Section IV contains
our concluding remarks.

II. COMMUTATIVE TETRAD FIELD SOLUTIONS

We review first the gauge theory of the de Sitter group
SO(4,1) on a commutative 4-dimensional Minkowski
spacetime endowed with the spherically symmetric metric
[21]:

 ds2 � �dt2 � dr2 � r2�d�2 � sin2�d’2�: (3)

The SO�4; 1� group is 10-dimensional. We can group the
gauge fields hA� � �1; 2; . . . ; 10� as the four tetrad fields
ea�; a � 0, 1, 2, 3 and the six antisymmetric spin connec-
tions !ab

� ; a; b � 0, 1, 2, 3. The field strength tensor can be
separated in the torsion

 Fa�� � kTa�� � k�@�ea� � @�ea� � �!ab
� ec� �!ab

� ec���bc�;

(4)

and the curvature tensor

 Fab�� � Rab��

� @�!ab
� � @�!ab

� � �!ac
� !db

� �!ac
� !db

� ��cd

� k�ea�e
b
� � e

a
�e

b
��: (5)

Under the contraction k! 0 the de Sitter gauge group goes
to the ISO�3; 1� Poincaré group. The resulting theory
becomes equivalent to Einstein’s theory of gravity when
the torsion is set to zero. By imposing the condition of null
torsion Ta�� � 0, one can solve for !ab

� �x� in terms of
ea��x�. So in this framework the spin connections are not
independent fields, they are determined by the tetrads.

Now, we consider a particular form of spherically sym-
metric gauge fields of the SO�4; 1� group given by the
following Ansatz [21]:

 e0
� � �A; 0; 0; 0�; e1

� �

�
0;

1

A
; 0; 0

�
;

e2
� � �0; 0; rC; 0�; e3

� � �0; 0; 0; rC sin��
(6)

 !01
� � �U; 0; 0; 0�; !12

� � �0; 0; W; 0�;

!13
� � �0; 0; 0; Z sin��; !23

� � �V; 0; 0; cos��;

!02
� � !03

� � �0; 0; 0; 0�;

(7)

where A, U, V, W, and Z are functions only of the three-
dimensional radius. The nonzero components of Ta�� and
Rab�� can be obtained using GRTensor II package of MAPLE

as

 T0
01 � �

AA0 �U
A

; T2
03 � �rCV sin�;

T2
12 � C� rC0 �

W
A
; T3

02 � rCV;

T3
13 �

�
C� rC0 �

Z
A

�
sin�;

(8)

and respectively
 

R01
01 � �U

0; R23
01 � �V

0; R13
23 � �Z�W� cos�;

R02
02 � �UW; R13

02 � VW; R03
03 � �UZ sin�;

R12
03 � �VZ sin�; R12

12 � W0;

R23
23 � ��1� ZW� sin�; R13

13 � Z0 sin�; (9)

where A0, U0, V 0, W0, and Z0 denote the derivatives of first
order with respect to the r-coordinate.

If we use (8), then the condition of null torsion Ta�� � 0
gives the following constraints

 U � �AA0; V � 0; W � Z � A�C� rC0�:

(10)

We consider the case of static spherically symmetric
charged matter. The Riemann tensor of the model is de-
fined by
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~R��
�� � Rab��e

�
a e

�
b : (11)

The Einstein equations are [22]

 

~R�
� �

1
2

~R�a� � �T��; (12)

where T�� is the usual electromagnetic energy momentum
tensor

 T�� � 2�F�	F�	 �
1
4g��F��F

���: (13)

For our model the Eqs. (12) become
 

�
AW0

rC
�

1� ZW

r2C2 �
AZ0

rC
�
Q2

r4

WU
rCA

�
1� ZW

r2C2 �
UZ
rCA

�
Q2

r4

U0 �
ZU
rCA

�
AZ0

rC
� �

Q2

r4

U0 �
WU
rCA

�
AW0

rC
� �

Q2

r4

�W � Z�A � 0

(14)

From the above equation and (10) (i.e. the zero torsion
constraints) we find that the functionC can be conveniently
chosen. Taking C � 1 we obtain only two independent
equations

 �
2AA0

r
�

1� A2

r2 �
Q2

r4 ; �
2AA0

r
�U0 � �

Q2

r4 :

(15)

The compatibility of these two equations gives

 U0 �
1� A2

r2 �
2Q2

r4 : (16)

Combining this with the first of Eq. (10) we get the
following differential equation for A

 �A2�00 �
2A2

r2 �
2

r2 �
4Q2

r4 : (17)

The solution to (17) is

 A2 � 1�
�
r
� �r2 �

Q2

r2 : (18)

Here � and � are arbitrary constants appearing in the
complementary function of (17). Substituting in (15) we
get � � 0. Choosing � � �2M we find

 A2 � 1�
2M
r
�
Q2

r2 : (19)

The metric g�� is obtained in the usual way

 g�� � ea�eb��ab: (20)

We find that
 

ds2 � �

�
1�

2M
r
�
Q2

r2

�
dt2 �

dr2

�1� 2M
r �

Q2

r2 �

� r2�d�2 � sin2�d’2� (21)

which is the R–N solution. We thus see that the ansatz (6)
and (7) with A given by (19) along with the zero torsion
constraints (10) leads to the R–N solutions of the Einstein
equations in commutative spacetime. Thus Eqs. (6) with
(19) are our desired solutions for the commutative tetrad
fields. We will use these solutions to calculate the NC
corrections in the next section.

III. DEFORMED REISSNER–NORDSTROM
METRIC

In the above we have obtained the solutions for the tetrad
fields for the de Sitter gauge theory contracted to the
Poincaré gauge theory in the commutative spacetime
which leads to the R–N solutions of the Einstein equations.
In this section we will use these solutions to find the R–N
solutions in NC gravity. As has been mentioned earlier we
follow the approach of [3]. It is possible to write the
deformed tetrad fields êa��x;�� up to the second order as
[3]:
 

êa��x;�� � ea��x� � i��
ea��
�x� ���
�	�ea��
	��x�

�O��3�; (22)

where

 ea��
 �
1
4�!

ac
� @
ed� � �@
!ac

� � Rac
��ed���cd; (23)

 

ea��
	� �
1
32�2fR��; R�
g

abec	 �!
ab
	 �D
Rcd�� � @
Rcd���em� �dm � f!�; �D
R�� � @
R���gabec	

� @�f!�; �@
!� � R
��gabec	 �!
ab
	 @��!

cd
� @
em� � �@
!cd

� � Rcd
��em� ��dm � 2@�!ab
	 @
@�e

c
�

� 2@
�@�!ab
� � Rab���@�ec	 � f!�; �@
!	 � R
	�gab@�ec�

� �@�!ab
� � Rab����!cd

� @
em	 � �@
!
cd
	 � R

cd

	�e

m
� �dm���bc: (24)

We define also the complex conjugate êa�� �x;�� of the deformed tetrad fields given in (22) by

 

êa�� �x;�� � ea��x� � i��
ea��
�x� ���
�	�ea��
	��x� �O��
3�: (25)
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Then we can introduce a deformed metric by the formula

 ĝ ���x;�� �
1
2�ab�ê

a
� ? ê

b�
� � ê

b
� ? ê

a�
� �: (26)

We can see that this metric is, by definition, a real one, even
if the deformed tetrad fields êa��x;�� are complex
quantities.

We are now in a position to find the NC corrections to
the R–N metric for the NC spacetime given by (1). We
choose the coordinate system so that the parameters ���

are given by

 ��� �

0 0 0 0
0 0 � 0
0 �� 0 0
0 0 0 0

0
BBB@

1
CCCA; ��; � � 0; 1; 2; 3�:

(27)

Note that in even dimension the antisymmetric tensor ���

can always be rotated to a skew-diagonal form [1]. Our
form (27) further assumes vanishing noncommutativity in
the time-space sector, which is quite usual in the literature.
Another motivation of our choice of ��� follows from the
requirement of comparison with the results of [16], which
provides a consistency check of the entire formalism as we
have mentioned earlier.

The nonzero components of the tetrad fields êa��x;��
corresponding to this NC structure can be easily worked
out using GRTensor II package of MAPLE. Then using the
definition of the metric (26) we arrive at the following
nonzero components of the deformed metric ĝ�� up to
the second order in �:

 

ĝ11�x;�� �
1

A2 �
1

4

A00

A
�2 �O��4�;

ĝ22�x;�� � r2 �
1

16
�A2 � 11rAA0 � 16r2A02

� 12r2AA00��2 �O��4�;

ĝ33�x;�� � r2sin2��
1

16

�
4
�
2rAA0 � r

A0

A
� r2AA00

� 2r2A02
�

sin2�� cos2�
�

�2 �O��4�

ĝ00�x;�� � �A2 �
1

4
�2rAA03 � rA3A000 � A3A00 � 2A2A02

� 5rA2A0A00��2 �O��4�;

where A0, A00, A000 are first, second, and third derivatives of
A�r�, given by (19), respectively. The same expressions
will be useful in our work with only one change i.e. A�r� is
now given by (19). One can now compute the corrections
to the R–N metric for NC gravity. The explicit form of the
nonzero components are

 

ĝ00��

�
1�

2M
r
�
Q2

r2

�
�

1

r6

�
Mr3�

11M2�9Q2

4
r2

�
17MQ2

4
r�

7Q4

2

�
�2�O��4�

ĝ11�
1

�1� 2M
r �

Q2

r2 �

�
��2Mr3�3�M2�Q2�r2�6MQ2r�2Q4�

4r2�r2�2Mr�Q2�2
�2

�O��4�

ĝ22� r
2�

1

16

�
1�

15M
r
�

26Q2

r2 �
4�Mr�Q2�2

r2�r2�2Mr�Q2�

�
�2

�O��4�

ĝ33� r2sin2��
1

16

	

�
4r2�M2�Mr��8Q2�r2�2Mr��8Q4

r2�r2�2Mr�Q2�2
sin2�

� cos2�
�

�2�O��4�: (28)

We thus reach our desired results. Certain observations are
due at this point.

(1) If we substitute Q � 0 in our expressions (28) the
solutions exactly reduces to the NC Schwarzschild
solutions [16]. It is well known that the R–N metric
goes over to the Schwarzschild metric in the limit
Q! 0 for commutative spacetime. That the same
correspondence prevails for NC spacetime as well is
indeed gratifying considering the complexities in-
volved in the construction.

(2) The NC tetrad fields contain nonvanishing terms
first order in the NC parameter �. There is however
no ambiguity because the complex tetrad fields are
not physical observables. It is the metric that is
physically observable, and our corrections to the
metric (28) indeed starts from the second order.
This result is thus consistent with the general ob-
servation that there is no observable first order cor-
rection to NC gravity [8,23–25].

Note that attempts to incorporate NC effects for the
charged black hole were made earlier in the literature
[26], but they assumed the commutative expression for
the metric and introduced noncommutativity afterwards.
It can definitely be claimed that our results provide the first
rigorous expressions for NC corrections to the R–N metric.

IV. SOME PHYSICAL CONSEQUENCES OF THE
NC CORRECTION

In this section we will derive some physical results
stemming from the NC corrections presented above.
Specifically we will discuss how the NC corrections affect
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the R–N horizon radii. Also we will derive an expression
for the NC curvature scalar up to second order in the NC
parameter. This latter computation is necessary to buttress
our assertion that the complex first order term in the NC
tetrad does not contribute to the physical results of the
theory.

A. Horizon corrections

In commutative spacetime we can identify the event
horizons by following radial null curves and locating the
radius at which dt

dr becomes infinity. Following this and
remembering that our event horizons should go to the
commutative results in the limit �! 0 we define the event
horizons of the NC R–N metric from g00 � 0. From our
NC R–N solutions (28) it is straightforward to derive

 r2 � 2mr�Q2 � �
�2

4r4 �4mr
3 � 11m2r2 � 9Q2r2

� 17mQ2r� 14Q4�; (29)

the solutions to which give the horizon radii. Naturally we
look for solutions correct up to second order in �. The
required solutions are

 r� � M�
�������������������
M2 �Q2

q
�

�2

2

A��������������������
M2 �Q2

p

r� � M�
�������������������
M2 �Q2

q
�

�2

2

A��������������������
M2 �Q2

p
(30)

with A� and A� given by

 A� �
6M4 � 10M3�M2 �Q2��1=2� � 36Q2M2 � 4M�M2 �Q2��3=2�

4�M�
�������������������
M2 �Q2

p
�4

�
35Q2M�M2 �Q2��1=2� � 5Q4

4�M�
�������������������
M2 �Q2

p
�4

A� �
6M4 � 10M3�M2 �Q2��1=2� � 36Q2M2 � 4M�M2 �Q2��3=2�

4�M�
�������������������
M2 �Q2

p
�4

�
35Q2M�M2 �Q2��1=2� � 5Q4

4�M�
�������������������
M2 �Q2

p
�4

:

(31)

Note that these solutions properly map to the familiar
(commutative) R–N horizon

 r
 � M

�������������������
M2 �Q2

q
(32)

in the limit �! 0. As a result of the NC effect, the
distance between the event horizon radii increases.

A crucial point needs to be mentioned before continuing.
From our construction it appears that at r
 the determinant
of the metric vanishes indicating genuine singularity. This
result will indeed be paradoxical because there is no such
singularity in the commutative limit. However, note that
the underlying spacetime is noncommutative and the de-
terminant must be defined with respect to ?-multiplication
and not ordinary multiplication. From the definition of
?-multiplication it can be appreciated that new
�-dependent terms will come accompanying derivatives
of the metric elements resulting into nonzero value of the
determinant. This determinant should be calculated from
the definition (29) of the metric elements and using the
determinant of the NC tetrads given by

 

det?�e
a
��x�� �

def 1

4!
���
�abcde

a
��x� ? e

b
��x� ? e

c

�x� ? e

d
�x�:

(33)

We do not give the detailed expression of this determinant
since it will be rather cumbersome and will not be used in
the sequel.

B. The NC scalar curvature

We propose to work out the NC scalar curvature from the
NC tetrad and spin connections. The latter can be expanded
as [3]

 !̂ ab
� � !ab

� � i��
!ab
��
 ���
�	�!ab

��
	�;

(34)

where !ab
��
 and !ab

��
	� are the first and second order
corrections, respectively, which are given by
 

!ab
��
 �

1
4f!�; @
!� � R
�gab

!ab
��
	� �

1
32��f!	; @�f!�; @
!� � R
�gg

� 2f!	; fR��; R�
gg

� f!	; f!�;D
R�� � @
R��gg

� ff!�; @
!	 � R
	g; �@�!� � R���g

� 2�@�!	; @
�@�!� � R�����ab: (35)

Similarly the NC Riemann tensor is also expanded as

 R̂ ab
�� � Rab�� � i�


�Rab��
� ��
���Rab��
�� �O��
3�;

(36)

where
 

Rab��
� � @�!ab
�
� � �!ac

� !db
�
� �!ac

�
� �!db
�

� 1
2@
!

ac
� @�!db

� ��cd � ��$ �� (37)

and
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Rab��
�� � @�!
ab
�
�� � �!

ac
� !

db
�
�� �!

ac
�
�� �!

db
�

�!ac
�
�!db

�� �
1
4@
@�!

ac
� @�@!db

� ��cd

� ��$ ��: (38)

The NC scalar curvature will be obtained as

 R̂ � ê�a ? R̂ab�� ? ê
�
b; (39)

where ê�a is the ?-inverse of êa�, i.e.

 ê �a ? êb� � �ba: (40)

The general expression of the scalar curvature, expanded in
powers of �, is
 

R̂ � R��
����e�a Rab��
��e
�
b � e

�
a
��Rab��e

�
b

� e�a Rab��e
�
b
�� � e

�
a
�Rab��e

�
b� � e

�
a
�Rab���e

�
b

� e�a Rab��
�e�b�� �O��
4�: (41)

In the above expression the quantities ê�a are yet to be
determined. We write

 ê �a � e�a � i��
e�a�
 ���
��e�a�
� �O��3�; (42)

where the corrections e�a
� and e�a
�� are obtained using
the defining Eq. (40) as
 

e�a�
 � �e�ae
b
��
e

�
b �

1
2@�e

�
a@
e

b
�e

�
b

e�a�
	� � �e
�
ae
b
��
	�e

�
b � e

�
a�
e

b
�	�e

�
b

� 1
4@�@	e

�
a@
@�e

b
�e

�
b �

1
2�@�e

�
a@
e

b
�	�e

�
b

� @�e
�
a	�@
e

b
�e

�
b�: (43)

The noncommutative scalar curvature for the Reissner–
Nordström de Sitter solution is then obtained in the form:
 

R̂ � �
�2

16fr8sin2��r2 � 2Mr�Q2�g

	 �4Q4 � 36Mr3Q2 � 8MrQ2 � 18Q4r2 � 4r2Q2

� 18r4Q2 � 64r5Msin2�� 106r4Q2sin2�

� 260M2r4sin2�� 256M3r3sin2�� 105Q4r2sin2�

� 29Q6sin2�� 455Mr3Q2sin2�� 458M2r2Q2sin2�

� 125MrQ4sin2��: (44)

We can draw the following inferences from the above
expression for the NC curvature scalar R̂:

(1) The nonzero value is entirely an NC effect. This is
consistent with the fact that the curvature scalar
vanishes in the commutative model. Furthermore
the leading order NC correction is second order in
�, the same as we have found for the NC corrections
to the metric.

(2) As a further consistency check we note that forQ �
M � 0 the NC scalar curvature vanishes at least to

the order calculated here. Since this limit corre-
sponds to empty spacetime the curvature is expected
to vanish.

(3) At the corrected horizon (30) the NC scalar curva-
ture is well behaved since the denominator does not
vanish there. This can be seen by substituting (30) in
(44). So it appears that the introduction of noncom-
mutativity removes the coordinate singularities in
R–N solutions. However, it should be remembered
that we arrive at this conclusion in a perturbative
framework.

V. CONCLUSION

We have calculated the leading order noncommutative
(NC) corrections to the Reissner–Nordstrom (R–N) solu-
tions based on the formulation of NC gravity in [3]. The
solutions to the tetrad fields for a static spherically sym-
metric charged matter distribution in the NC spacetime
have been worked out. These solutions have been used to
find the NC tetrads. Here the NC tetrad is expressed in a
commutative equivalent approach by treating the NC grav-
ity theory as a contraction of NC de Sitter gauge theory
using the celebrated Seiberg-Witten (SW) map technique.
The solutions come as a power series in the NC parameter.
We retain terms up to second order with the hindsight that
any nontrivial physical correction to NC gravity starts from
the second order in the NC parameter [8,9]. Using these
solutions we construct the NC R–N metric. Note that these
are the first occurrence of such solutions which are based
on a rigorous formulation of NC gravity. The leading order
correction is found to be in the second order as expected.
By tuning the charge parameter we get back the
Schwarzschild solutions [16] from our results. This dem-
onstrates that the correspondence between the
Schwarzschild and the R–N solutions, so well known in
the commutative perspective, holds also for the NC
spacetime.

From the expressions of the corrected metric we have
obtained the corrected forms of the R–N horizons. Starting
from the NC solutions of the tetrad and spin connections
we have derived the expression of curvature scalar. The
coordinate singularities are seen to be removed due to the
introduction of noncommutativity. From the corrected
forms of the R–N metric and the corresponding scalar
curvature, it is evident that the spherical symmetry is
broken, which is expected due to the introduction of con-
stant noncommutativity in the r� � direction. It will be
very useful if one can restore this symmetry in the NC
framework. Also a detailed study of the singularities will
be welcome.
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