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We study the collapse of a spherically symmetric dust distribution in d-dimensional AdS spacetime. We
investigate the role of dimensionality, and the presence of a negative cosmological constant, in
determining the formation of trapped surfaces and the end state of gravitational collapse. We obtain
the self-similar solution for the case of zero cosmological constant, and show that one cannot construct a
self-similar solution when a cosmological constant is included.
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I. INTRODUCTION

There are many models of spherical gravitational col-
lapse in classical general relativity which exhibit the for-
mation of black holes as well as naked singularities,
starting from regular initial data [1,2]. The study of quan-
tum effects in the vicinity of the gravitational singularity
then becomes significant. Such studies can be divided into
two classes : (i) quantum field theory in curved space, and
(ii) quantum general relativistic treatment of gravitational
collapse.

The earliest investigations of quantum field theory in the
dynamical background of a collapsing spherical star were
probably those due to Ford and Parker [3] and Hiscock
et al. [4]. These works introduced important techniques,
such as the calculation of the quantum flux in the geometric
optics approximation, and the regularization of the 2d
quantum stress tensor, which were used extensively in later
studies. A systematic study of semiclassical effects in
gravitational collapse was initiated by Vaz and Witten in
[5,6] and pursued in a series of papers [7–13]. Typically,
these studies showed an important and interesting differ-
ence in the nature of quantum particle creation between the
two cases—one in which collapse ends in a black hole, and
another in which it ends in a naked singularity. The for-
mation of a black hole is accompanied by the emission of
Hawking radiation, as expected. However, when the col-
lapse ends in a (shell-focusing) naked singularity, there is
no evidence of some universal behavior in the nature of
quantum emission. It is typically found, though, that the
emitted quantum flux diverges in the approach to the
Cauchy horizon. This divergence disappears when the
calculation of the quantum flux is terminated about a
Planck time before the formation of the Cauchy horizon,
when the semiclassical approximation breaks down.
Instead of the divergence, one finds that only about a
Planck unit of energy is emitted during the semiclassical

phase, and a full quantum gravitational treatment of the
physics of the singularity and the Cauchy horizon becomes
unavoidable. These developments have been reviewed in
[14].

A full quantum gravitational treatment of collapse can
be performed via a midisuperspace quantization within the
framework of quantum general relativity. The aims of such
a program are manifold—to construct a quantum gravita-
tional description of the black hole; to check if the gravi-
tational singularity can be avoided in quantum gravity; to
obtain a statistical derivation of the black hole entropy
from quantum gravitational microstates; and to determine
the role of quantum gravity in ascertaining the nature of
quantum emission from a naked singularity. The midisu-
perspace quantization program has been carried out by us
in a series of papers [15–21], and work along these lines is
still in progress. It is fair to say that while some progress
has been made on aspects related to quantum black holes
and black hole entropy, issues related to singularity avoid-
ance and the nature of quantized naked singularities have
thus far proved difficult to address, largely because of
problems relating to finding a suitable regularization
scheme for the quantized Hamiltonian constraint in canoni-
cal general relativity. Also, we still do not have a definitive
answer as to the nature of quantum gravitational correc-
tions to the semiclassical spectrum of Hawking radiation.
By this we mean the following: starting from a candidate
theory of quantum gravity such as quantum general rela-
tivity, one can derive Hawking radiation in the semiclassi-
cal approximation using a suitable midisuperspace model.
Going beyond the semiclassical approximation, it is ex-
pected that quantum gravity will induce (possibly non-
thermal) corrections to Hawking spectrum, but this still
remains to be worked out in its full generality. It is hoped,
though, that some progress will be possible on these un-
solved problems if one makes contact with the methods of
loop quantum gravity.

All the classical and quantum studies mentioned so
far have pertained to gravitational collapse in 3� 1 di-
mensions. Motivated by the desire to overcome some of
the obstacles faced in 3� 1 physics, we turned attention to
the investigation of 2� 1 gravitational collapse.
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Homogeneous dust collapse in 2� 1 dimensions was first
studied in [22] and for the case of collapsing shells in [23].
This lower dimensional model, though simpler in some
aspects, throws up new fascinating issues of its own, which
have been studied in the context of inhomogeneous dust
collapse in [24–26]. Classical 2� 1 collapse admits a
naked singularity for some initial data, but there is no
corresponding quantum particle creation. A black hole
solution (the well-known BTZ black hole [27]) is possible
in the presence of a negative cosmological constant, but the
thermodynamics and statistics of the quantized BTZ black
hole is completely different from that of the 4d
Schwarzschild black hole.

These differences prompt us to the following question:
in determining the nature of thermodynamics and statistics
of the quantized black hole, and the nature of quantum
emission from naked singularities, what is the role of the
cosmological constant, and of the number of spatial di-
mensions? The present paper is the first in a series of three
papers which addresses this question, by studying classical
and quantum aspects of spherical dust collapse in an AdS
spacetime with an arbitrary number of dimensions. In the
current paper, we solve the Einstein equations for a col-
lapsing dust ball in an asymptotically AdS spacetime, and
examine the nature of the gravitational singularity.
Quantization of this model will be taken up in two sub-
sequent papers.

The plan of the paper is as follows. In Sec. II we give
results for spherical gravitational collapse of dust in an
asymptotically flat d-dimensional spacetime. While this
problem has been studied earlier by various authors
[20,28–30], we present here a simpler derivation of the
occurrence of a locally naked singularity, and also obtain
new results on the self-similar solution. More importantly,
the results of this section serve as a prelude to the corre-
sponding analysis presented in Sec. III, for collapse in an
AdS spacetime with arbitrary number of dimensions.
While gravitational collapse of dust in four-dimensional
spacetime with a positive cosmological constant has been
studied in [31] (see also [32]), and for a negative cosmo-
logical constant in [33], to the best of our knowledge dust
collapse in a d-dimensional AdS spacetime has not been
studied before.

One could question the introduction of a negative cos-
mological constant, as is done in this paper, when the
observed universe has a cosmological constant which is
perhaps positive, or at best zero, but certainly not negative.
First, collapse physics in a de Sitter spacetime is compli-
cated by the presence of a de Sitter event horizon, in
addition to the black hole event horizon. It thus seems
natural to first address the AdS case before moving on to
the more realistic, and more difficult, de Sitter case. There
are also reasons to believe that it would not make sense to
directly construct a quantum black hole model in a higher
dimensional space with a positive cosmological constant,

because quantum gravity in such a spacetime may not exist
nonperturbatively [34,35]. Pure quantum gravity with a
positive cosmological constant may hence not exist as an
exact theory, but only as a part of a larger system [35]. It is
also a question of great interest as to whether studies of
statistical properties of AdS black holes in canonical quan-
tum general relativity can benefit from what is known
about the AdS/conformal field theory (CFT) correspon-
dence, as suggested recently in [36] for the 4d case.

II. HIGHER DIMENSIONAL SPHERICALLY
SYMMETRIC DUST COLLAPSE IN THE ABSENCE

OF A COSMOLOGICAL CONSTANT

A. Solution

The metric for a spherically symmetric spacetime can be
written in the form

 ds2 � �e��t;r�dt2 � e��t;r�dr2 � R2�t; r�d�2; (1)

where
 

d�2 � d�2
1

� sin2�1�d�
2
2 � sin2�2�d�

2
3 � . . .� sin2�n�1d�

2
n��:

(2)

Here the number of spacetime dimensions is (n� 2) where
n � 1 is the number of angular coordinates and the 2
designates one time dimension and one radial dimension.
For the case where the cosmological constant � � 0,
Einstein equations are

 G�� � kT��; (3)

where k is a constant related to Newton’s constant of
gravitation G (see Sec. II D) and T�� is the stress-energy
tensor. For the case of nonrotating dust one can choose a
synchronous and comoving coordinate system in which the
only nonzero component of the stress-energy tensor is
T00 � ��t; r�, where ��t; r� is the energy density of the
dust. Further, in comoving coordinates the g00 component
of the metric can be chosen to be minus one. With this
choice for the metric in (1) we get the following indepen-
dent set of Einstein equations:
 

G00 �
e��

R2

�
�
n�n� 1�

2
R02 �

n
2
RR0�0

�
n�n� 1�

2
e��1� _R2� �

n
2
��2RR00 � e�R _R _��

�
� k��t; r�; (4)

 G01 �
n
2

�R0 _�� 2 _R0�
R

� 0; (5)
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 G11 �
1

R2

�
n�n� 1�

2
�R02 � e��1� _R2�� � ne�R �R

�
� 0;

(6)

 

G22 � �
1

4
e����2�n� 2��n� 1�R02 � 2�n� 1�RR0�0

� 2�n� 2��n� 1�e��1� _R2�

� 2�n� 1��2RR00 � e��R _R _��2R �R�

� e�R2� _�2 � 2 ���� � 0: (7)

ComponentsG33,G44, etc. are given by expressions similar
to that forG22 except for overall sine squared factor(s). The
Ricci scalar is given by
 

R �
e��

2R2 ��2n�n� 1��R02 � e��1� _R2��

� 2nR�R0�0 � 2R00 � e�� _R _��2 �R��

� e�R2� _�2 � 2 ����: (8)

Solving the equation for G01 we obtain

 e� �
R02

1� f�r�
: (9)

In the above expression f�r� is an arbitrary function called
the energy function. Integration of the equation for G11

after using Eq. (9) gives

 

_R 2 � f�r� �
F�r�

Rn�1 : (10)

Here F�r� is another arbitrary function and is called the
mass function. In what follows we will only consider the
so-called marginally bound case for which f�r� � 0. In this
case (10) can be integrated easily and after choosing the
negative sign for the square root corresponding to in-
falling matter we get

 t� tc�r� � �
2

n� 1

R�n�1�=2���������
F�r�

p ; (11)

where tc�r� is yet another arbitrary function which can be
fixed by using the freedom in the choice of the
r-coordinate. We relabel r such that at t � 0, R � r.
With this choice we have

 tc�r� �
2

n� 1

r�n�1�=2���������
F�r�

p : (12)

From the above equations we see that at t � tc�r�,R�t; r� �
0 and this implies singularity formation for the shell
labeled r as indicated by the blowing up of the Ricci scalar
in (8). Finally, substituting for � from (9) in the equation
for G00 we find that

 k��t; r� �
n
2

F0

RnR0
: (13)

From this one can obtain an expression for the mass
function

 F�r� �
2k
n

Z
��0; r�rndr: (14)

B. A simple derivation of the naked singularity

We now look at the nature of the R � 0 singularity
formed at the center r � 0 of the dust cloud. For this we
follow the method used in [37] and start by assuming that
the initial density profile ��0; r� has the following series
expansion near the center r � 0 of the dust cloud

 ��r� � �0 � �1r�
�2

2!
r2 � . . . (15)

Using this in (14) we find that in this case the mass function
can be written as

 F�r� � Fn�1rn�1 � Fn�2rn�2 � Fn�3rn�3 � . . . ; (16)

where it is to be noted that n is not a free index but, as
before, refers to the number of angular dimensions and

 Fn�i �
2k

n�n� i�
�i�1

�i� 1�!
(17)

and i � 1; 2; 3 . . . From (12) we know that the singularity
curve is given by

 ts�r� �
2

n� 1

r�n�1�=2���������
F�r�

p : (18)

The central singularity at r � 0 forms at the time

 t0 �
2

n� 1

1�����������
Fn�1

p �
2

n� 1

������������������
n�n� 1�

2k�0

s
: (19)

Here, as a special case, we note that when ��r� � �0, a
constant (Oppenheimer-Snyder collapse), F�r� �
Fn�1rn�1 and the singularity curve is given by ts � 2=�n�
1�

�����������
Fn�1

p
which is independent of r implying that all shells

become singular at the same time as the central shell. Near
r � 0 one can use the expansion for F�r� as in (16) and
approximate the singularity curve as

 ts�r� 	 t0 �
1

�n� 1�

Fn�i
F3=2
n�1

ri�1: (20)

In the above equation Fn�i is the first nonvanishing term
beyond Fn�1 in the expansion for F�r�.

One would like to know whether the singularity at t �
t0, r � 0 is naked or not, and for this we focus attention on
radial null geodesics. We want to check if there are any
outgoing radial null geodesics which terminate on the
central singularity in the past. Assuming that there exist
such geodesics we assume their form near r � 0 to be

 t � t0 � ar
�: (21)

Comparing this with (20) we conclude that for the null
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geodesic to lie in the spacetime one must have � � i� 1
and if � � i� 1 then

 a <�
Fn�i

�n� 1�F3=2
n�1

: (22)

(This is because Fn�i is negative, which will be the case if
we demand that ��0; r� be a decreasing function of r).

Since one is interested in the region close to r � 0, we
expand (11) to leading order in r to obtain

 R 	 r
�

1�
�n� 1�

2

�����������
Fn�1

p �
1�

1

2

Fn�i
Fn�1

ri�1

�
t
�

2=�n�1�
:

(23)

From the metric one finds that for null geodesics
dt=drjNG � R0. Differentiating (23) with respect to
(w.r.t.) r we get
 

R0 �
�

1�
�n� 1�

2

�����������
Fn�1

p �
1�

1

2

Fn�i
Fn�1

ri�1

�
t
�
���n�1�=�n�1��




�
1�
�n� 1�

2

�����������
Fn�1

p
t�
�n� 2i� 1�

4

Fn�i�����������
Fn�1

p ri�1t
�
:

(24)

Along the assumed geodesic, t is given by (21).
Substituting this in (24) and equating it with the derivative
of (21), i.e. dt=dr � �ar��1 gives
 

�ar��1 �

�
1�
�n� 1�

2

�����������
Fn�1

p �
1�

1

2

Fn�i
Fn�1

ri�1

�




�
t0 � ar�

��
���n�1�=�n�1��




�
1�
�n� 1�

2

�����������
Fn�1

p
�t0 � ar

��

�
�n� 2i� 1�

4

Fn�i�����������
Fn�1

p ri�1�t0 � ar
��

�
: (25)

This is the main equation. If it admits a self-consistent
solution then the singularity will be naked, otherwise not.
To simplify this we note that

�����������
Fn�1

p
t0 � 2=�n� 1�, as

follows from (19).
We first consider the case �> i� 1. To leading order

this gives

 �ar��1 �

�
�
Fn�i

2Fn�1

�
2=�n�1�

�
n� 2i� 1

n� 1

�
r�2�i�1�=�n�1��:

(26)

This equation implies

 � �
n� 2i� 1

n� 1
; a �

�
�
Fn�i

2Fn�1

�
2=�n�1�

: (27)

Since Fn�i is the first nonvanishing term beyond Fn�1, we
have the condition i > 1. Also, for consistency we require
� � �n� 2i� 1�=�n� 1�> i� 1, which together with
the previous condition on i implies 1< i < 2n=�n� 1�.

This implies that in 4 dimensions, where n � 2, we have
1< i < 4, which means that i � 2, 3 are the allowed
values. That is, models for which either �1 < 0 (corre-
sponding to i � 2) or �1 � 0, �2 < 0 (corresponding to i �
3) will have a naked singularity.

Similarly, in 5 dimensions, where n � 3, we find that
1< i < 3 implying i � 2, i.e. only for �1 < 0 we get naked
singularity. In 6 dimensions, n � 4 and we have 1< i <
8=3, implying i � 2 as the only allowed value, i.e. the
singularity is naked only if �1 < 0. One notes that for all
higher dimensions 2< 2n=�n� 1�< 3 and therefore only
i � 2, i.e. �1 < 0 gives naked singularity.

As another special case we note that for n � 1, that is in
(2� 1) dimensions, � � �n� 2i� 1�=�n� 1� � i and
therefore the condition �> i� 1 is always satisfied, im-
plying that in this case we always have a naked singularity,
which is in agreement with what has been observed in
earlier work on (2� 1)-dimensional dust collapse [24].

We next consider the case where � � i� 1. Here (25)
gives
 

�i� 1�ari�2 �

�
�
�n� 1�

2

�����������
Fn�1

p
a�

Fn�i
2Fn�1

�
���n�1�=�n�1��




�
�
�n� 1�

2

�����������
Fn�1

p
a�
�n� 2i� 1�

2�n� 1�

Fn�i
Fn�1

�

 r�2�i�1��=�n�1�; (28)

which implies i � 2n=�n� 1�. Now the conditions on i are
that it be an integer greater than 1. These two conditions
are met only for 2 and n � 3, that is, in (3� 1) dimensions
and in (4� 1) dimensions, respectively. For n � 2, i � 4
(which corresponds to �3 < 0) and for n � 3, i � 3 (cor-
responding to �2 < 0). Since the 4-dimensional case, cor-
responding to n � 2, is already reported in the literature
[38] we focus attention on the 5-dimensional case corre-
sponding to n � 3.

Substituting n � 3, i � 3 in (28) we obtain

 8
������
F4

p
a3 �

�
2F6

F4
� 4F4

�
a2 �

4F6������
F4

p a�
F2

6

F2
4

� 0: (29)

The above cubic for a has to be solved subject to the
constraint 0< a<�F6=4F3=2

4 as mentioned earlier. By
defining a �

������
F4

p
b and F6 � F2

4� the above equation is
simplified to

 2b2�4b� �� � �2b� ��2 � 0 (30)

and the constraint on a results in a constraint on b given by
0< b<��=4. By defining �b=� � Y and �1=� � �,
the above cubic is further simplified to

 2Y2�4Y � 1� � ��2Y � 1�2 � 0: (31)

For a naked singularity to form this equation for Y should
have a positive root subject to the constraint 0< Y < 1=4.
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Now for a general cubic

 a0x3 � 3a1x2 � 3a2x� a3 � 0; (32)

if we define H � a0a2 � a2
1 and G � a2

0a3 � 3a0a1a2 �
2a3

1, we have the following conditions on the roots of the
cubic [39]:

(1) G2 � 4H3 < 0, the roots of the cubic are all real.
(2) G2 � 4H3 > 0, the cubic has two imaginary roots.
(3) G2 � 4H3 � 0, two roots of the cubic are equal.
(4) G � 0 and H � 0, all three roots of the cubic are

equal.
Using these we can find the conditions on � for which

the cubic in (31) has at least one real root in the desired
range. Here it should be noted that � as defined above has
to be positive. It is found that for 0<� � ��11� 5

���
5
p
�=4

all the three roots are real and at least one of these satisfies
0< Y < 1=4. For �> ��11� 5

���
5
p
�=4 the real root is

negative. The range of � found above implies that for � �
4=�11� 5

���
5
p
� one gets a naked singularity.

We also note that for the Oppenheimer-Snyder collapse
mentioned earlier, no naked singularity is formed since all
shells become singular at the same time.

C. Formation of trapped surfaces

We now consider the formation of trapped surfaces. For
this consider a congruence of outgoing radial null geo-
desics with tangent vector Ki � dxi=dk where k is a
parameter along the geodesic and i � �0; 1� [40]. The
expansion for these geodesics is given by

 � � Ki
;i �

1�������
�g
p

@

@xi
�
�������
�g
p

Ki�: (33)

From this one finds that

 � �
nR0

R

�
1�

�����������
F�r�

Rn�1

s �
Kr: (34)

Trapping occurs when � � 0 and the above equation with
R0 > 0, R> 0, and Kr > 0 implies that this condition is
met for

 

F�r�

Rn�1
� 1: (35)

In 4 dimensions where n � 2 we get the well-known result

 

F�r�
R
� 1: (36)

For the general case one finds that the time at which
trapping occurs ttr is given by

 ttr�r� �
2

n� 1

�
r�n�1�=2���������
F�r�

p � F�r�1=�n�1�

�
; (37)

which means that the central shell is trapped at ttr�r� �
2=�n� 1�

�����������
Fn�1

p
, that is, at the same time as the formation

of the central singularity. For the outer shells trapping
occurs before those shells become singular.

D. Exterior solution and matching with the interior

We take the metric in the exterior to be independent of
time and given by

 ds2 � �f�x�dT2 � g�x�dx2 � x2d�2; (38)

where �T; x; �1; �2 . . .� are the coordinates in the spacetime
exterior to the dust cloud. The components of the Einstein
tensor corresponding to the above metric are

 G00 �
�n�n� 1�fg� n�n� 1�fg2 � nxfg0

2x2g2 ; (39)

 G11 �
n�n� 1� � n�n� 1�fg� nxf0

2x2f
; (40)

 G22 �
�x2gf02 � 2�n� 1��n� 2�f2g�1� g� � 2�n� 1�xf2g0 � xf��xf0g0 � 2�n� 1�gf0 � 2xgf00�

4f2g2 ; (41)

and G33, G44, etc. are related to G22 as in the interior.
Solving the vacuum Einstein equations G�� � 0 one finds

 g�x� �
�
1�

C

xn�1

�
�1
; (42)

 f�x� � 1�
C

xn�1 : (43)

Here C is a constant of integration. Thus the exterior metric
is the Schwarzschild metric

 ds2 � �

�
1�

C

xn�1

�
dT2 �

�
1�

C

xn�1

�
�1
dx2 � x2d�2:

(44)

For this to be a valid solution in the exterior we need to
match the metric coefficients as well as their first deriva-
tives (extrinsic curvature) in the exterior with the corre-
sponding quantities in the interior at the boundary of the
dust cloud r � rs say, [41,42]. This will also determine the
only unknown quantity C in the Schwarzschild solution. At
the surface the exterior coordinates will be some functions
x � x�t; rs� � xs�t� and T � T�t; rs� � Ts�t� of the interior
coordinates. These relations imply dT � _Tsdt and
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dx � _xsdt. Therefore at the surface (where dr � 0)
 

�ds2�surf �

�
�

�
1�

C

xn�1
s

�
_T2
s �

_x2
s

1� C
xn�1
s

�
dt2 � x2

sd�2

� �dt2 � R2
s�t�d�2: (45)

Matching the metric coefficients for d�2 gives xs�t� �
Rs�t� and matching the metric coefficients for dt2 then
implies

 

�
1�

C

Rn�1
s

�
_T2
s �

_R2
s

1� C
Rn�1
s

� 1: (46)

To match the extrinsic curvature (second fundamental
form) we need the normal to the surface. In the interior
coordinates the components of the normal are found to be
ni� � �0; R0; 0 . . . 0�. Similarly in the exterior coordinates
the normal is given by ne� � �� _R; _Tss; 0 . . . 0�, where the
relation dx� _Rsdt � 0 was used. The extrinsic curvature
is given by Kab � n�;�e

�
a e�b, where e�a � @x�=@ya with

x� being the coordinates of the (n� 2)-dimensional mani-
fold and ya being the coordinates on the boundary of the
manifold. Since there is only one undetermined constant C,
we match only the K�1�1

component of the extrinsic cur-
vature. It can be easily checked that the other components
do not give anything new. We find that at the surface the
extrinsic curvature in the interior coordinates is given by
Ki
�1�1
� Rs. Similarly in the exterior coordinates we have

Ke
�1�1
� Rs�1� C=Rn�1

s � _Ts. Equating these two expres-
sions for K�1�1

gives

 Rs � Rs

�
1�

C

Rn�1
s

�
_Ts: (47)

Using (46) and _R2
s � F�rs�=R

n�1
s (see (10)) the above

equation gives C � F�rs�, where from (14) it is clear that
F�rs� is proportional to the total mass of the dust cloud.
Thus we find that for the metric coefficients and their first
derivatives to be continuous across the boundary the metric
in the exterior is given by

 ds2 � �

�
1�

Fs
xn�1

�
dT2 �

�
1�

Fs
xn�1

�
�1
dx2 � x2d�2:

(48)

Now F�rs� � �2k=n�
Rrs

0 ��0; r�r
ndr and we know that

mass of the dust cloud is given by M �
Rrs

0 ��0; r�dV
where dV is the volume element of a spherical shell lying
between r and r� dr in (n� 1) space dimensions. This
volume element is given by

 dV �
2	�n�1�=2

��n�1
2 �

rndr: (49)

Therefore

 M �
2	�n�1�=2

��n�1
2 �

Z rs

0
��0; r�rndr: (50)

This implies

 

Z rs

0
��0; r�rndr �

M��n�1
2 �

2	�n�1�=2
: (51)

Using this we find that the mass function can be written as

 F�rs� � C �
2k
n

M��n�1
2 �

2	�n�1�=2
: (52)

One can also find the constant C in the Schwarzschild
solution using the weak field limit. For this we assume that
Newton’s law for gravity holds for any number of dimen-
sions, i.e. r 
 g � 4	G��r� and g � �r
�r�. Here g is
the gravitational field strength and 
 is the gravitational
potential (note: Newton’s gravitational constant G being
dimensionful will be different in different dimensions,
however, this does not affect the form of the equations).
Using this we find that in (n� 1) spatial dimensions the
gravitational potential is given by

 
�r� �
4	GM��n�1

2 �

2�n� 1�	�n�1�=2rn�1
; (53)

where n > 1 (potential has a logarithmic dependence on r
in 2� 1 dimensions). In the weak field limit the
Schwarzschild solution is g00 ! ��1�

C
rn�1� and g11 !

�1� C
rn�1�. Also, using the geodesic equation we find that

generically, in the weak-static field limit g00 � ��1� 2
�
and g11 � �1� 2
�. Comparing the two expressions for
g00 (or for g11) one finds that C � 2
rn�1 and using the
expression for 
�r� as found above one gets

 C �
4	GM��n�1

2 �

�n� 1�	�n�1�=2
: (54)

This expression for C will be the same as that found above
from matching if the constant in Einstein’s equations is
chosen to be k � 4n	G=�n� 1�. For n � 2 this reduces to
the value 8	G as used in 4-dimensional theory and which
when used in (48) results in the familiar Schwarzschild
solution

 ds2 � �

�
1�

2GM
x

�
dT2 �

�
1�

2GM
x

�
�1
dx2 � x2d�2:

(55)

E. The self-similar solution

To see the effect of dimensions on the nature of quantum
particle flux (which will be described in a work subsequent
to this), we would like to have a globally naked singularity.
It is known that a locally naked self-similar solution is also
globally naked [43], where self-similar spacetimes are
defined by the existence of a homothetic Killing vector
field. Therefore here we look at the dependence on dimen-
sions of the self-similar dust model.
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In a self-similar collapse any dimensionless quantity
made from the metric functions, has to be a function only
of t=r. This can be seen by starting from the definition of a
homothetic Killing vector field �,

 ��;� � ��;� � 2g�� (56)

(we emphasize here that we are dealing only with self-
similarity of the first kind, which is defined by the above
equation). This condition implies that

 L �G�� � 0; (57)

where G�� is the Einstein tensor for the spacetime [44,45].
It follows then that the energy-momentum tensor should
also satisfy the equation

 L �T�� � 0: (58)

For a perfect fluid the energy-momentum tensor is T�� �
�p���u�u� � pg��. The condition (58) implies the fol-
lowing:

 L �u� � �u�; (59)

 L �� � �2�; (60)

 L �p � �2p: (61)

Based on the above equations, the existence of a homo-
thetic vector implies that the metric components in a
comoving coordinate system will be of the form such
that the dimensionless quantities become functions of
r=t, [46]. Following [46] we assume a general spherically
symmetric ansatz of the form

 ds2 � �e2�dt2 � e2�dr2 � R2d�2 (62)

and also we have

 L �u
� � �u�: (63)

If we assume the vector � has only r and t components
given by �� � ���r � ��

�
t and expand (56) we get partial

differential equations for the vector components. The con-
dition of the comoving metric implies the condition that
�;t � 0 and �;r � 0. After redefining the independent
variables to �r;r � r=� and �t;t � t=� we now redefine the
dependent variables by

 

�� � �� log��� � log� �r�; (64)

 

�� � �� log��� � log��r�: (65)

Under the above change of variables Eqs. (56) become

 �rR�r � �tR�t � R; (66)

 �r ���r � �t ���t � 0; (67)

 �r ���r � �t ���t � 0: (68)

So this shows that we can go to a coordinate system in
which the metric functions are functions of �r=�t. So �� and
�� are functions of z and R is rR�z�.

It can now be shown that for spherically symmetric, self-
similar dust collapse, the mass function is given by F �
�rn�1, where � is a constant. For this we start with the G01

component of the Einstein equation

 G01 �
n
2

�R0 _�� 2 _R0�
R

� 0: (69)

Defining the self-similarity parameter z � r=t and writing
R � r ~R, where ~R and � being dimensionless are functions
only of z, the above equation can be written as

 � ~R
d�
dz
� 4

d ~R
dz
� z

d�
dz

d ~R
dz
� 2z

d2 ~R

dz2 � 0; (70)

where we have used R0 � ~R� zd ~R=dz and _R �
�z2d ~R=dz. The above equation is solved easily to obtain

 e� � c
�

~R� z
d ~R
dz

�
2
; (71)

where c is a constant of integration and equals one for the
marginally bound case (and will therefore be ignored in
what follows). Similarly theG11 component of the Einstein
equation gives
 

n�n� 1�

2

�
~R� z

d ~R
dz

�
2
�
n�n� 1�

2

�
~R� z

d ~R
dz

�
2




�
1� z4

�
d ~R
dz

�
2
�
� nz ~R

�
~R� z

d ~R
dz

�
2




�
2z2 d ~R

dz
� z3 d

2 ~R

dz2

�
� 0: (72)

Solving this we obtain

 

~R n�1 ~R02 �
c

z4 ; (73)

where c is a constant of integration.
Now the mass function is given by F � _R2Rn�1 and

using _R � �z2d ~R=dz this can be written as

 F � z4rn�1 ~Rn�1 ~R02: (74)

Using (73) in the above equation we obtain F � crn�1

which is the desired result.
With this result (11) becomes

 R�n�1�=2 �
n� 1

2

�������������
�rn�1

p
��r� t�: (75)

Here � � tc=r is a constant. This is because in self-similar
collapse any dimensionless quantity has to be a function
only of t=r whereas tc=r, being a function only of r (see
(12)) has to be a constant. We are interested in finding the
behavior of density � � nF0=2
R0Rn in the neighborhood

CLASSICAL AND QUANTUM GRAVITATIONAL COLLAPSE . . . PHYSICAL REVIEW D 77, 064012 (2008)

064012-7



of the center r � 0. Using (75) and F0 � ��n� 1�rn�2 in
the expression for density we find

 � �
4n


�n� 1�

��
n� 1

n� 1

�
�2r2 �

2n
n� 1

�tr� t2
�
�1
: (76)

For r 	 0 we neglect the second order term in the above
equation and obtain

 � �
4n


�n� 1�t2

�
1�

2n
n� 1

r
t

�
�1
: (77)

Also for r! 0, Rn�1 � �n�1�2

4 �t2rn�1, which implies

 r �
�

2

�n� 1�t
����
�
p

�
2=�n�1�

R�n�1�=�n�1�: (78)

Substituting this in (77) we get

 � �
4n


�n� 1�t2

�
1�

2n�
n� 1

a2=�n�1�
n z�n�1�=�n�1�

�

�
2n�
n� 1

�
2
a4=�n�1�
n z�2�n�1��=�n�1� . . .

�
; (79)

where an � 2=�n� 1�
����
�
p

and z � R=t. This shows how
the density profile should depend on the number of dimen-
sions to obtain a self-similar solution. The above form for
density profile implies that in 4 dimensions (n � 2) and in
5 dimensions (n � 3) the self-similar solution corresponds
to an analytic density profile whereas in higher dimensions
the density profile is no longer analytic.

Here we also note that for n � 1, that is in 2� 1
dimensions, F � � and is thus independent of r and there-
fore one requires that energy density � should be zero.
Thus self-similarity in 2� 1 dimensions is inconsistent
with the presence of matter.

III. SPHERICALLY SYMMETRIC
INHOMOGENEOUS DUST COLLAPSE IN THE

PRESENCE OF A NEGATIVE COSMOLOGICAL
CONSTANT

A. Solution

In the presence of a cosmological constant �, Einstein
equations are given by

 G�� ��g�� � kT��: (80)

For the case �< 0 we take �! �� in which case the
Einstein equations become G�� ��g�� � kT��, where
now �> 0. The expressions for the components of
Einstein tensor are still the same as in the � � 0 case. In
particular since g01 � 0, therefore we again have

 G01 �
n
2

R0 _�� 2 _R0

R
� 0: (81)

The solution of this equation is again given by (9) and we
again consider the marginally bound case so that f�r� � 0.
The 1-1 component of Einstein equations is

 

1

R2

�
n�n� 1�

2
�R02 � e��1� _R2�� � ne�R �R

�
��R02 � 0:

(82)

Integration of this equation gives

 

_R 2 � �
2�

n�n� 1�
R2 �

F�r�

Rn�1 ; (83)

where as before F�r� is the mass function. Integrating this
equation after taking the negative sign for the square root
(to account for in-falling matter) we get

 t� tc�r� � �
2sin�1

��������������������
2�

n�n�1�
Rn�1

F

q
�n� 1�

�����������
2�

n�n�1�

q : (84)

Relabeling the r coordinate as in the previous case so that
at t � 0, R � r we get

 tc�r� �
2sin�1

��������������������
2�

n�n�1�
rn�1

F

q
�n� 1�

�����������
2�

n�n�1�

q : (85)

For t � tc�r� we again get R�t; r� � 0 corresponding to the
singularity formation for shell labeled r. From G00 �
�g00 � k��t; r� we obtain an expression for F�r� which
is again given by (14).

B. A simple derivation of the naked singularity

As before we want to see if null geodesics can come out
of the singularity. For this we proceed as before assuming
that the density profile near the center is given by

 ��r� � �0 � �1r� �2
r2

2!
� . . . (86)

From the form of the mass function F � 2k
n

R
��0; r�rndr

we have

 F�r� � Fn�1r
n�1 � Fn�2r

n�2 � . . . ; (87)

where Fn�i �
2k

n�n�i�
�i�1

�i�1�! . From (84) and (85) we see that
the singularity curve is given by

 ts�r� �
2

n� 1

sin�1
��������������������

2�
n�n�1�

rn�1

F�r�

q
�����������

2�
n�n�1�

q : (88)

This implies that the central singularity at r � 0 forms at
time

 t0 �

��������������������
2n

�n� 1��

s
sin�1

�����������������������������
2�

n�n� 1�Fn�1

s
: (89)

We again note that, as in the � � 0 case, when � is a
constant all shells become singular at the same time as the
central shell.

We now rewrite the expression for the singularity curve
as

TIBREWALA, GUTTI, SINGH, AND VAZ PHYSICAL REVIEW D 77, 064012 (2008)

064012-8



 sin�

��������������������
�n� 1��

2n

s
ts�r�� �

�����������������������������
2�

n�n� 1�

rn�1

F�r�

s
: (90)

It is reasonable to assume that for shells near r � 0 the
time for singularity formation is close to the time for the
central shell to become singular, i.e. ts�r� 	 t0 and we can
therefore write ts�r� � �ts�r� � t0 where because of the
assumption made �ts�r� 	 0. Using this we expand the
left-hand side of the above equation using the addition
formula for sines and make use of limx!0 sin�x� � x and
limx!0 cos�x� � 1 to get

 

��������������������
�n� 1��

2n

s
cos

� ��������������������
�n� 1��

2n

s
t0

�
�ts�r�

� � sin
� ��������������������
�n� 1��

2n

s
t0

�
Fn�i

2Fn�1
ri�1: (91)

Here Fn�i is the first nonzero term beyond Fn�1 and is
negative since we assume a decreasing density profile.
Using �ts�r� � ts�r� � t0 in the above equation we can
finally write the expression for singularity curve for shells
near the center as

 ts�r� � t0 �

��������������������
2n

�n� 1��

s
tan

� ��������������������
�n� 1��

2n

s
t0

�
Fn�i

2Fn�1
ri�1:

(92)

To know whether the central singularity at t � t0, r � 0 is
naked or not we focus attention on radial null geodesics
and check if there are any outgoing radial null geodesics
which terminate on the central singularity in the past. We
proceed as in the earlier case, assuming that there exist
such geodesics and take their form near r � 0 to be

 t � t0 � ar�; (93)

where, comparing with (92), we see that � � i� 1 and if

� � i� 1 then

 a <�

��������������������
2n

�n� 1��

s
tan

� ��������������������
�n� 1��

2n

s
t0

�
Fn�i

2Fn�1
(94)

for the assumed geodesic to lie in the spacetime. We use
(85) and (87) (retaining only the first two nonzero terms in
the latter in the r 	 0 approximation) in (84) to get

 R�n�1�=2 �

��������������������������������
n�n� 1�

2�
rFn�1

s �
1�

Fn�i
Fn�1

ri�1

�


 sin
� ��������������������
�n� 1��

2n

s
�t0 � t�

� tan
� ��������������������
�n� 1��

2n

s
t0

�
Fn�i
Fn�1

ri�1

�
: (95)

Near r � 0, the time t appearing in the geodesic equation
satisfies t 	 t0 and therefore the argument of the sine
function in (95) is close to zero and we use the approxi-
mation sinx 	 x obtaining

 R � r
�
�n� 1�

2

�����������
Fn�1

p
t0 �

������������������
n�n� 1�

2�

s
tan

� ��������������������
�n� 1��

2n

s
t0

�



Fn�i

2
�����������
Fn�1

p ri�1 �
�n� 1�

2

�����������
Fn�1

p
t�
�n� 1�

4



Fn�i�����������
Fn�1

p t0ri�1 �
�n� 1�

4

Fn�i�����������
Fn�1

p ri�1t
�

2=�n�1�
:

(96)

From the form of the metric we know that the radial null
geodesics satisfy dt=drjNG � R0. We take the spatial de-
rivative of the above equation, substitute for t from (93),
and equate the result to the derivative of (93)

 

�ar��1 �

�
�
�n� 2i� 1�

�n� 1�

������������������
n�n� 1�

2�

s
tan

� ��������������������
�n� 1��

2n

s
t0

�
Fn�i

2
�����������
Fn�1

p ri�1 �
�n� 1�

2

�����������
Fn�1

p
ar�

�
�n� 2i� 1�

4

Fn�i�����������
Fn�1

p ar��i�1

��
�

������������������
n�n� 1�

2�

s
tan

� ��������������������
�n� 1��

2n

s
t0

�
Fn�i

2
�����������
Fn�1

p ri�1

�
�n� 1�

2

� �����������
Fn�1

p
ar� �

Fn�i
2
�����������
Fn�1

p ar��i�1

��
���n�1�=�n�1��

: (97)

Consider first the case �> i� 1. Keeping terms only to
lowest order in r we get
 

�ar��1 �

�
n� 2i� 1

n� 1

��
�

������������������
n�n� 1�

2�

s
tan

� ��������������������
�n� 1��

2n

s
t0

�



Fn�i

2
�����������
Fn�1

p

�
2=�n�1�

r�2�i�1��=�n�1�: (98)

From this we have
 

� �
n� 2i� 1

n� 1
;

a �
�
�

Fn�i
2
�����������
Fn�1

p

������������������������������������������
n�n� 1�

n�n� 1�Fn�1 � 2�

s �
2=�n�1�

;

(99)

where we have substituted for t0 in the argument of tan.
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Since the form of � is exactly the same as in the � � 0
case we find that the conditions for naked singularity
formation are also the same as mentioned after (26). That
is, in 4 dimensions (n � 2), 1< i < 4 implying i � 2, 3
are the allowed values so that we get naked singularity for
�1 < 0 or for �1 � 0, �2 < 0. Similarly in 5 dimensions

(n � 3), 1< i < 3 implying that only i � 2 is allowed so
that we get naked singularity only for �1 < 0. In all higher
dimensions we get naked singularity only if �1 < 0.

Again n � 2, i � 4 and n � 3, i � 3 are critical cases
satisfying� � i� 1. To analyze these we proceed as in the
� � 0 case. For � � i� 1 (97) becomes

 �i� 1�ari�2 �

�
�
�n� 2i� 1�

�n� 1�

������������������
n�n� 1�

2�

s
tan

� ��������������������
�n� 1��

2n

s
t0

�
Fn�i

2
�����������
Fn�1

p ri�1 �
�n� 1�

2

�����������
Fn�1

p
ari�1

�




�
�

������������������
n�n� 1�

2�

s
tan

� ��������������������
�n� 1��

2n

s
t0

�
Fn�i

2
�����������
Fn�1

p ri�1 �
�n� 1�

2

�����������
Fn�1

p
ari�1

�
���n�1�=�n�1��

; (100)

which after substituting for t0 gives
 

�i� 1�ari�2 �

�
�

Fn�i
2
�����������
Fn�1

p

������������������������������������������
n�n� 1�

n�n� 1�Fn�1 � 2�

s
�
�n� 1�

2

�����������
Fn�1

p
a
�
���n�1�=�n�1��




�
�
�n� 2i� 1�

�n� 1�

Fn�i
2
�����������
Fn�1

p

������������������������������������������
n�n� 1�

n�n� 1�Fn�1 � 2�

s
�
�n� 1�

2

�����������
Fn�1

p
a
�
r�2�i�1��=n�1: (101)

Equating the power of r on the two sides gives i � 2n=�n� 1� (as in the � � 0 case). Since i should be an integer greater
than one we find that these conditions are satisfied only for n � 2 (i � 4) and for n � 3 (i � 3).

Consider n � 3; in this case the above equation can be written as

 8
������
F4

p
a3 �

�
2

�������������������
6

6F4 ��

s
F6������
F4

p � 4F4

�
a2 � 4

�������������������
6

6F4 ��

s
F6a�

�
6

6F4 ��

�
F2

6

F4
� 0 (102)

with the constraint that

 0< a<�

������������������������
3

12F4 � 2�

s
F6

2F4
: (103)

If we define a �
������
F4

p
b and F6 � F3=2

4

�������������������
6F4 ��

p
� the

equation can be written in the simplified form

 2b2�4b�
���
6
p
�� � �2b�

���
6
p
��2 � 0 (104)

with the requirement that 0< b<�
��������
3=8

p
�. If we further

define Y � �b=� and � � �1=� the equation becomes

 2Y2�4Y �
���
6
p
� � ��2Y �

���
6
p
�2 � 0: (105)

For a naked singularity to form this equation for Y should
have a solution subject to the constraint 0< Y <

��������
3=8

p
and

�> 0. Using the conditions, as mentioned earlier, for the
roots of a general cubic we can find the conditions on � for
which the above cubic has at least one real root in the
desired range. It is found that for 0<� �

���
6
p
��11�

5
���
5
p
�=4 all the three roots are real and at least one of these

satisfies 0< Y <
��������
3=8

p
. For �>

���
6
p
��11� 5

���
5
p
�=4 the

real root is negative. The range of � found above implies
that for � � 4=

���
6
p
�11� 5

���
5
p
� one gets a naked singularity.

This shows that the critical case is also similar to the � � 0
case except that the allowed range for � has shifted.

A similar analysis can be carried out for the case where
n � 2 and i � 4. By defining a � F3b and F6 �

F2
3�

�������������������
3F3 ��

p
one gets a fourth order equation in b. If

one subsequently defines Y � �b=� and � � �1=� one
gets the equation

 4Y3�3Y �
���
3
p
� � ��Y �

���
3
p
�3 � 0 (106)

with the consistency conditions 0< Y < 1=
���
3
p

and �> 0.
It is found that the above conditions are satisfied for 0<
�< �1590� 918

���
3
p
�=��9� 5

���
3
p
� 	 0:066 642 or in

terms of conditions on � we get � � �9� 5
���
3
p
�=�1590�

918
���
3
p
� 	 �15:0056.

C. Formation of trapped surfaces

As in the � � 0 case, we now look at the formation of
trapped surfaces. Considering the expansion of outgoing
radial null geodesics as in (33) we find that

 � �
nR0

R

�
1�

�����������������������������������
F�r�

Rn�1 �
2�R2

n�n� 1�

s �
Kr: (107)

From this it is seen that the condition for trapping, � � 0, is
met when
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F�r�

Rn�1
�

2�R2

n�n� 1�
� 1; (108)

which for n � 2 (4 dimensions) reduces to the well-known
result

 

F�r�
R
�

�R2

3
� 1: (109)

It is easy to see that, as in the � � 0 case, for the central
shell, trapping coincides with singularity formation.

D. Exterior solution with a negative cosmological
constant

As before we take the metric in the exterior to be

 ds2 � �f�x�dT2 � g�x�dx2 � x2d�2: (110)

The components of the Einstein tensor are the same as in
(39)–(41). Solving the vacuum Einstein equations G�� �

�g�� � 0 we find

 g�x� �
n�n� 1�xn�1

2�xn�1 � n�n� 1�xn�1 � Cn�n� 1�
; (111)

 f�x� � 1�
C

xn�1 �
2�x2

n�n� 1�
: (112)

With this the metric in the exterior becomes
 

ds2 � �

�
1�

C

xn�1 �
2�x2

n�n� 1�

�
dT2

�

�
1�

C

xn�1 �
2�x2

n�n� 1�

�
�1
dx2 � x2d�2: (113)

Here C is a constant of integration which is fixed by
matching the exterior solution to the interior solution at
the boundary in exactly the same way as for the � � 0 case
and the result is C � �F�rs� where rs is the boundary of
the dust cloud. Thus in 4 dimensions the exterior is
 

ds2 � �

�
1�

2GM
x
�

�x2

3

�
dT2

�

�
1�

2GM
x
�

�x2

3

�
�1
dx2 � x2d�2: (114)

E. The absence of a self-similar solution in the presence
of a �

It is interesting to note that it is not possible to have a
self-similar solution in the presence of a cosmological
constant. To see this we begin by noting that the condition
that dimensionless functions made from the metric are
functions only of t=r continues to hold. This follows
because the cosmological constant term in the Einstein
equations can be absorbed into the energy-momentum
tensor in the right-hand side, by taking the �-term as a
perfect fluid with equation of state p � ��. Equation (58)

then continues to hold, with the understanding that the
contribution of the cosmological constant is included in
the energy-momentum tensor. The remaining argument,
leading to the conclusion that ~R is a function of z, then
follows.

Now if we have a self-similar solution then we can write
R � r ~R with ~R being dimensionless. If we define r

t � z
then the condition of self-similarity implies that ~R being
dimensionless should be a function only of z. With this if
we now consider the equation G11 ��g11 � 
T11 we get
 

�
n�n� 1�

2
z4

�
d ~R
dz

�
2
� nz4 ~R

d2 ~R

dz2

� 2nz3 ~R
d ~R
dz
��r2 ~R2 � 0: (115)

The explicit presence of r in the above equation implies
that ~R cannot be expressed as a function of z alone and thus
we do not have a self-similar solution in the presence of �.

The same conclusion also follows from Eq. (61). With
dust matter, the only contribution to pressure is coming
from the cosmological constant, and this pressure is con-
stant. The Lie derivative on the left-hand side is thus zero,
whereas on the right-hand side the pressure is nonzero,
leading to a contradiction and showing that such a Killing
vector field cannot exist. Physically speaking, the presence
of a cosmological constant introduces a length scale which
prevents self-similarity.

IV. CONCLUSIONS

We have studied the collapse of inhomogeneous spheri-
cally symmetric dust distribution in an arbitrary number of
space dimensions both in the absence and in the presence
of a cosmological constant. From the analysis presented we
see that even though naked singularity is allowed in all
dimensions there is more freedom on initial conditions for
obtaining naked singularity in 2� 1, 3� 1, and 4� 1
dimensions, both in the absence as well as the presence
of a negative cosmological constant. We have also seen
that the formation of trapped surfaces is similar in all
dimensions with the central shell getting trapped at the
same time when it becomes singular. For outer shells
trapping occurs before those shells become singular. We
also saw explicitly that in the absence of a cosmological
constant, globally naked self-similar models can be con-
structed in all dimensions, whereas in the presence of a
cosmological constant such a solution cannot be
constructed.

In the second paper in this series, we will study quantum
field theory on the curved background provided by the
classical solutions presented here, including the emission
of Hawking radiation from an n-dimensional AdS black
hole. In a third paper we will carry out a canonical quan-
tization of this model, and also address the issue of black
hole entropy, following the methods of [36].
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