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We examine static perfect fluid spheres in the presence of a cosmological constant. Because of the
cosmological constant, new classes of exact matter solutions are found. One class of solutions requires the
Nariai metric in the vacuum region. Another class generalizes the Einstein static universe such that neither
its energy density nor its pressure is constant throughout the spacetime. Using analytical techniques we
derive conditions depending on the equation of state to locate the vanishing pressure surface. This surface
can, in general, be located in regions where, going outwards, the area of the spheres associated with the
group of spherical symmetry is decreasing. We use numerical methods to integrate the field equations for
realistic equations of state and find consistent results.
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I. INTRODUCTION

Static and spherically symmetric perfect fluid solutions
have always been a rich source of investigation in classical
general relativity ever since the pioneering work of
Schwarzschild in 1916. He solved the field equations for
the interior region by assuming a perfect fluid of constant
energy density, and also for the outside vacuum region, the
famous Schwarzschild solutions.

The interior solution has the geometry of a three-sphere,
which was noticed as early as 1919 by Weyl [1]. The
pressure of the Schwarzschild interior solution always
vanishes before the equator of the three-sphere; therefore,
this geometrical picture is not of great importance. This
situation changes significantly in the presence of the cos-
mological constant [2,3]. In some special cases the interior
metric with cosmological constant was studied earlier; see
e.g. [4,5]. However, the complete analysis was only com-
pleted [2,3] 85 years after Weyl noted the interesting
geometrical structure of these solutions: With �, the pres-
sure can vanish exactly at the equator of the three-sphere,
in which case one has to join on the Nariai metric [6,7] as
the exterior vacuum metric. We note that, although the
spatial geometry of the interior Schwarzschild is a three-
sphere, the four-metric is not homogeneous. There is a
center of symmetry in the fluid region, surrounded with
concentric spheres defined by the orbits of the group gen-
erating spherical symmetry. The spacetime metric deter-
mines an induced metric and thereby an area to each group
orbit. Going outwards from the center this area is increas-
ing until one reaches the equator, the sphere with the
maximal area. It is furthermore possible that the pressure
vanishes in a region where the area of the group orbits is
decreasing.

Lastly, the matter can occupy the whole three-sphere
having two regular centers. This generalizes the Einstein
static universe [2,3,8]; see [9] for early results in that
direction. The Einstein universe also emerges as a special
case (vanishing expansion rate and vanishing vorticity)
when considering homogeneous shear-free perfect fluids
[10]. In recent years it has been generalized in various
different theories, like brane world models [11], Einstein-
Cartan theory [12], in modified gravity theories [13], or
loop quantum gravity [14].

In this paper we are analyzing systematically the effects
of a positive cosmological constant on perfect fluid
spheres. We generalize known exact solutions of the field
equations with cosmological term and discuss their new
properties. The principal result of the analysis is the in-
crease of the radial sizes of matter spheres. This naturally
leads to questions regarding the physical picture applicable
to these solutions. Analytical and numerical techniques are
used to obtain a consistent picture of the underlying
physics.

A positive cosmological constant can be regarded as an
external force pulling matter apart. Therefore, a ‘‘large’’
positive cosmological constant can increase the radius of a
known perfect fluid solution such that it occupies more
than just ‘‘half’’ of the three-space. The effects of the
actual cosmological constant are very small, and therefore
one may ask why the investigation of solutions with
‘‘large’’ values of the cosmological term is beneficial.
This can be answered from two points of view. From a
mathematical point of view, we deepen our understanding
about exact solutions of Einstein’s field equations and the
influence of the additional parameter �. However, also
from a physical point of view, this study can be justified
easily. In the bag model of hadrons [15–17] the bag is
stabilized by a term of the form Bgab, which has the same
form as a cosmological constant, though its numerical
value is considerably bigger, B1=4

e � 8:91 MeV, whereas
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we have �1=4 � 1:78� 10�9 MeV. Hence, the key physi-
cal motivation is the possibility that effects within stellar
models can be effectively described by a term that looks
like a cosmological constant, which can indeed have large
effects. Also, in the context of Boson stars [18,19] the
matter energy-momentum tensor contains a part propor-
tional to the metric which can be read as an effective
cosmological term. Within the context of loop quantum
gravity, it has recently been shown [20] that quantum
gravity effects can be effectively of the form of a cosmo-
logical constant.

Apart from an equation of state relating the density � to
the pressure p, a spherically symmetric perfect fluid has to
satisfy only one condition, the pressure isotropy condition,
requiring the equality of the radial and angular directional
pressures. Since this condition does not involve the cos-
mological constant �, any solution with � � 0 having an
equation of state f��; p� � 0 can also be interpreted as a
� � 0 cosmological solution with equation of state f���
�; p��� � 0. It is one of the main purposes of the
present paper to reinvestigate known perfect fluid solutions
with cosmological constant and to analyze whether these
solutions for some special cosmological constant require
the Nariai metric as the exterior vacuum spacetime. We
also try to construct solutions with two regular centers, i.e.
constructing more general Einstein static universes, having
neither constant energy density nor constant pressure.

Since the static and spherically symmetric field equa-
tions with more realistic equations of state, in general,
cannot be integrated analytically, we also use numerical
methods to study perfect fluid spheres. In particular, we
will show that the effect of a large cosmological constant
on polytropic perfect fluids is such that the matter is pulled
sufficiently apart so that it occupies much of the three-
space. The same result is also found by considering the stiff
matter equation of state and also the Hagedorn equation of
state. However, realistic equations of state seem not to
allow the presence of a second regular center. It is impor-
tant to distinguish between coordinate and physical effects.
For instance, one cannot numerically integrate the constant
density solutions for large cosmological constants if the
original radius is used as a variable. The code breaks down
at the equator of the three-sphere. This is a pure coordinate
effect, since the coordinate system does not cover the
whole spacetime. In order to distinguish coordinate and
physical effects, the Riemann curvature tensor is also
considered.

Various other effects of the cosmological constant have
been studied in the past, like the dynamical instability of
perfect fluid spheres [21,22], possibly detectable effects of
the cosmological constant within our solar system [23–
26], and effects within astrophysical structures [27–31].
Recently, the bending of light with � has been discussed in
[32,33].

The paper is outlined in the following manner: In Sec. II
we analytically study the effect of the cosmological con-

stant on the Whittaker and Tolman IV solution, and also
discuss the matching of the matter and the vacuum solu-
tion. In Sec. III we derive conditions on the equation of
state and the cosmological constant to characterize the
different possible solutions. In Sec. IV we numerically
integrate the field equations for realistic equations of state
and find results consistent with our analytical results. We
summarize and conclude our work in Sec. V.

II. THE WHITTAKER AND TOLMAN SOLUTIONS

In the present section the Whittaker solution [34] and the
Tolman IV solution [35] are recalled. In both cases we first
introduce a third angular coordinate �, so that the coor-
dinate system covers the complete three-space and not just
‘‘half’’ of it like the usual radial coordinate r. Second, we
introduce the cosmological constant in the solutions and
analyze its effect (the ‘‘external’’ force due to �) on those
solutions. We also explicitly show how to join the interior
and the exterior solutions through the vanishing pressure
surface.

A. The Whittaker solution

The Whittaker solution is characterized by the relation
�� 3p � �0 between the energy density and the pressure,
where �0 is a positive constant. Similarly to the constant
density case, this condition allows one to write down the
solution to Einstein’s field equations in terms of elemen-
tary functions. The metric of the Whittaker solution in the
original Schwarzschild coordinates reads [34]
 

ds2 � �b
�

1� B�
B
ar

�������������������
1� a2r2

p
arcsin�ar�

�
dt2

�

�
�1� B��1� a2r2�

�
B
ar
�1� a2r2�3=2 arcsin�ar�

�
�1
dr2 � r2d�2; (1)

where a, b, and B are constants. The special importance of
the Whittaker solution lies in the fact that it is the non-
rotating static limit of the Wahlquist solution [36], the most
important rotating perfect fluid exact solution. The pa-
rameter � of the Wahlquist solution is related to the pa-
rameter B of the Whittaker metric by B � 1=�2. Since the
change of the parameter n corresponds merely to a rescal-
ing of the coordinate t, we set b � 1. After introducing a
new radial coordinate, the third angle �, by r � �1=a��
sin�, metric (1) simplifies to

 ds2 � �fdt2 �
1

a2

�
d�2

f
� sin2�d�2

�
; (2)

 f � 1� B�1� � cot��: (3)

Although the introduced radial coordinate � is very similar
to the third angle of the ellipsoid used for the interior
Schwarzschild solution, the spatial metric is not ellipsoidal
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in this case because of the nonconstant nature of the metric
component g��. On the other hand, it should be empha-
sized that the r � const hypersurfaces are round two-
spheres. Therefore, the topology of the three-space essen-
tially depends on the function g��. In the above-mentioned
constant density case, the three-space is in fact a three-
sphere. When we discuss next the modified Tolman IV
solution, the three-space will be ellipsoidal. The introduc-
tion of the new radial coordinate � is important in all cases
where there is a group orbit with maximum area, since in
these cases the usual radial coordinate only covers the
region up to this maximum orbit. Henceforth we will refer
to the coordinate � as the third angle.

It is possible to express the constant in the equation of
state �� 3p � �0 in terms of the constants in the metric
and the cosmological constant by

 �0 �
a2B��

4�
: (4)

Positivity of the pressure and density implies �0 > 0,
which we require from now on, by assuming

 �>�a2B: (5)

If there is a spherical surface where the solution is matched
to a Schwarzschild–de Sitter (or Schwarzschild–anti-
de Sitter) exterior region, then p must go to zero at the
surface, and the fluid density becomes �0 there.

The pressure and energy density of the Whittaker solu-
tion are given by

 p �
�0

2
�
a2f
8�

; (6)

 � �
3a2f
8�
�
�0

2
: (7)

The central pressure and central energy density can be
derived from Eqs. (6) and (7) by noting that lim�!0f �
1, and read

 pc �
�0

2
�
a2

8�
; �c �

3a2

8�
�
�0

2
: (8)

Requiring both to be positive, we get 4�
3 �0 < a2 < 4��0.

Since at the center df
d� � 0 and d2f

d�2 �
2B
3 , the pressure is

maximal at the center if and only if B> 0. Since in the B<
0 case there is no zero pressure surface, we assume B> 0
in the present discussion.

The equator, where the area of the spheres of symmetry
is maximal, is located at � � �=2. There f � 1� B, and
for the equatorial pressure peq and density �eq, we get

 peq �
1

8�
��� a2�; �eq �

3

8�
�a2 ��� � �0: (9)

Let us now choose the cosmological constant such that
the pressure vanishes at the equator, peq � 0 in (9), which
yields

 � � a2 �: �N: (10)

Hence for solutions which satisfy the relation �<�N , the
pressure vanishes before the equator, where the group
orbits are still increasing.

One should check whether the choice � � �N is com-
patible with the positivity of pressure and energy density at
the center, and also with the positivity of energy density at
the equator (otherwise, these solutions would not be physi-
cal). Positivity of energy density at the surface is ensured
by (5), which now takes the form B>�1. Using � � a2

in (4) and (8) we get

 pc �
�N

8�
B> 0; (11)

 �c �
�N

8�
�2� B�> 0: (12)

All three conditions are satisfied if 0<B< 2.
For larger cosmological constants, i.e. for �>�N , the

pressure vanishes after the equator of the ellipsoid, where
the group orbits are decreasing. Since the pressure function
p! �1 as �! �, there always exists a zero pressure
surface at which one joins on the Schwarzschild–de Sitter
metric as an exterior vacuum spacetime. Therefore the
Whittaker solution cannot have a second regular center.
Since the derivative of the function f is positive for 0<
�<� in the case B> 0, the function f remains positive;
consequently, the coordinate system and the metric remain
regular in the whole fluid region.

As already outlined in the Introduction we will explicitly
show that the choice � � �N necessitates the Nariai met-
ric as the exterior spacetime. Since the pressure in this case
vanishes at the maximum of the area of the group orbits,
the exterior spacetime must have constant area spheres of
symmetry, which excludes the Schwarzschild–de Sitter or
anti-de Sitter spacetimes. The only other static and spheri-
cally symmetric vacuum spacetime with cosmological
constant is indeed the Nariai spacetime, and its group
orbits have constant area.

B. Matching procedure

Here we review the necessary conditions for matching a
spherically symmetric static perfect fluid solution to an
exterior vacuum region. We write the metric in both re-
gions in the form

 ds2 � �e2�dt2 �
1

y2 dr
2 � R2�d�2 � sin2�d�2�; (13)

where �, y, and R are functions of the coordinate r. A
metric written in this form has a center where R � 0, and
this center is regular, i.e. free of conical singularities, if the
area of small spheres is proportional to their radius square,
with the appropriate proportionality factor, dRdr � �

1
y . The
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regularity of the four-metric also requires a finite value for
� and d�

dr � 0 at the central point.
We assume that the matching is performed along the

hypersurface described by r � rs. The Darmois-Israel
matching conditions [37,38] essentially state that the in-
duced metric and the extrinsic curvature have to agree on
the hypersurfaces used for joining the two solutions. The
outward pointing normal vector to the symmetry surfaces
has the components na � �0; y; 0; 0�. The induced metric
hab can be expressed using the spacetime metric as hab �
gab � nanb, while the extrinsic curvature can be calculated
as Kab � hcarcnb, where rc denotes the covariant deriva-
tive associated to the spacetime metric gab. Using the
coordinate system �t; �; �� on the matching surface, the
induced metric hab has the form

 hab �
�e2� 0 0

0 R2 0
0 0 R2sin2�

0B@
1CA; (14)

while the components of the extrinsic curvature are

 Kab �
�ye2� d�

dr 0 0
0 yR dR

dr 0
0 0 yR dR

dr sin2�

0B@
1CA: (15)

From (14) it is apparent that the induced metric agrees if
and only if the values of R and � agree on the matching
surfaces. Then the extrinsic curvatures are matched appro-
priately if and only if y d�dr and y dRdr agree. The agreement of
R has the obvious physical meaning of equal area matching
spheres, while the equality of � can always be ensured by
appropriately rescaling the time coordinate in the interior
fluid domain. If we use Gauss coordinates in both domains,
then y � 1 and the matching of the extrinsic curvature is
equivalent to the continuity of the first derivative of � and
R. However, in general, it is also possible to give a coor-
dinate system invariant meaning to these conditions.

The invariant mass function in spherically symmetric
cosmological spacetimes can be defined as

 m �
R
2
�1� gabR;aR;b� �

�

6
R3: (16)

For vanishing cosmological constant this gives back the
usual mass definition [39]. For the metric form (13) we get

 m �
R
2

�
1� y2

�
dR
dr

�
2
�
�

�

6
R3: (17)

From this we can see that if m agrees on the two matching
surfaces of equal area, then y dRdr must also be the same. The
other invariant quantity is the pressure at the matching
surface, which for the metric (13) takes the form

 p �
y2

R
dR
dr

�
2
d�
dr
�

1

R
dR
dr

�
��: (18)

It is apparent that if R and y dRdr both agree on the matching

surfaces and dR
dr � 0, then y d�dr will be the same if and only

if the pressures are the same. Consequently, if dRdr � 0, the
matching of two static perfect fluid solutions can be done at
two chosen spherical surfaces if and only if the surfaces
have the same area, the mass functions have the same
value, and the pressures agree as well. Obviously, if the
exterior domain is a vacuum, then the fluid pressure at the
surface must vanish. It is interesting that in case of a Nariai
exterior dR

dr � 0 and the p � 0 condition is not enough to
ensure the continuity of y dRdr .

The quantity y d�dr is closely related to the acceleration of
static nonrotating observers staying at constant radius r. In
the coordinate system xa � �t; r; �; �� used in (13), these
observers have the velocity vector va � �e��; 0; 0; 0�. The
only nonvanishing component of their acceleration vector
aa � ubrbua is ar � y2 d�

dr . The norm of the acceleration
is jaj �

����������
aaaa
p

� yj d�dr j. This shows that apart from a
possible signature change the continuity of the magnitude
of the acceleration implies the continuity of y d�dr in the
matching condition.

C. Joining the interior and exterior solutions

For cosmological constants satisfying �<�N the
area of the group orbits at the p � 0 surface is in-
creasing and we join the Schwarzschild–de Sitter (or
Schwarzschild–anti-de Sitter for �< 0) metric on as the
exterior vacuum spacetime. Since the cosmological con-
stant is fixed by the specific solution, it remains to choose
the mass appropriately. In the Schwarzschild area coordi-
nate R the mass is defined by M �

RRs
0 4�R2��R�dR,

where Rs is defined by p�Rs� � 0. By using Gauss coor-
dinates relative to the r � const hypersurfaces, the metric
is C1 at the boundary. If the energy density is nonvanishing
at the boundary, this cannot be improved. After placing one
object in the Schwarzschild–de Sitter spacetime, it still
contains an infinite series of singularities. However, by
placing a second object appropriately in that spacetime, it
is possible to construct a singularity-free spacetime; see
Fig. 1. This possibility has been discussed earlier in greater
detail in [2,3].

For � � �N we explicitly show the matching of the
interior perfect fluid spacetime with the exterior Nariai
spacetime. We follow the generic discussion of matching
two static and spherically symmetric regions presented in
the previous subsection. We read off and compare at the
matching surface the corresponding functions �, y, and R
in the general form of the line element (13).

Recall that the static form of the Nariai metric is given
by [7]

 ds2 � �cos2�dt2 �
1

�
�d�2 � d�2�: (19)

We note that this form of the metric is not homogeneous,
since the static observers described by constant ��; �;��
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are not equivalent. The magnitude of their acceleration is
jaj �

����
�
p

tan�. Somewhat surprisingly, this acceleration is
towards the � � 0 surface, since the nonvanishing compo-
nent of their acceleration, given by ar � �� tan�, is
negative for �> 0.

The metric functions of the Nariai spacetime in the
coordinate system (13) are given by

 e2�N � cos2�; y2
N � �; R2

N �
1

�
: (20)

The corresponding functions in the Whittaker fluid region
are

 e2�W � c2f; y2
W � a2f; R2

W �
sin2�

a2 ; (21)

where f is given by (3). The agreement of the induced
metric, i.e. the matching of R and �, implies

 

1

�
�

sin2�

a2 ; cos2� � c2f: (22)

The condition yN
dRN
d� � yW

dRW
d� implies � � �=2 for the

matching surface in the fluid region. From this it follows
that � � a2, which is just the condition of vanishing
pressure at the equator of the Whittaker solution. The
remaining matching condition yN

d�N
d� � yW

d�W
d� yields

 tan� � �
�B

4
�������������
1� B
p �

�
4

�
1�

4��0

�

� ������������
�

4��0

s
: (23)

So, if Gauss coordinates are used, i.e. y � 1, we explic-
itly showed the matching of the interior and the exterior
metric to be of degree C1 (�, R, �0, and R0 all agree on the
zero pressure surface). This differentiability condition can-
not be improved when the equation of state of the fluid
constrains the energy density at the boundary to be posi-
tive. In this case the energy-momentum tensor jumps at the
boundary and the metric is at most C1. Figure 2 shows the
Penrose diagram of this spacetime.

Lastly, for cosmological constants satisfying �>�N
the group orbits at the p � 0 surfaces are decreasing and
we join the Schwarzschild–de Sitter metric on as the
exterior vacuum spacetime. Since the cosmological con-
stant is fixed by the specific solution, it remains to choose
the mass appropriately; see the discussion above. By using
Gauss coordinates the metric is C1 at the boundary. If the
energy density is nonvanishing at the boundary, this cannot
be improved. It is important to note that the vacuum part of

FIG. 2. Penrose-Carter diagram with two stellar objects having
radii R, which require the Nariai spacetime to be the vacuum part
of the global solution. The solid and dashed lines represent the
future and past event horizons, respectively.

FIG. 3. Penrose-Carter diagram with two stellar objects con-
nected by a Schwarzschild–de Sitter vacuum domain. Since the
group orbits are decreasing at the matching surface, the vacuum
part contains the black hole horizon and the r � 0 singularity.

FIG. 1. Penrose-Carter diagram with two stellar objects sepa-
rated by a Schwarzschild–de Sitter vacuum domain. The radii R
of the stellar objects is between the radii of the black hole and
cosmological horizons. Since the group orbits are increasing up
to R, the vacuum part contains the cosmological event horizon
r��.
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this spacetime contains the singularity at the origin r � 0
and that the matter occupies the ‘‘outer’’ region of the
spacetime; see the Penrose diagram 3, where a second
object was inserted in the spacetime to remove the infinite
sequence of singularities present in the Schwarzschild–
de Sitter diagram.

D. Cosmological Tolman solutions

In principle, the above discussion can now be repeated
for all 127 candidate solutions presented in [40] (of which
only 60% are isotropic and regular at the center). For all of
these one could check whether the inclusion of the cosmo-
logical constant can pull the matter up to or beyond the
equator of the corresponding ellipsoid. We will, however,
only repeat this analysis for the Tolman IV solution. This
particular choice is motivated by the simplicity of the
solution which also allows one to analytically express its
equation of state.

We now take a fresh look at the Tolman IV solution [35].
Its metric reads

 

ds2 � �B2�1� r2=A2�dt2 �
1� 2r2=A2

�1� r2=R2��1� r2=A2�
dr2

� r2d�2; (24)

where A and R are positive constants. Introducing the third
angle by r � R sin� yields

 ds2 � �B2�1� �R2=A2�sin2��dt2

� R2

�
1� 2�R2=A2�sin2�

1� �R2=A2�sin2�
d�2 � sin2�d�2

�
:

(25)

Pressure and energy density, respectively, are given by

 8�p��� �
R2 � 3R2sin2�� A2

R2�A2 � 2R2sin2��
��; (26)

 

8����� �
R2 � 3R2sin2�� 3A2

R2�A2 � 2R2sin2��
�

2A2cos2�

�A2 � 2R2sin2��2

��: (27)

Since all quantities depend on � only through sin2� and
cos2�, the solution is symmetric to the equator � � �=2.

Eliminating the variable � from Eqs. (26) and (27) leads
to the following equation of state:

 � � c0 � c1p� c2p2; (28)

where the three constants ci are given by

 

c0 �
�3� 2�R2��R2 � A2�2��R2��

4�R2�A2 � 2R2�
;

c1 �
2R2 � A2�13� 8�R2�

A2 � 2R2 ;

c2 �
32�A2R2

A2 � 2R2 :

(29)

As in the previous discussion let us now compute the
value of the pressure and density at the first center (� � 0),
at the equator of the ellipsoid (� � �=2), and at the second
possible center (� � �), which yields

 8�p�0� �
1

A2 �
1

R2 ��; 8���0� �
3

A2 �
3

R2 ��;

(30)

 8�p��=2� � �
1

R2 ��;

8����=2� �
3A2 � 4R2

R2�A2 � 2R2�
��;

(31)

 8�p��� �
1

A2 �
1

R2 ��; 8����� �
3

A2 �
3

R2 ��:

(32)

Similarly to the Whittaker case, there exists a cosmological
constant such that the pressure vanishes at the equator,

 � �
1

R2 �: �N; (33)

where the energy density is positive. In this case one has to
match the Nariai metric. For smaller cosmological con-
stants, i.e. �<�N , the pressure vanishes before the equa-
tor and one has to join on the Schwarzschild–de Sitter (or
Schwarzschild–anti-de Sitter) metric as the exterior vac-
uum spacetime. However, the pressure cannot vanish after
the equator, as can be seen from the mirror symmetry to the
equator of the solution. Therefore, solutions with �>�N
have two centers. One easily verifies that both centers are
regular by checking that the derivatives of pressure and
energy density vanish at both centers. Hence, as a side
result we already found a new generalization of the
Einstein static universe.

The Einstein universe is characterized by its constant
energy and constant pressure (originally Einstein assumed
a pressureless universe) throughout the three-sphere. By a
generalization of the Einstein static universe we mean a
globally regular solution of the field equations with cos-
mological constant where the spatial part of the metric is a
closed three-space and where either the energy density or
the pressure, or both, is varying.

It is expected that other known perfect fluid solutions,
e.g. those given in Ref. [40], will show similar properties.
Therefore, following the above procedure, we can explic-
itly show the existence of a wide class of generalized
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Einstein static universes and an even wider class of static
and spherically symmetric perfect fluid solutions, for
which the pressure vanishes in regions where the group
orbits are decreasing.

III. ANALYTIC CONSIDERATIONS

In the previous sections we analyzed perfect fluid solu-
tions which may extend through the equator of the ellipsoid
that describes the global geometry of the spatial hyper-
surfaces. The present section supplements the explicit and
later numerical results by presenting some general state-
ments. It should also be mentioned that the existence and
uniqueness of perfect fluid solutions was proved in [41].
The restrictions on the equations of state could be weak-
ened in Refs. [42,43]. The existence and uniqueness proof
of [41] could be extended to include cosmological con-
stants satisfying �< 4���p � 0� in [2,44]. Let us now
consider the static and spherically symmetric line element
in Gauss coordinates relative to the r � const hypersurfa-
ces,

 ds2 � �e2��r�dt2 � dr2 � R2�r�d�2: (34)

The resulting field equations Gab ��gab � 8�Tab are
given by

 

1� R02 � 2RR00

R2
�� � 8��; (35)

 

R02 � 1� 2RR0�0

R2
�� � 8�p; (36)

 

�0R0 � R��02 � �00� � R00

R
�� � 8�p; (37)

which imply the conservation of the energy-momentum
tensor

 p0 � �0�p� �� � 0; (38)

where the prime denotes differentiation with respect to r.
The maximum of the area of the group orbits is located at
the maximum of the function R�r�, which means R0�rm� �
0, where rm is the location of the maximum. We henceforth
assume that such a maximum exists. [To be precise, we
only assume that the function R�r� has an extremum,
and it will turn out that this extremum is a maximum if
we require the energy density to be positive at rm. For r �
rm the mass definition (17) implies 1� 2m�rm�=R�rm� �
�=3R�rm�

3 � 0.]
Note that mass (17) and energy density � are related by

 

dm
dR
�
m0

R0
� 4��R2: (39)

Eliminating the function �0 from the first two field
equations (35) and (36) and the conservation equation
(38) yields the Tolman-Oppenheimer-Volkoff (TOV)

[35,45] equation

 

dp
dR
� �R

�p� ���4�p�m=R3 ��=3�

1� 2m
R �

�
3 R

3
; (40)

where we used that dp=dr � �dp=dR�R0. At the maximum
rm the TOV equation is ill defined since the denominator
tends to zero. However, this is not a physical singularity, as
can easily be seen by considering the derivative of the
second field equation (36) evaluated at R0 � 0, which reads

 8�p0�rm� � 2�0�rm�
R00�rm�
R�rm�

; (41)

and, moreover, all Riemann tensor components (A1) are
well defined at r � rm. Furthermore, one can express the
sum of the energy density and the pressure in terms of the
Riemann tensor,

 4���� p� � Rr�r� � R
�t
�t � Rr�r� � R

�t
�t; (42)

so that this sum is well defined if the spacetime is non-
singular. Let us furthermore evaluate the field equations at
rm, which yields

 

1� 2R�rm�R
00�rm�

R2�rm�
�� � 8���rm�; (43)

 

�1

R2�rm�
�� � 8�p�rm�; (44)

 

R�rm���
0�rm�

2 � �00�rm�� � R
00�rm�

R�rm�
�� � 8�p�rm�:

(45)

Next, from Eq. (44) we find that the pressure is positive at
the equator if the cosmological constant is large enough,
that is, if

 �>
1

R2�rm�
�: �N: (46)

For the special case � � �N the pressure vanishes at the
equator, i.e. the maximum of the area of the group orbits.
Putting this particular value of the cosmological constant
into the first field equations yields

 

1� 2R�rm�R00�rm�

R2�rm�
��N � �2

R00�rm�
R�rm�

� 8���rm�;

(47)

from which we conclude that R00�rm�< 0 to have a physi-
cally meaningful perfect fluid solution. Indeed, this condi-
tion simply states that the equator is a local maximum of
the group orbits’ area. This fact was not assumed explicitly
and is a direct consequence of assuming physical solutions:
positivity of the energy density.

The above analysis clarifies under which conditions
static and spherically symmetric perfect fluid ellipsoids
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may extend through the equator and have a zero pressure
surface in regions where the area of the group orbits is
decreasing. However, condition (46) depends on the func-
tion R�r� and therefore essentially depends on the solution.
Given an equation of state, a central pressure, and a cos-
mological constant, such that the pressure (and by the
equation of state the energy density) is decreasing near
the center, the above considerations are not sufficient to
decide whether the pressure vanishes before the equator or
not. Therefore one should find a condition depending
solely on the equation of state and on the initial conditions
(pressure at the center and the cosmological constant) so
that one controls the location of the zero pressure surface.

The TOV equation (40) seems to be ill defined at rm,
since its denominator vanishes. On the other hand, the field
equations imply that the spacetime is regular where
R0�rm� � 0. Therefore we can conclude that the limit
limr!rmp

0�r� must exist, so that we write limr!rmp
0�r� �

a. Existence of p0�rm� can be put back into (40), and yields

 a�
p�rm����rm�

R�rm�2
lim
r!rm

�4�p�r�R�r�3�m�r���=3R�r�3�
R0�r�

:

(48)

Since limr!rmR
0�r� � 0, the numerator also must vanish as

r! rm,

 lim
r!rm
�4�p�r� �m�r�=R�r�3 ��=3�

� 4�p�rm� �m�rm�=R�rm�3 ��=3 � 0; (49)

which can be written more conveniently (for the present
purpose),

 4�p�rm� �
1

R�rm�
3

�
�

3
R�rm�3 �m�rm�

�
: (50)

Before exploiting the latter equation (50), we note that it is
easy to show that the pressure in the TOV equation (40) is
decreasing near the center if

 �< 4���pc� � 12�pc; (51)

a condition that only depends on the initial values and the
equation of state.

According to Eq. (50) the signature of the pressure at the
equator is determined by the signature of the quantity

 

�

3
R3
m �m�Rm� �

Z Rm

0
	�� 4���R�
R2dR; (52)

where we used the definition of mass; see (39). Since
pressure and by a monotonic equation of state also the
energy density are decreasing functions, ��p � pc� �
��rm�, a sufficient condition to satisfy the inequality
p�rm�> 0 is

 4���p � pc�<�: (53)

Hence, if the cosmological term is large enough, compared
to the central density, then the pressure does not vanish
before the equator of the interior spacetime.

Next we find a necessary condition for a positive pres-
sure at the equator. Let us assume p�rm� � 0. Then the
integral of �� 4���R� is non-negative. Since going out-
wards p and � are monotonically decreasing, it follows
that �� 4���Rm� � 0. But because the zero pressure
surface is after the equator, by the monotonicity condition
we have ��Rm� � ��p � 0�, and consequently � �
4���p � 0�. On the other hand, this means that if

 �< 4���p � 0� (54)

then necessarily p�rm�< 0. This condition is in agreement
with previous results; see e.g. [2,3]. Hence, if the given
equation of state and the cosmological constant satisfy the
condition (54), then the pressure vanishes before the equa-
tor of the ellipsoid.

Next, let us assume that the pressure vanishes at the
maximum of the area of the group orbits, so that the
equator is also the zero pressure surface. In this case, as
we already showed in the previous sections, one has to join
on the Nariai metric. Putting p�rm� � p�rb� � 0 into (50)
leads to

 m�rb� � M �
�

3
R3
b;

Z Rb

0
4���R�dR �

�

3
R3
b; (55)

which relates the mass of the solution to the cosmological
constant. Unfortunately this condition cannot be written in
a form such that the equation of state suffices to choose the
initial values for such a solution.

These three observations can be summarized as follows:

 

�< 4���p � 0� pressure vanishes before the equator;

4���p � 0�<�< 4���p � pc� no analytical control;

4���p � pc�<� pressure can vanish only after the equator;

which only depend on the equation of state and the initial
conditions. However, these conditions only yield quite
general conclusions. They do not suffice to decide whether
the solution can have a second regular center, i.e. perfect

fluid solutions which occupy the whole ellipsoid. From
Eq. (51) we can conclude that the pressure is increasing
near the first regular center if we assume �> 4���pc� �
12�pc; however, we cannot control the further behavior of
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the solution and may obtain a singular solution where the
pressure diverges, or a solution with a second center having
a conical singularity.

Let us furthermore discuss the consequences of having a
regular center. Regularity of the solution at the center, in
particular, fixes some of the coefficients in the power series
expansion of the function R�r� (see e.g. [46]), which are
given by

 R�rc� � 0; R0�rc� � 1; R00�rc� � 0: (56)

However, the part R000�rc� is also determined by the initial
conditions, as can be seen from the first field equation (35),

 8���pc� �� � lim
r!rc

1� R02

R2 � lim
r!rc

2R00

R
: (57)

After applying the rule of L’Hopital and using the relations
(56), we arrive at

 8���pc� �� � �3R000�rc�; (58)

so that the third derivative is also fixed by the initial
conditions. In case there exists a second regular center
rc2

, we have

 R�rc2
� � 0; R0�rc2

� � �1; R00�rc2
� � 0 (59)

so that R000�rc2
� is given by

 8���pc2
� �� � 3R000�rc2

�: (60)

The conditions (56) and (58) and also (59) and (60) must be
satisfied independently by any solution admitting two
regular centers. While one prescribes initial conditions at
the first center, the regularity of the second center is by no
means warranted since it actually depends on the solution
of the function R together with the equation of state that
also enter (60).

In the next section we will analyze the field equations
numerically for given equations of state. It will turn out
that none of the equations of state considered allows a
second regular center. Therefore, all solutions that have
an increasing pressure near the first center will have either
a divergent pressure or a second center with a conical
singularity, and are hence not of physical interest in
general.

IV. NUMERICAL CONSIDERATIONS

In Secs. II A and II D we generalized two known solu-
tions to include the cosmological constant. For large cos-
mological constant we found that new properties arise like
the possibility of having a second regular center. In the
previous analytic section we presented some arguments in
favor of the existence of solutions with cosmological con-
stant that may occupy more than ‘‘half’’ the three-space.
This result can also be read in the following way: For
sufficiently large cosmological constants the pressure can-
not vanish before the equator of the three-space, so that

some new physical properties may arise. However, it was
also argued that, in general, a second regular center does
not exist.

It is the aim of the present section to solve the field
equations (35)–(37) numerically for a given equation of
state � � ��p�. In particular, we are interested in solutions
where the pressure vanishes after the group orbit’s maxi-
mum of the three-space and in solutions that possibly have
two regular centers. We concentrate on these two classes of
solutions, since the others are well known already.

The most natural starting point for the numerical analy-
sis is the polytropic equations of state

 p��� � K��n�1�=n; ��p� �
�
p
K

�
n=�n�1�

; (61)

where K is some constant and n is the polytropic index. In
the Newtonian case stellar models are finite if 1< n< 5
and do not have a finite radius for n � 5, where also � � 0
is assumed. We slightly modify the polytropic equations of
state, in order to allow a nonvanishing boundary density
�b � ��p � 0�. Hence, we consider the following equa-
tion of state:

 ��p� �
�
p
K

�
n=�n�1�

� �b; (62)

where the boundary density is a new free parameter that we
must specify. We choseK � 1, the polytropic index n � 3,
and �b � 0:5. For two different cosmological constants
(‘‘small’’ and ‘‘large’’) we obtain the two following solu-
tions, Figs. 4(a) and 4(b).

As expected, for small cosmological constant [see
Fig. 4(a)] the pressure vanishes before the maximum of
the group orbits. At the vanishing pressure surface one can
join on the Schwarzschild–de Sitter metric C1 as the
exterior spacetime, with the methods described in
Sec. II B. These solutions are represented by the Carter-
Penrose diagram 1 discussed earlier. For large cosmologi-
cal constant, however [see Fig. 4(b)], the pressure vanishes
after the maximum, in a region where the group orbits are
decreasing. This would necessarily yield a global solution
represented by the Carter-Penrose diagram 3, where the
exterior spacetime contains the singularity. Since the nu-
merical solutions vary smoothly in the cosmological con-
stant, it is evident that a fine-tuned cosmological constant
can be chosen such that the pressure vanishes exactly at the
maximum of the group orbits, in which case one has to join
the Nariai metric as the exterior spacetime.

Next, let us analyze the solutions for the stiff matter
equation of state (the n! 1 limit of the polytropic equa-
tion of state)

 ��p� � p� �b; (63)

which we, as before, supplemented by a boundary density
term �b. For the stiff matter case we again take two differ-
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ent values of the cosmological constant. The results are
similar to those discussed already; see Figs. 5(a) and 5(b).

Finally let us consider the Hagedorn equation of state

 ��p� � �� exp
�
p
��
� 1

�
; (64)

where the free parameter �� is related to the boundary
density by �b � ��p � 0� � ��=e. As in the previously
discussed cases, we find that for small cosmological con-
stants the pressure vanishes before the maximum of the
group orbits, whereas large values of the cosmological
constant allow the pressure to vanish after the maximum;
see Figs. 6(a) and 6(b).

Apart from the incompressible perfect fluid case we
could not find numerically any other configuration with a
second regular center. This indicates that the existence of
the second center requires a very specific choice of the
fluid’s equation of state and carefully chosen initial
conditions.

V. SUMMARY AND CONCLUSIONS

We have used analytical and numerical techniques to
analyze the static and spherically perfect fluid field equa-
tions of general relativity in the presence of a cosmological
constant. A positive cosmological term can be viewed as an
external force having the effect of pulling matter apart.
Hence, one can expect that the radial size of matter spheres
is increased due to �. This naturally yields questions
regarding the physical picture applicable to these solutions.
It turns out that the effects of the cosmological constant
lead to various different configurations, many of which
have not been discussed previously.

By using Gauss coordinates relative to the r � constant
hypersurfaces, we analyzed geometrically the properties of
the vanishing pressure surface that determines the bound-
ary of the perfect fluid sphere. In the absence of the
cosmological constant, going outwards, the area of the
respective group orbits are always increasing close to the
zero pressure surface. This situation changes drastically if
� is allowed to be relatively large in comparison with the
matter density. It is possible for the pressure to vanish
exactly at the maximum of the group orbits or even vanish
where the group orbits are decreasing. In the first case one
has to join on the Nariai solution to get the metric C1 at the
boundary. In the latter case one matches the part of the
Schwarzschild–de Sitter solution containing the black hole
horizon and the singularity. This is in contrast to the small
� situation where the vacuum region contains the cosmo-
logical horizon. Lastly, one is led to ask whether the matter
can occupy the whole spacetime resulting in two regular
centers corresponding to a fully generalized Einstein static
universe where neither the energy density nor the pressure
are constant.

We showed that the Whittaker solution can have its
vanishing pressure surface where the group orbits are

decreasing; however, a second center is not possible. On
the other hand, the Tolman IV solution does allow for a
second regular center, a solution that might be named the
Tolman IV Einstein universe. By numerically integrating
the field equations for physically motivated equations of
state, we showed that, in general, the pressure can vanish
where the group orbits are decreasing and consequently
also at the maximum for sufficiently fine-tuned initial
conditions. We also obtained analytical bounds that the
cosmological constant has to satisfy to allow for such
situations. However, we were not able to show that, in
general, solutions with two regular centers for a given
equation of state exist. This observation has analytical
support since the conditions under which the solutions
have two regular centers are very restrictive. Note, how-
ever, that the special Tolman IV equation of state (28)
admits solutions with a second regular center.

Ever since the first exact matter solutions have been
obtained, static and spherically symmetric perfect fluid
spacetimes have remained a subject of great interest. The
presence of matter that effectively acts like a perfect fluid
with unusual equations of state, such as p=� � �1, dras-
tically changes the geometry of known solutions.

ACKNOWLEDGMENTS
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APPENDIX: FIELD EQUATIONS AND RIEMANN
TENSOR

The nonvanishing Riemann tensor components are

 Rrtrt � ��02�00; R���� �
1� R02

R2 ;

Rr�r� � Rr�r� � �
R00

R
; R�t�t � R�t�t � ��

0 R
0

R
:

(A1)

One can rewrite the field equations (35)–(37) to get

 

R00

R
� �4���

�

3
�
m

R3 ; (A2)

 �0
R0

R
� 4�p�

�

3
�
m

R3 ; (A3)

 �02 � �00 � 4���� p� �
2m

R3 �
�

3
; (A4)

and hence the Riemann tensor in terms of physical quan-
tities,

 Rrtrt � �4���� p� �
2m

R3 �
�

3
; (A5)
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 R���� �
2m

R3 �
�

3
; (A6)

 Rr�r� � Rr�r� � 4���
�

3
�
m

R3 ; (A7)

 R�t�t � R�t�t � �4�p�
�

3
�
m

R3 : (A8)
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