
Near extremal black hole entropy as entanglement entropy via AdS2=CFT1

Tatsuo Azeyanagi,* Tatsuma Nishioka,† and Tadashi Takayanagi‡

Department of Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 4 January 2008; published 5 March 2008)

We point out that the entropy of (near) extremal black holes can be interpreted as the entanglement
entropy of dual conformal quantum mechanics via AdS2=CFT1. As an explicit example, we study near
extremal Banados-Teitelboim-Zanelli black holes and derive this claim from AdS3=CFT2. We also
analytically compute the entanglement entropy in the two dimensional CFT of a free Dirac fermion
compactified on a circle at finite temperature. From this result, we clarify the relation between the thermal
entropy and entanglement entropy, which is essential for the entanglement interpretation of black hole
entropy.
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I. INTRODUCTION

The AdS/CFT [1] has been studied for almost ten years,
and many interesting aspects of quantum gravity have been
revealed. Even though the examples of AdSd�1=CFTd with
d � 2 have been explored in detail, the lowest dimensional
case, d � 1, is still not well understood. The AdS2 geome-
try appears as the near horizon limit of four or five dimen-
sional extremal black holes (or black rings) [2–4]. Thus
the microscopic explanation of Bekenstein-Hawking en-
tropy of the extremal black holes [5,6] is expected to be
directly related to the AdS2=CFT1 correspondence [1,7]
(see [8] for a review).

The pure AdS spacetime AdSd�1 with d � 2 has no
entropy as is also clear from its dual CFTd at vanishing
temperature. To obtain nonzero entropy, we need to con-
sider an AdS black hole as the dual geometry. On the other
hand, we expect nonzero entropy even for the pure AdS2,
since it is the near horizon limit of higher dimensional
(near) extremal black holes. We also notice another special
property of AdS2, that the AdSd�1 in the global coordinate
has two (timelike) boundaries only when d � 1. The latter
property is a major problem when discussing AdS2=CFT1

because the CFT lives on the boundary of AdS spacetime.
So far, this issue has been neglected, and the AdS2 space is
considered to be dual to a single CFT with a large degen-
eracy. Though it is also natural to assume that there are two
CFTs, taking into account the presence of two boundaries
on AdS2, there have been no arguments in this direction as
far as the authors know.

In this paper, we would like to report progress in this
direction owing to the recently found method of holo-
graphically computing entanglement entropy [9,10]. We
point out that the above two exceptional properties of AdS2

are closely related with each other. We present important
evidence that there exist two systems of conformal quan-
tum mechanics (CQM) on the boundaries of the AdS2 and

that they are entangled with each other as is speculated
from the nonvanishing correlation functions between them
computed holographically. Indeed, we will be able to show
that the black hole entropy is exactly the same as the
entanglement entropy of CQM if we assume the
AdS2=CFT1 correspondence with this interpretation. This
relation is true even if we take any higher derivative
corrections into account. We can say that this progress is
highly remarkable if we remember that the AdS2=CFT1

has been poorly understood and is still mysterious.
Even though our argument can be regarded as a general-

ization of the interpretation of AdS black holes in [11] via
AdS/CFT, it is slightly different from it in the following
way. For the (3D or higher dimensional) AdS black holes,
its CFT dual is well established and it is possible to
explicitly construct a dual entangled CFT state, from which
we can compute its entanglement entropy directly as in
[11]. On the other hand, in the AdS2 case, we can perform a
computation of entanglement entropy in the dual CFT only
by using the recent holographic method1 [9,10], as the
formulation of the dual CFT is not clear at present.

The relation between the black hole entropy and entan-
glement entropy has been discussed for a long time, and
historically this was the first motivation to make us con-
sider the entanglement entropy in quantum field theory
[14]. Later, it turned out that quantum corrections to
Bekenstein-Hawking formula could be explained as the
entanglement entropy [15,16]. In particular, when the en-
tire gravity action is induced, the black hole entropy itself
can be regarded as the entanglement entropy [16,17]. In
these arguments, the black hole entropy is related to the
entanglement entropy in the quantum field theory in the
same spacetime. The corresponding interpretation from the
viewpoint of AdS/CFT has been given in [18,19] (see also
[20–22]). On the other hand, in our case, the black hole
entropy is interpreted as the entanglement entropy in CFT
(or CQM) which lives on the boundary of the spacetime.
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1This holographic method has also been applied to the analysis
of the confining gauge theories [12,13].
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Now, we usually identify the black hole entropy with the
thermal entropy based on AdS/CFT. Thus in order to claim
the equality between the black hole entropy and the en-
tanglement entropy in general setups, we need to establish
the relation between the thermal entropy and the entangle-
ment entropy. To see that it indeed agrees with what we
expect from the holographic viewpoint, we compute the
entanglement entropy of a 2D free Dirac fermion at finite
temperature with the spatial direction compactified as an
explicit example. We finally obtain an analytical expres-
sion and are able to check this relation. This is the first
analytic result on entanglement entropy with both the finite
temperature and the finite size effects taken into account.2

Also remarkably, in our setup the entanglement entropy
depends on the detail of the 2D CFT, while the entangle-
ment entropy at zero temperature or in the infinite system
only depends on the central charge of CFT [23,24].

This paper is organized as follows: In Sec. II we explain
the holographic computation of entanglement entropy via
the AdS/CFT duality. We also present new evidence of this
relation in Banados-Teitelboim-Zanelli (BTZ) black holes.
In Sec. III, we give a general argument to show the equiva-
lence between the black hole entropy and the entanglement
entropy via AdS2=CFT1. In Sec. IV, we investigate near
extremal BTZ black holes in order to derive our claim from
AdS3=CFT2. In Sec. V, we analytically compute the en-
tanglement entropy of a 2D free Dirac fermion at finite
temperature with the spacial direction compactified. In
Sec. VI, we draw a conclusion and discuss future problems.

II. HOLOGRAPHIC ENTANGLEMENT ENTROPY
AND BTZ BLACK HOLES

The main purpose of this paper is to understand the
AdS2=CFT1 better by uncovering the relation between
the black hole entropy and the entanglement entropy in
CFT1. However, it is quite useful to learn a general holo-
graphic prescription of computing entanglement entropy
from the AdS/CFT correspondence. This is because the
dual CFT in AdS2=CFT1 is not understood well, and we
need to employ a holographic computation of the entan-
glement entropy3 for CFT1. We will apply this general
method to the AdS2=CFT1 setup in the next section.
Also, in a particular case of AdS2, background in string
theory can be embedded into a rotating BTZ black hole,
which is asymptotically AdS3 as we will see.

Motivated by this, we will explain the general holo-
graphic computation of the entanglement entropy [9] in
this section. In particular, we study the example of BTZ
black holes and its CFT2 dual based on the AdS3=CFT2,

and present a new result. This gives further evidence that
the general prescription in [9] correctly reproduces the
black hole entropy as the entanglement entropy. Also, the
entropy of BTZ black holes is closely related to the entropy
of extremal black holes, which is the main topic of this
paper as we will see later.

A. Holographic entanglement entropy

Consider a CFT and divide the space manifold of the
CFT into two parts, A and B. This factorizes the total
Hilbert space into a direct product of two Hilbert spaces,
HA �HB. The entanglement entropy is defined by the
von Neumann entropy SA � �Tr�A log�A for the reduced
density matrix �A. The reduced density matrix �A is de-
fined by tracing out the density matrix over HB i.e. �A �
TrB�. We have infinitely many such quantities for various
choices of A.

Now we would like to compute the entanglement en-
tropy from the AdS/CFT correspondence. We assume a
setup where a AdSd�2 space with the Newton constant
G�d�2�
N is dual to a CFTd�1. The CFT lives on the boundary

of AdS. Then the general holographic prescription in [9]
computes the entanglement entropy as the area of the
minimal surface at a constant time,

 SA �
Area��A�

4G�d�2�
N

; (2.1)

where �A is the (unique) minimal surface in AdSd�2 whose
boundary coincides with the boundary of the region A. A
simple proof of this claim has been given in [25]. Notice
that this formula assumes the supergravity approximation
of the full string theory.

B. Application to BTZ black holes

As a particular example, which is also relevant to the
discussions in the next section, let us consider the BTZ
black holes [26], whose metric is given as follows:

 ds2 � �
�r2 � r2

���r2 � r2
��

R2r2 dt2

�
R2r2

�r2 � r2
���r2 � r2

��
dr2 � r2

�
d��

r�r�
Rr2 dt

�
2
:

(2.2)

The boundary of BTZ black holes at a fixed time is a circle
because � has the periodicity ���� 2�. The entangle-
ment entropy is defined by dividing this circle into two
parts, A and B. We specify the size of A by the angle �� �
2�L, while the size of B becomes �� � 2��1� L�.

If we apply the holographic formula (2.1) to BTZ black
holes, Area��A� is equal to the geodesic length between the
two endpoints of A inside the bulk space. This holographic
computation leads to the following prediction [9]:

2Since this result may also be interesting for those who are
interested in other subjects, we arranged Sec. V such that it is
readable for anyone who is familiar with 2D CFT.

3Again, please distinguish this entanglement entropy in CFT1
from the entanglement entropy in AdS2.
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 SA �
c
3

log
�
�
�a

sinh
�
�L
�

��
; (2.3)

where c is the central charge of the dual CFT2 and � is the
inverse temperature of the black hole. This agrees with the
result in [24], which computes the entanglement entropy in
any 2D finite temperature CFT when the size L is small.
However, when L is large, the formula (2.3) is no longer
correct, as will be clear from the holographic consideration
discussed just below.

At high temperature, the geodesic winds around the
black hole horizon as L becomes large [Fig. 1(a)]. When
the region A covers most of the boundary (L � 1� � with
�	 1), the disconnected surface [Fig. 1(c)] gives smaller
area than4 the connected surface [Fig. 1(b)]. Thus the
disconnected surface consists of the total black hole hori-
zon and the geodesic extending to the boundary. Taking the
�! 0 limit, this leads to

 SA�L � 1� �� � SBH � SA�L � ��; (2.4)

where SBH is the black hole entropy. The relation (2.4)
offers an important way to extract the black hole entropy
from the entanglement entropy of CFT2.

Therefore it is very important to confirm (2.4) from the
CFT side without assuming AdS/CFT. Indeed in Sec. III C
we will show this is indeed true for a particular CFT. There,
we consider the example5 of free fermion CFT since it
turns out to be possible to compute the entanglement
entropy analytically and show this relation as in (5.22).

In this way we have been able to understand well the
BTZ black hole entropy from the viewpoint of entangle-
ment entropy. This gives further evidence of AdS3=CFT2.
In the next sections, we would like to proceed to another
important class of black holes, i.e. the ones whose near
horizon geometry includes the AdS2.

III. BLACK HOLE ENTROPYAS ENTANGLEMENT
ENTROPY AND AdS2=CFT1

A. AdS2 from the near horizon limit of the extremal
black hole

The metric of a 4D charged black hole looks like
 

ds2 � �
�r� a���r� a��

r2 dt2 �
r2

�r� a���r� a��
dr2

� r2d�2
2; (3.1)

where we assumed a� � a�. The Bekenstein-Hawking
entropy is given by

 SBH �
A

4G�4�N
�
�a2
�

G�4�N
: (3.2)

The extremal black hole corresponds to the special choice
of the parameter a� � a�. In this case, if we define u �
r� a�, the near horizon metric becomes

 ds2 � �
u2

a2
�

dt2 � a2
�

du2

u2 � a
2
�d�2

2; (3.3)

i.e. AdS2 in the Poincare coordinate times S2.
More generally, it is possible to obtain AdS2 
 S

2 when
the black hole is near extremal, a��a�

a�
	 1 [29]. In this

case, the dual ground state in AdS2 is heated up into a
thermal state so that its temperature is proportional to
a� � a�. As we will see in the last part of the next section,
the extremal black hole a� � a� behaves differently from
the near extremal one, especially in the global structure of
the spacetime. Below we mostly consider the extremal
limit of the near extremal black hole instead of the ex-
tremal one itself.

As is well known, the AdS2 in the global coordinate,

 ds2 � a2
�

�d�2 � d�2

cos2�
; (3.4)

L BH

(a)

BHL ε
ε

(b)

= 1−
BH

(c)

ε

FIG. 1. Holographic picture of the entanglement entropy.
(a) The length of the geodesic �A whose boundary coincides
with @A gives the holographic entanglement entropy of region A.
(b) As region A covers a large part of the boundary, the geodesic
wraps the black hole horizon. (c) When region A covers almost
all the boundary, we have another candidate for �A which
consists of two disconnected curves. The one wraps the black
hole horizon and the other extends to the boundary. The former
has a finite length, while the latter is infinitely long, � c

3 


log��=a�.

4Remember that, when the temperature is nonvanishing but is
not high enough, the AdS/CFT claims that the dual gravity
description is given by the path integral over infinitely many
geometries as in [27,28]. Thus our results, such as (5.17) and
(5.24), which are correct for any values of �, should include such
a sum over geometries.

5In this subsection, we have proceeded by pretending that the
free Dirac fermion system has its AdS dual. We believe this
assumption is not crucial because the property (5.19) should be
true for any 2D CFT. It is well known that the IIB string on
AdS3 
 S

3 
M (M � K3 or T4) is dual to the 2D (4, 4) super-
conformal field theory defined by the symmetric orbifolds
Sym�M�N . Thus it will be an interesting future problem to extend
our calculations of entanglement entropy to the ones in sym-
metric orbifolds Sym�M�N and see that the result can explicitly
be interpreted as the sum over geometries.
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has a significant difference from the higher dimensional
AdS spaces in that it has two timelike boundaries at � �
� �

2 . Thus it is natural to expect that the theory is dual to
two copies of conformal quantum mechanics, CQM1 and
CQM2, living on the two boundaries via AdS2=CFT1. In
the next section, by considering 5D (near) extremal black
holes, we will give an explicit example of AdS2=CFT1

duality, which supports this interpretation.
In the case of 4D extremal black holes, the systematic

construction of dual CQM has not been established. There
are some specific examples whose dual quantum mechan-
ics is understood [30–32]. Instead of the detailed review of
each example, we would like to briefly give a sketchy
explanation since the detail is not necessary for our pur-
pose. Consider the setup of type IIA string compactified on
a Calabi-Yau 3-fold with D0-branes and D4-branes. We
specify the number of D0-branes and D4-branes wrapped
on the 4-cycle 	A by q0 and pA. This configuration leads to
a macroscopic Bogomol’nyi-Prasad-Sommerfield (BPS)
black hole with the entropy S � 2�

���������
q0D
p

in a large charge
limit, where D � 1

6C
ABCpApBpc in terms of the intersec-

tion number CABC [33]. In the near horizon limit, the
geometry AdS2 
 S

2 is realized. In this setup, the dual
quantum mechanics is described by a supersymmetric
sigma model whose target space is the symmetric product
Sym�Pq0� of a certain manifold P [30]. This manifold P
represents the effective geometry of the D4-brane world
volume probed by a D0-brane. The number of ground
states d�q0� of this model is equal to the number of coho-
mology of the symmetric product Sym�Pq0�. We can apply
the orbifold formula as usual to count d�q0� [5,34]. This
turns out to be equivalent to the counting of left-moving
states of a two dimensional CFT at level q0 with the central
charge cL � 6D [30,33]. This reproduces S � logd�q0� �
2�

���������
q0D
p

. In this setup, we can regard the pair CQM1 and
CQM2 as the two copies of the symmetric product quan-
tum mechanics.

B. Holographic computation of entanglement entropy

Since there are two CQMs, it is natural to ask if there are
any correlations between them. We can compute from the
standard bulk-boundary relation [35] the two-point func-
tion between O1 in CFT1 and O2 in CFT2 as follows [we
assume the global AdS2 (3.4)]:

 hO1��1�O1��2�i �
1

�sin��1��2

2 �
2h ; (3.5)

 hO1��1�O2��2�i �
1

�cos��1��2

2 �
2h ; (3.6)

where h is the conformal dimension of the operator O1;2.
At first, one may think they are decoupled because the

CQM1 and CQM2 are disconnected. However, as the non-
vanishing two-point functions show, AdS/CFT predicts

that they are actually correlated. A similar puzzle has
been raised in [36] in the context of AdS wormholes.
Indeed the following discussion is closely related to the
holographic computation of entanglement entropy in AdS
wormholes [10].

In this paper we would like to claim that CQM1 and
CQM2 are actually quantum mechanically entangled with
each other and that this is the reason why we get the
nonvanishing correlators. To show that the two CFTs are
entangled, we need to compute the entanglement entropy
and check that it is nonzero. Below we would like to
calculate the entanglement entropy holographically.

The holographic formula (2.1) is expected to be true in
general AdS space. If we apply it to our AdS2 setup [i.e.
d � 0 in (2.1)], we naturally find

 Sent �
Area��A�

4G�2�N
�

1

G�2�N
: (3.7)

This is because the minimal surface now becomes a point.
Below we will give a clearer derivation of (3.7) based on
the AdS/CFT.

The Hilbert spaces of CQM1 and CQM2 are denoted by
H1 and H2. The total Hilbert space looks like Htot � H1 �
H2. We define the reduced density matrix from the total
density matrix �tot,

 �1 � TrH2
�tot; (3.8)

by tracing over the Hilbert space H2. This is the density
matrix for an observer who is blind to CQM2. It is natural
to assume that �tot is the one for a pure state.

The entanglement entropy for CQM1, when we assume
that the opposite part CQM2 is invisible for the observer in
CQM1, is defined by

 Sent � Tr���1 log�1: (3.9)

We can obtain this by first computing Tr��1�
n, taking the

derivative with respect to n and finally setting n � 1. In the
path-integral formalism of quantum mechanics, �1 and
Tr��1�

n are computed as in Fig. 2 (we perform the path

FIG. 2. The calculation of reduced density matrix �1. In the
path-integral formalism, the wave function is described by the
path integral from t � �1 to a given time (say, t � 0). We can
compute the reduced density matrix and the trace of its nth
power, as we show in this figure, employing the path-integral
formalism.

AZEYANAGI, NISHIOKA, AND TAKAYANAGI PHYSICAL REVIEW D 77, 064005 (2008)

064005-4



integral along the thick lines; 	 and � are the boundary
conditions).

By using the bulk-boundary relation of AdS/CFT [35],
we can compute the entanglement entropy holographically
as on the right side of Fig. 3. The dual geometry is the
n-sheeted Riemann surface [9]. Though our derivation
below is along the lines of the argument in [25] for
AdSd�3, which proves the claim in [9] via the bulk-to-
boundary relation [35], our example is more nontrivial as it
includes two boundaries. Also, it is closely related6 to the
conical defect argument of black hole entropy (see e.g.
[17,37]).

Here we are considering a Euclidean metric. The cut
should end on a certain point in the bulk because there
should not be any cut on the opposite boundary, which is
first traced out. Notice that the presence of two boundaries
in AdS2 plays a crucial role in this holographic computa-
tion. We would get the vanishing entropy if we were to start
with the spacetime which has a single boundary, such as
the Poincare metric of AdS2.

Now we remember the Einstein-Hilbert action in the
Euclidean space,

 IEH � �
1

16�G�2�N

Z
dx2 ���

g
p
�R���: (3.10)

The cosmological constant � is not important since it is
extensive and will vanish in the end of the entropy compu-
tation. In the n-sheeted geometry we find SEH �

n�1
4G�2�N

in the

Euclidean formalism because the curvature behaves like a
delta function, R � 4��1� n�
2�x� (see e.g. [25,37]). The
entanglement entropy is obtained as follows:

 Sent � �
@
@n

log�e�IEH�nI
�0�
EH�jn�1 �

1

4G�2�N
; (3.11)

where S�0�EH is the value of the Einstein-Hilbert action of a
single sheet in the absence of the cut (or negative deficit
angle).

Finally, it is trivial to see that

 Sent � SBH; (3.12)

because 1
G�2�N
�

4�r2
�

G�4�N
. This means that the entanglement

between CQM1 and CQM2 is precisely the source of the
4D (near) extremal black hole entropy. The same argument
can be applied to any d dimensional black holes or black
rings whose horizons are of the form AdS2 
Md�2, where
Md�2 is a compact manifold such as Sd�2.

Recently, it has been shown that extremal (rotating)
black holes always have the SO�2; 1� symmetry in the
near horizon limit [2–4]. For example, the near horizon

geometry of a four dimensional extremal Kerr black hole is
given by a warped product of AdS2 and a two dimensional
manifold [38]. Our argument in this subsection can be
applied to such a warped AdS2 case.

C. Higher derivative corrections

Moreover, we can take curvature corrections into ac-
count. We assume that the near horizon geometry is of the
form AdS2 
 Sd�2. Even though we start with the
Lagrangian L that includes the curvature tensor R����
and its covariant derivatives, we can neglect the covariant
derivative of curvature tensors because the near horizon
geometry has constant curvature. In this case, the black
hole entropy with the curvature corrections is given by
Wald’s formula [39,40],

 SBH � �2�
Z
H

���
h
p @L

@R����
������; (3.13)

where ��� � ��� � ��� by using the Killing vector
� of the Killing horizon and its normal ��, normalized
such that  � � � 1; H represents the horizon and h is the
metric on it.

For example, in the ordinary Einstein-Hilbert action I �
� 1

16�GN

R
dxd

���
g
p
R � �

R
dxd

���
g
p

L, we reproduce the
standard result

 S �
AH

8GN
������g

��g�� �
AH

4GN
; (3.14)

where AH is the horizon area.
Now we would like to compare the Wald entropy with

the entanglement entropy computed holographically via
AdS2=CFT1. We consider the n-sheeted AdS2 (times the

FIG. 3. In the left figure, we show the geometry of AdS2 in the
global coordinate. It has two boundaries separated by the bulk
spacetime. The right figure represents the 2D spacetime, which is
dual to the computation Tr��1�

n.

6Notice that in these arguments the authors consider the
entanglement entropy for the total spacetime of nonextremal
black holes, while in our argument we consider the entanglement
entropy for the boundary of the extremal black hole geometry.
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same Sd�2), where the Riemann tensor behaves as follows
[37]:

 Rabcd � R�0�abcd � 2��1� n� � �gacgbd � gadgbc� � 
H:

(3.15)

Here 
H is the delta function localized at the (codimension
two) horizon; R�0�abcd represents the constant curvature con-
tribution from the cosmological constant. a, b run the
coordinate in the AdS2. Notice also that, if we employ
the relation gab � a�b � b�a, we obtain

 �ab�cd � ��gacgbd � gadgbc�: (3.16)

Now we consider the perturbative expansions of the
Lagrangian with respect to the (delta functional) deviation
of Rabcd from R�0�abcd. Then the quadratic and higher order
terms do not contribute since limn!1

d
dn �1� n�

d � 0 for
d � 2. Therefore, we can find

 

In � � logZn

� �
Z
dxd

�������
�g
p @L

@Rabcd
���ab�cd�2��1� n�
H

� 2��1� n�
Z
H

���
h
p @L

@Rabcd
�ab�cd: (3.17)

Thus this agrees with Wald’s formula,

 

Sent � �
@
@n

logZn

��������n�1
� �2�

Z
H

���
h
p @L

@R����
������

� SBH: (3.18)

D. Towards holography in flat spacetime

For general nonextremal black holes,

 

ds2 � �
�r� r���r� r��

r2 dt2 �
r2

�r� r���r� r��
dr2

� r2d�2; (3.19)

we obtain a Rindler space in the near horizon limit r!
r��>r��. The global extension of the Rindler space is
clearly the two dimensional Minkowski spacetime R1;1.
Thus we cannot relate it to the AdS/CFT correspondence.

If we associate two quantum mechanical systems, how-
ever, to two timelike curves situated on the left and right
sides of R1;1, then we can obtain the same equality as
(3.12). This suggests that the flat Minkowski spacetime
may admit its holographic description. It also has a natural
higher dimensional extension by expressing the R1;d metric
as ds2 � dr2 � r2ds2

dSd
, where ds2

dSd
is the metric of the d

dimensional de Sitter space.

IV. THE AdS2=CFT1 DUALITY FROM 5D NEAR
EXTREMAL BLACK HOLES

In the previous section we have argued that the black
hole entropy of (near) extremal black holes, whose near
horizon geometry includes an AdS2 factor, is equal to the
entanglement entropy of two dual CQMs, including quan-
tum corrections. We confirmed this claim by assuming the
AdS2=CFT1. To obtain a complete proof, we need to ex-
plicitly present a general construction of the entangled pair
of CQMs. In the 4D black hole cases, this is not straight-
forward because the CQM dual to AdS2 is not well under-
stood at present.

Instead, in this section we would like to examine a
concrete example of AdS2=CFT1 which is obtained from
the near extremal limit of nonrotating 5D black holes.
Equally, we can regard this as a dimensional reduction of
AdS3=CFT2 as first pointed out in [7] since the near
horizon geometry of 5D near extremal black holes is a
rotating BTZ black hole [26,41] (see also [27]).

A. Near extremal BTZ black hole from 5D black holes

Consider a 5D black hole which is obtained from the
type IIB background withQ1 D1-branes andQ5 D5-branes
wrapped on T4 
 S1 with Kaluza-Klein momentum N in
the S1 direction. In the near horizon limit, the metric
becomes [6]
 

ds2

	0
�
U2

l2
��dt2 � �dx5�2� �

U2
0

l2
�cosh�dt� sinh�dx5�2

�
l2

U2 �U2
0

dU2 � l2�d�3�
2 �

���������
Q1

vQ5

s
dx2

i : (4.1)

Via a coordinate transformation we can show that this
geometry is equivalent to [27]

 �BTZ black hole�3 
 S3 
 T4: (4.2)

The metric of the rotating BTZ black hole [26,41] is given
by (2.2). The explicit coordinate transformation is given by

 t! bt; x5 ! bR�;

�U2 �U2
0sinh2�� !

r2

b2 ; for 8b
(4.3)

and the new parameters are defined as R � l, r� �
bU0 cosh�, r� � bU0 sinh�. We can take ���� 2�
if we choose b � R5=R, where R5 is the radius of x5.

This BTZ geometry (2.2) can also be obtained from a
Lorentzian orbifold of the pure AdS3 space,

 ds2 � R2 dy
2 � dw�dw�

y2 : (4.4)

They are related by the coordinate transformation
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 w� �

�����������������
r2 � r2

�

r2 � r2
�

s
e�r��r�=R����t=R����;

y �

������������������
r2
� � r

2
�

r2 � r2
�

s
e�r�=R����r�=R

2�t:

(4.5)

The periodicity of � (i.e. ���� 2�) leads to the iden-
tification

 w� � e4�2TLw�; w� � e4�2TRw�;

y� e2�2�TL�TR�y;
(4.6)

where TL �
r��r�

2�R and TR �
r��r�

2�R represent the left- and
right-moving temperature of the dual 2D CFT. The central
charge of dual CFT is given by c � 3R

2G�3�N
, and its density

matrix looks like

 � � e��L0=TL��� �L0=TR�; (4.7)

using the left- and right-moving energy, L0 and �L0.
In the extremal case r� � r�, we need another coordi-

nate transformation defined by
 

w� �
R

2r�
e�2r�=R���t=R����; w� � ��

t
R
�

Rr�
r2 � r2

�

;

y �
R�����������������

r2 � r2
�

q e�r�=R���t=R����: (4.8)

The periodicity of � is equivalent to

 w� � e4�2TLw�; w� � w� � 2�; y� e2�2TLy:

(4.9)

The thermal entropy of the dual CFT is given by the
standard formula SA �

�2

3 cTL, and this agrees with the

black hole entropy S � 2�
������
cL0

6

q
� 2�

����������������
Q1Q5N
p

, using the

thermodynamical relation L0 �
�2

6 cT
2
L.

B. From near extremal BTZ to AdS2

The near extremal 5D black hole is related to the near
extremal BTZ black hole, r��r�r�

	 1. In the dual CFT, the
left-moving sector is far more excited compared with the
right-moving sector, since TL � TR.

By considering the limit r! r� of the BTZ metric (2.2),
we define u � r� r� and assume u� �r� � r�� 	 r�.
In the end we find the simplified metric
 

ds2 � �
4u�u� r� � r��

R2 dt2 �
R2

4u�u� r� � r��
du2

� r2
�

�
dt
R
� d�

�
2
: (4.10)

The 2D part of (4.10) is equivalent to the ‘‘AdS2 black
hole’’ defined in [29],

 ds2 � �
u�u� 4�Q2TH�

Q2 dt2 �
Q2

u�u� 4�Q2TH�
du2;

(4.11)

where

 Q2 �
R2

4
; TH �

r� � r�
�R2 : (4.12)

We can show that this space is equivalent to the pure AdS2

via a coordinate transformation [29]. Though the tempera-
ture dependence disappears by this transformation, it re-
flects the choice of different thermal vacua [29]. Thus the
3D background (4.10) is equivalent to S1 fibration over
AdS2.

In order to have a sensible interpretation in terms of
AdS2=CFT1, the geometry should include the boundary
region of the AdS2 dual to the UV limit of CFT1. This is
given by the region u� R. On the other hand, the ap-
proximation to get (4.10) assumes the condition u	 r�.
Thus we have to require

 R	 r�: (4.13)

This means that we cannot neglect the excitation in the S1

direction of the spacetime. However, we can still perform
the Kaluza-Klein reduction and regard the theory as the
one on AdS2 with infinitely many Kaluza-Klein modes.

The generators7 l0, l�1 and �l0, �l�1 of the isometry
SO�2; 2� � SL�2; R�L 
 SL�2; R�R of the AdS3 in the
Poincare coordinate (4.4) are given by

 l�1 � �@w� ; l0 � ��w�@w� �
1
2y@y�;

l1 � ��w
2
�@w� � w�y@y � y

2@w��;
(4.14)

and their antiholomorphic counterparts are obtained by
exchanging w� with w�. For states dual to generic BTZ
black holes, the two SL�2; R� symmetries are both broken.
However, if we take the limit R! 0 [i.e. (4.13)] of the
extremal BTZ r� � r�, we can keep U�1�L 
 SL�2; R�R
(i.e. l0 and �l�1, �l0) unbroken as is clear from the orbifold
action (4.9) on the expressions (4.14). The generator U�1�L
is the translation in the S1 direction, and the right-moving
SL�2; R�R symmetry turns out to be essentially the same as
the isometry of the AdS2 [7].

This analysis of the conformal symmetry reveals that the
excitation in the S1 direction is related to the left-moving
sector. Thus we can regard this AdS3=CFT2 as a variant of
AdS2=CFT1 by treating the left-moving sector as an inter-
nal degree of freedom. Notice that excitations in the left-
moving sector do not shift the value of the Hamiltonian for
CFT1 (i.e. �L0). Thus the conformal quantum mechanics

7Notice that we distinguish l0;�1 from the standard basis L0;�1
dual to the Virasoro generators of 2D CFT. In our case, the
unbroken generators of l0;�1 and �l0;�1 are linear combinations of
the standard Virasoro generators.
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dual to AdS2 is essentially described by the right-moving
part of CFT2.

This suggests a discrete light-cone quantization (DLCQ)
interpretation of the dual CFT. In order to properly nor-
malize the metric (4.10) in the limit (4.13), we are led to
define

 X� �
r�
R

�
t
R
��

�
; X� �

R
r�

�
t
R
��

�
: (4.15)

Thus in this picture we can equivalently regard the CFT2 as
almost lightlike compactified X� � X� � 2�r�

R and X� �
X� � 2�R

r�
. In this description, it is easy to confirm the

unbroken SL�2; R� symmetry because w� is scaled as
R
r�
w� and gets insensitive under the orbifold action.

Also, this rescaling shifts the energy scale we are looking
at as �p�; p�� ! �

R
r�
p�;

r�
R p��. This agrees with the near

extremal limit L0 �
r�
R � 1 that we have been assuming so

far. Notice also that in this limit the time evolution is
equivalent to the one of the light-cone time X�, and there-
fore the right-moving energy �L0 is treated as the
Hamiltonian.

C. Two-point functions

In order to have a better understanding of the
AdS2=CFT1 interpretation of the near extremal BTZ black
hole, we would like to turn to the two-point function
computed holographically following the bulk-to-boundary
relation [35].

The Feynman Green function of a scalar field in global
AdS3 is given in [42] and, also, that in BTZ can be con-
structed by the orbifold method. AdS3 is defined as the
three dimensional hyperboloid �x2

0 � x
2
1 � x

2
2 � x

2
3 �

�R2 embedded in R2;2, and its metric takes the form ds2 �
�dx2

0 � dx
2
1 � dx

2
2 � dx

2
3. In the global AdS3, the Green

function takes a fairly simple form, like

 � iGF�x; x
0� �

1

4�R
�z2 � 1��1=2�z� �z2 � 1�1=21�2h� ;

(4.16)

where
 

z � 1� R�2��x; x0� � i�;

��x; x0� � 1
2����x� x

0���x� x0��;

��� � diag��1;�1; 1; 1�: (4.17)

If we define the coordinate

 x0 �
y
2

�
1�

1

y2 �R
2 � w�w��

�
; x1 �

R
2y
�w� � w��;

x2 �
y
2

�
1�

1

y2 �R
2 � w�w��

�
; x3 �

R
2y
�w� � w��;

(4.18)

we obtain the Poincare coordinate (4.4). The parameter z in

the above coordinate becomes

 z�Poincare� �
1

2yy0
�y2 � y02 � �w��w�; (4.19)

and by substituting this in (4.16), we obtain the Green
function in the Poincare coordinate.

Considering the images which come as a result of the
orbifolding procedure, the Green function in the rotating
BTZ becomes
 

�iGnonext BTZ�x; x
0� �

1

4�R

X1
n��1

�z2
n � 1��1=2


 �zn � �z
2
n � 1�1=21�2h� ; (4.20)

 

zn�x; x
0� � i� �

1

r2
� � r

2
�

� �����������������
r2 � r2

�

q ������������������
r02 � r2

�

q
cosh




�
r�
R2 �tn �

r�
R

��n

�

�
�����������������
r2 � r2

�

q ������������������
r02 � r2

�

q
cosh




�
r�
R2 �tn �

r�
R

��n

��
; (4.21)

where
 �tn � t� t0; ��n � ���0 � 2�n: (4.22)

Now we would like to reduce the previous bulk-bulk
Green functions to the AdS2 ones. Notice that the geodesic
length zn can always be taken to be very large since we can
consider two points near the boundary of AdS2 owing to
(4.13). Thus the Green function looks like

 G�
1

4�R

X1
n��1

�zn��2h� : (4.23)

Consider again the near extremal BTZ r��r�
r�
	 1 and

take the limit u� r�r��R�r��r�. Then we obtain
 

zn �

�������
yy0

p
r2
� � r

2
�

�
cosh

�
r��t

R2 �
r���n

R

�

� cosh
�
r��t

R2 �
r���n

R

��

� 2

�������
yy0

p
r2
� � r

2
�

sinh
�
�r� � r��

2R

�
�t
R
� ��n

��


 sinh
�
�r� � r��

2R

�
�t
R
���n

��
: (4.24)

In this case the holographic two-point function in the
AdS2 limit looks like (below we omit numerical constants)
 

hO�t; ��O�0; 0�i �
X
n

�
sinh

�
�r� � r��

2R

�
�t
R
� ��n

��


 sinh
�
�r� � r��

2R

�
�t
R
���n

���
�2h�

:

(4.25)
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This takes the same expression as the one of the holo-
graphic two-point function of CFT2 [43,44]. In the DLCQ
coordinate, this is rewritten as follows:

 

hO�X�; X��O�0; 0�i �
X
n

�
sinh

�
X� �

2�r�
R

n
�


 sinh
�
�r� � r��r�

2R2 X�

� �n�r� � r��
��
�2h�

: (4.26)

In the DLCQ coordinate, we treat X� as the basic
coordinates, and thus in the scaling (4.13) we can set n �
0 in the above summation. Then the left- and right-moving
sectors are decoupled as expected. Notice that the coordi-
nate in the S1 direction is X�.

To interpret the near horizon limit of near extremal BTZ
(i.e. S1 fibration over AdS2) from the viewpoint of the
AdS2=CFT1, we need to regard the left-moving sector
dual to the S1 part as an internal degree of freedom, as
we have explained before. This allows us to treat X� as a
label of internal quantum number. Thus we can extract the
two-point function of CFT1 from (4.26) as follows:

 hO�t�O�0�i � �sinh��THt��2h� : (4.27)

Here we have employed the relation X� � 2
r�
t, which is

obtained from the infinite boost (4.15). This behavior
agrees with the result for the thermal state in AdS2 [29].
In particular, in the extremal limit TH ! 0 we find

 hO�t�O�0�i � t�2h� ; (4.28)

as expected. In this way we have confirmed that we can
regard the AdS3=CFT2 correspondence for the near ex-
tremal BTZ black hole equally as the AdS2=CFT1 with
infinitely many internal degrees of freedom.

D. Quantum entanglement and black hole entropy

As we have explained, the AdS3=CFT2 correspondence
for the near extremal black holes can also be regarded as an
AdS2=CFT1 by taking the near horizon limit of the near
extremal BTZ black hole. Essentially, the CFT1, i.e. the
conformal quantum mechanics, is described by the right-
moving sector of the original CFT2 by treating the left-
moving one as an internal degree of freedom tensored with
the right-moving sector. When we consider the excitation
in the AdS2 spacetime with the S1 sector untouched, the
left-moving sector will always stay at L0 � N, where N is
the quantized momentum in the original 5D black hole
description.

Usually, the CFT dual of the rotating BTZ black hole is
interpreted as a thermal state. Equally, we can interpret this
as an entangled state in two copies of the same CFT [11],

 

j�i �
1������
Z0

p
X
nL;nR

e��LL0=2��R �L0=2�jnLiL � jnRiR�CFT1

� �jnLiL � jnRiR�CFT2; (4.29)

where Z0 �
P
nL;nRe

��LL0��R �L0 is the partition function of
the 2D CFT. On the gravity side, they are geometrically
understood as the CFTs living on the two disconnected
boundaries of the BTZ spacetime.

To describe near extremal BTZ black holes, we keep �L
finite and �R very large. In the near horizon limit r! r�,
two boundaries of BTZ descend to the direct product of the
two boundaries of AdS2 times the circle S1. We denote the
states with L0 � N by jki [k � 1; 2; � � � ; d�N�]. The num-

ber d�N� of such states is very large, d�N� � e2�
������������
Q1Q5N
p

.
Then the quantum state looks like
 

j�i �
1����������
d�N�

p X
n

Xd�N�
k�1

e��En=2�jkiL � jniR�CFT1

� �jkiL � jniR�CFT2; (4.30)

where En � hnj �L0jni is the energy of the CQM.
Consider the zero temperature limit � � 1. Then the

right-moving sector has a single ground state j0i. The
reduced density matrix of CQM1 �1, which is obtained
by tracing over CQM2, now becomes

 �1 �
1����������
d�N�

p Xd�N�
k�1

jkihkjCQM1; (4.31)

where jkiCQM1 � jkiL � j0iR. This leads to the following
entanglement entropy:

 S1 � Tr���1 log�1 � logd�N� � 2�
����������������
Q1Q5N

p
: (4.32)

This clearly agrees with the familiar microscopic counting
of BPS states, and thus is equal to the black hole entropy
[6]. We can also confirm that it agrees with the entangle-
ment entropy calculated holographically for the near hori-
zon geometry AdS2 
 S1 
 S3 
 T4 of 5D (near) extremal
black holes. In this way, we have shown that the
AdS2=CFT1 description correctly reproduces the black
hole entropy of (near) extremal 5D black holes.

We would like to stress that the density matrix (4.31)
shows that the two quantum mechanics are maximally
entangled. In general, it is possible to find a quantum state
with a smaller value of entanglement entropy S1 <
logd�N�, even if the number of degeneracy is d�N�.
However, the entropy of extremal black holes known so
far has always been explained by assuming maximally
entangled states.

E. Subtlety of the extremal limit

In this section we have mostly treated the extremal BTZ
black holes as a limit of nonextremal ones, instead of
starting with the extremal ones themselves. This is because
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the extremal limit sometimes looks subtle. This subtlety of
defining extremal black hole entropy has been noticed for a
long time [45].

First of all, this subtlety is noticed from the different
forms of Penrose diagrams (Fig. 4) [41]. In both extremal
and nonextremal cases, there are two boundaries in the
Penrose diagram. Thus one may think that they should be
interpreted as the two entangled CFTs. However, in the
extremal case one of the two boundaries always includes
the closed timelike curve [Fig. 4(a)], while in the nonex-
tremal case it does not [Fig. 4(b)]. As far as we consider the
nonextremal case, we can find the same boundary structure
in the opposite boundary [as in Fig. 4(b)], and thus we can
apply the interpretation8 of two entangled CFTs
[11,43,44,46–48].

In the extremal case, only one of the two boundaries has
the sensible property with the CFT dual. Therefore, one
may worry that the entangled interpretation is confusing in
the strictly extremal case. On the other hand, most of the
physical quantities of extremal black holes such as two-
point functions are obtained smoothly from those of the
nonextremal ones by taking the extremal limit r� ! r�.
Therefore, if we apply the previous analysis in the nonex-
tremal case to the extremal case, we will get the same
conclusion; the CFT dual to the extremal case is described
by the entangled states. Refer also to the argument in [48]
for an interesting candidate of a geometrical interpretation
of these entangled pairs via AdS3=CFT2.

Even though we cannot completely resolve the men-
tioned conflict with the global geometry, the holographic
consideration leading to (4.31) via AdS3=CFT2 tells us that
the entangled interpretation is still correct even for strictly
extremal black holes. Also notice that, in the near horizon
limit r� r�, we do not have to worry about this problem.

This is because the near horizon geometry of the extremal
case has no closed timelike curve, and two regular bound-
ary CFTs are recovered in this limit. It will be an interest-
ing future problem to explore this point.

V. FINITE SIZE CORRECTIONS OF
ENTANGLEMENT ENTROPY AT FINITE

TEMPERATURE

In this section we compute the entanglement entropy of
a 2D free Dirac fermion at finite temperature when the
spatial direction is compactified (to unit radius). This is the
first analytical result of the entanglement entropy for a
finite size 2D CFT at finite temperature. In the case of
either infinite size or zero temperature, the expression of
entanglement entropy becomes very simple and takes the
form of the central charge c times a universal function as
found in [23,24]. However, in our case, the entanglement
entropy depends more sensitively on the theory we
consider.

In section II, we have seen that the relation (2.4) is very
important for the understanding of BTZ black hole entropy
in AdS3=CFT2. This important relation between thermal
entropy and entanglement entropy can only be explicitly
shown in a finite size system. Indeed, the behavior of the
entanglement entropy agrees with what we expect from the
geometric picture obtained from the AdS/CFT explained in
Sec. II. This supports our claim that the black hole entropy
is interpreted as the entanglement entropy in the dual CFT.

A. Two-point function of a compactified boson

To make calculations simple, we consider the entangle-
ment entropy of a free Dirac fermion  . This fermion is
bosonized into a scalar field ’ with the unit radius R � 1
as  � ei’. We assume the Euclidean 2D theory on a torus
defined by z�z�1 and z�z�� since we are interested in
a finite temperature theory with a finite size. In particular,
when the period � is pure imaginary, � � i�, the theory is
at the temperature ��1 and its spacial size is 1.

The primary operator O�n;w� denotes the one with the
momentum n and the winding w such that the chiral
dimension becomes �n;w�

1
2�
n
R�

wR
2 �

2 and ��n;w �
1
2 �
n
R�

wR
2 �

2.
Its two-point functions are given by (see e.g. Sec. 12 in

[49])
 

hO�n;w��z; �z�O��n;�w��0; 0�i

�

�
2�����3

�1�zj��

�
2�n;w

�
2�����3

�1�zj��

�2 ��n;w




P
m;l
q�m;l �q ��m;le4�i�	n;w	m;lz� �	n;w �	m;l �z�

P
m;l
q�m;l �q

��m;l
; (5.1)

where 	n;w �
1��
2
p �nR�

Rw
2 � and �	n;w �

1��
2
p �nR�

Rw
2 �.

FIG. 4. The Penrose diagrams of the extremal and nonextremal
BTZ black holes. There is a closed timelike curve in the shaded
region.

8It is often claimed that we cannot extend the rotating black
hole spacetime beyond the inner horizon [11,46,47]. Our deri-
vation of black hole entropy from the holographic entanglement
entropy done in Sec. II is still fine even if we take this restriction
into account.
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In particular, we are interested in a Dirac fermion, which
is equivalent to the real boson at the radius R � 1. For
example, the one-loop partition function Zbos�R� is trans-
formed as follows:

 Zbos�R � 1�j����j2 �
X
n;w

q�n�w=2�2=2 �q�n�w=2�2=2

�
j�2�0j��j

2 � j�3�0j��j
2 � j�4�0j��j

2

2
: (5.2)

In this way the free boson partition function is decomposed
into the four sectors (R, NS), (NS, NS), (NS, R), and (R,R),
each corresponding to � � 2, 3, 4, 1 of the theta function
��, as usual.

B. Calculating entanglement entropy

In general, to compute the entanglement entropy, we
first divide the total system into two subsystems, A and
B. In our setup, we define A (or B) to be an interval with
length L (or 1� L) at a specific time. Next, we compute
Tr��A�N , where �A is the reduced density matrix obtained
by taking a trace of the density matrix � over the subsystem
B, i.e. �A � TrB�. This is usually possible by assuming N
is a positive integer. Then we analytically continue with
respect to N. Finally we take the derivative of N and obtain
the entanglement entropy SA of the subsystem A,

 SA � �
@
@N

logTr��A�N
��������N�1

: (5.3)

We can calculate Tr��A�N by employing the following
formula which relates it to a product of two-point functions
of twisted operators [9,50],

 Tr ��A�N �
YN�1=2

k���N�1�=2

h�k�z; �z���k�0; 0�i; (5.4)

with the understanding of z � L.
We identify the twist operator �k with the operator

O�0;�k=N��, which has the fractional winding number w �
2k
N so that the fermion  � ei’ picks up the phase e��2�i=N�

if it goes around the two end points 0 and z. By setting z �
L, we find that the extra phase becomes

 e4�i�	n;w	m;lz� �	n;w �	m;l �z� � e4�i�mk=N�L: (5.5)

Thus the two-point function (5.1) in the � � 2, 3, 4 sector
of the fermion becomes

 h�k�z; �z���k�0; 0�i� �
��������2�����3

�1�Lj��

��������4�k j���
kL
N j��j

2

j���0j��j
2 ;

(5.6)

where �k �
k2

2N2 . Below we assume that � � i� is pure
imaginary except in Sec. V H.

Now the entanglement entropy can be found by applying
(5.3) and (5.4) to (5.6). To make the presentation simpler,
we divide the entropy into two parts,

 SA � S1 � S2; (5.7)

where S1 is the one from the first factor in the right-hand
side of (5.6), while S2 is from the second factor.

It is easy to calculate S1 since the expression depends on
N only via the conformal dimension

P
k�k �

c
24 


�N � 1=N� (in our model the central charge is given by
c � 1). We obtain

 S1 �
c
3

log

�������� �1�Lj��

2�����3

��������: (5.8)

The exact expression suitable for the low temperature
expansion is given by
 

S1 �
c
3

log

��������1

�
sin��L�

Y1
m�1



�1� e2�iLqm��1� e�2�iLqm�

�1� qm�2

��������; (5.9)

where q � e�2��. The expression of high temperature
expansion is obtained from the modular transformation
as follows:

 S1 �
c
3

log

����������e���L2=�� sinh
�
�L
�

�



Y1
m�1

�1� e2�L=�~qm��1� e�2�L=�~qm�

�1� ~qm�2

��������; (5.10)

where ~q � e��2�=��. Notice that this contribution satisfies

 S1�L� � S1�1� L� � S1�1� L�: (5.11)

Second, S2 is given by

 S2 � �
@
@N

X�N�1�=2

k���N�1�=2

log

�����������
kL
N j��

���0j��

��������2
��������N�1

: (5.12)

In order to perform an analytical continuation with respect
to N, we need to complete the summation of k. This can be
done by expanding the logarithm in (5.12) explicitly by
employing the standard formula log�1� x� �P
1
l�1

��1�l�1

l xl, as we will see in the next subsection.

C. High temperature expansion

We first restrict to the special case � � 3, i.e. the NS
sector, for simplicity. We will come back to other spin
structures in Sec. V G.

Let us evaluate S2 in the high temperature expansion. In
order to get the high temperature expansion, we need to
perform the modular transformation �! � 1

� ,
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�3�zj��
�3�0j��

� e�i�z
2=� �

�3�
z
� j �

1
��

�3�0j �
1
��
: (5.13)

Then we obtain

 S2 � �
@
@N

X�N�1�=2

k���N�1�=2

�
�2�

k2L2

�N2

���������N�1
�~S2 �

�
3
�
L2

�
� ~S2; (5.14)

where the part ~S2 is found to be

 

~S 2 � �2
@
@N

X�N�1�=2

k���N�1�=2

X1
m�1

log
�
�1� e2��kL=N��e�2��m�1=2�=���1� e�2��kL=N��e�2��m�1=2�=��

�1� e�2��m�1=2�=��2

���������N�1

� �8
@
@N

X�N�1�=2

k���N�1�=2

X1
m�1

X1
l�1

��1�l�1

l
� sinh2

�
�kLl
N�

�
e�2��m�1=2��l=��jN�1

� �
X1
l�1

��1�l�1

l

�
2�Ll
�

coth
�
�Ll
�

�
� 2

�
1

sinh��l� �
: (5.15)

In this calculation we have employed the following formula:

 

@
@N

X�N�1�=2

k���N�1�=2

sinh2

�
	k
N

���������N�1
�

@
@N

�
�
N
2
�
e�1�N�	=N � e�N�1�	=N

2�1� e2	=N�

���������N�1
� �

1

2
�
	
2

coth	: (5.16)

In summary, the total expression of SA in the high temperature expansion becomes

 

SA �
1

3
log

�
�
�a

sinh
�
�L
�

��
�

1

3

X1
m�1

log
�
�1� e2��L=��e�2��m=����1� e�2��L=��e�2��m=���

�1� e�2��m=���2

�

� 2
X1
l�1

��1�l

l
�

�Ll
� coth��Ll� � � 1

sinh�� l
��

: (5.17)

In this final expression, we make the dependence on the
UV cutoff a explicit. We plotted the function (5.17) in
Fig. 5 by setting a � 1

2� and � � 0:6.
The first factor 1

3 log� ��a sinh��L� � reproduces the known
result in the infinite size limit [24]. This part is successfully

reproduced from the holographic dual computation in a
BTZ black hole via AdS/CFT in [9].

By taking the limit � � 1� L! 0, we find
 

SA�L � 1� �� �
1

3
log��

�
3�
�
X1
l�1

��1�l

l




�
2�l
�

coth
�
�l
�

�
� 2

�
1

sinh��l� �
: (5.18)

Thus we can extract the finite part

 S�1�finite � S�1� �� � S���

�
�
3�
�
X1
l�1

��1�l

l

�
2�l
�

coth
�
�l
�

�
� 2

�
1

sinh��l� �
:

(5.19)

Clearly, the leading term �
3� represents the thermal entropy

in the high temperature limit �! 0.
On the other hand, the full expression of thermal entropy

Sthermal is given by

0.2 0.4 0.6 0.8 1

-2.5

-2

-1.5

-1

-0.5

0.5

1

FIG. 5. The entanglement entropy as a function of L when
� � 0:6. We get rid of the divergence due to the cutoff by setting
a � 1

2� . We observe an approximately linear increase of the
entropy as L becomes large, assuming L is not close to the values
L � 0, 1. This is essentially due to the thermal contribution to
the entanglement entropy.
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Sthermal � �
@F
@T
� �2 @

@�
����1 logZ

�
�
3�
� 4

X1
m�1

log�1� e��2�=���m��1=2���

�
8�
�

X1
m�1

m� 1
2

e�2�=���m��1=2�� � 1
; (5.20)

where the partition function Z is defined by

 Z �
j�3�0j��j2

j����j2
�
j�3�0j � ��1�j2

j�����1�j2

� e�=6�
Y1
m�1

�1� e��2�=���m��1=2���4: (5.21)

Remarkably, we can show that the total expression of
(5.19) indeed agrees9 with the thermal entropy Sthermal for
arbitrary �,

 S�1�finite � Sthermal: (5.22)

This relation is very clear in the holographic picture based
on AdS/CFT, as will be explained in Sec. II B.

D. Low temperature expansion

On the other hand, it is possible to perform the low
temperature expansion with the modular transformation
undone. In the end, we obtain, similarly to (5.15),

 S2 � �2
@
@N

X�N�1�=2

k���N�1�=2

X1
m�1

log
�
�1� e2�i�kL=N�e�2���m�1=2���1� e�2�i�kL=N�e�2���m�1=2��

�1� e�2���m�1=2��2

���������N�1

� 2
X1
l�1

��1�l�1

l
�

1� �lL cot��Ll�
sinh��l��

: (5.23)

In summary, the total expression of entanglement en-
tropy in the low temperature expansion becomes

 

SA �
1

3
log

�
1

�a
sin��L�

�

�
1

3

X1
m�1

log
�
�1� e2�iLe�2��m��1� e�2�iLe�2��m�

�1� e�2��m�2

�

� 2
X1
l�1

��1�l�1

l
�

1��lLcot��Ll�
sinh��l��

: (5.24)

At zero temperature, the formula (5.24) is simply re-
duced to

 SA �
c
3

log
�

1

�a
sin��L�

�
; (5.25)

and this reproduces10 the known result [24]. This part is
successfully reproduced from the holographic dual com-
putation via AdS/CFT in [9].

Still one may worry if there are many poles which come
from the final term in (5.24). However, this turns out to be
an artifact of the order of the summation, as we will see in
the next subsection. The high and low temperature expan-
sion will be proved to be equivalent as they should be. The
high temperature expression is suitable for numerical
computations.

E. Comparison of high and low temperature expansions

Originally, the low and high temperature expressions of
entanglement entropy come from the same two-point func-
tion (via the modular transformation), and thus they are at
least formally equivalent. However, as we have mentioned,
they do not appear to be so at first sight.

In spite of this, we can show that, when they are ex-
panded with respect to the powers of L like

 SH �
X1
n�1

CHn ���L
2n; SL �

X1
n�1

CLn ���L
2n; (5.26)

coefficients match order by order, i.e. CHn ��� � CLn ���.
The point is the order of summation.

Let us present the proof of the equivalence. By applying
the series expansions (Br are Bernoulli numbers),

 1�
x
2

cot
x
2
�
X1
r�1

Br
�2r�!

x2r;

x
2

coth
x
2
� 1 �

X1
r�1

Br��1�r�1

�2r�!
x2r;

(5.27)

to (5.17) and (5.24), the equalities CHn ��� � CLn ��� are
rewritten as follows:
 

�
3�
�

2�2

3

X1
l�1

��1�l � l

�2 sinh�l�
�

2�2

3

X1
l�1

��1�l�1 � l
sinh��l��

;

X1
l�1

��1�l�n�1 � l2n�1

�2n sinh�l�
�
X1
l�1

��1�l�1 � l2n�1

sinh��l��
�n � 2�:

(5.28)

9This proof is elementary.
10Remember that we assume the space coordinate is compacti-

fied on a circle whose length is 1.
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These are equivalent to the relations

 F1�x���F1

�
1

x

�
�

1

2�
; Fn�x�� ��1�nFn

�
1

x

�
�n�2�;

(5.29)

where we defined

 Fn�x� �
X1
l�1

��1�l�1l2n�1 xn

sinh��lx�
: (5.30)

They can be proven by considering the integral represen-
tation

 Fn�x� �
1

2�i

I
C
dz

��xnz2n�1

sinh��xz� sin��z�
; (5.31)

where C represents the path z 2 ��1� i�;1� i� [
�1 � i�;�1� i� (Fig. 6). It is easy to show (5.30) by
summing over the residues of poles z 2 Z.

By deforming C into C0, which surrounds the poles on
the imaginary axis z 2 i

xZ � 0, we can indeed prove
(5.29) directly (only when n � 1, we need to take into
account the pole at z � 0).

In this way we have found that the low and high tem-
perature expansions are equivalent. For the actual compu-
tation the high temperature expansion is more useful.

F. Generalization

Here we would like to generalize the above result to the
case in which the interval A extends not only in the spacial
direction but also in the temporal direction by setting z �
L� iT, where T is the Euclidean time. We also treat � �
	� i� as a general complex number so that it includes the
rotating black holes after the Lorentzian continuation.
Remarkably, the entanglement entropy, like the thermal
entropy, is expressed as the sum of the holomorphic con-
tribution and the antiholomorphic one.

Generalization is straightforward since we only have to
replace i�! � � 	� i� and L! z � L� iT in the
previous results. The two-point function of twist operators
becomes

 h�k�z; �z���k�0; 0�i �
��������2�����3

�1�zj��

��������4�k���
k
N zj�����

k
N zj��

j���0j��j
2 :

(5.32)

In the following calculation, we restrict to � � 3 as above.
We first evaluate S in the high temperature expansion. S1

is

 S1 �
1

6
log

�
�
i�
2�

e���iz
2=�� �1�

z
� j �

1
��

��� 1
��

3

�
� �c:c:�

�
1

6

�
�z2

i�
� log

�
�
i�
�

sin
�
�z
�

��
� �� � ��

�
� �c:c:�;

(5.33)

where � � � represents

 �� � �� �
X1
m�1

log
�
�1� e2�iz=�~qm��1� e�2�iz=�~qm�

�1� ~qm�2

�
;

(5.34)

with ~q � e�2�i=�, and (c.c.) is the complex conjugate of
the first term which comes from the antiholomorphic part.
S2 is calculated as

 S2 � �

�
�
6i
z2

�
�
X1
l�1

��1�l�1

l

i�lz
� coth�i�lz� � � 1

sinh�i�l� �

�
� �c:c:�:

(5.35)

As a result we have

 SA �
c
6

�
log

�
�
�ai

sin
�
�z
�

��

�
X1
m�1

log
�
�1� e2�iz=�~qm��1� e�2�iz=�~qm�

�1� ~qm�

��

�
X1
l�1

��1�l�1

l

i�lz
� coth�i�lz� � � 1

sinh�i�l� �
� �c:c:�;

(5.36)

where we made the cutoff a explicit.
The expression of SA in the low temperature expansion

is also given as
 

SA �
c
6

log
�

1

�a
sin��z�



Y1
m�1

�1� e2�izqm��1� e�2�izqm�

�1� qm�2

�

�
X1
l�1

��1�l

l
1� �lz cot��lz�

sinh�i�l��
� �c:c:�; (5.37)

where q � e2�i�. Here the first and second terms are con-
tributions from the holomorphic part of S1 and S2,
respectively.

FIG. 6. We can compute the expression (5.31) in two ways, the
original contour C shown in the left figure and the deformed
contour C0 shown in the right figure. The existence of the pole
z � 0 should be taken into account only for the n � 1 case.
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G. Other spin structures

It is also useful to find the entanglement entropy for
other spin structures of the Dirac fermions. First consider
the case of � � 2, i.e. the finite temperature theory with the
periodic boundary condition (R sector). To calculate the
entanglement entropy in the high temperature expansion,
we again apply the modular transformation and obtain (the
other parts are the same as the � � 3 case)

 

~S 2 � 2
X1
l�1

1

l

�Ll
� coth�Ll� � 1

sinh�Ll�
: (5.38)

In this case, the thermal entropy defined by (5.20) becomes
 

Sthermal �
�
3�
� 4

X1
m�1

log�1� e��2�=���m��1=2���

�
8�
�

X1
m�1

m� 1
2

e�2�=���m��1=2�� � 1
; (5.39)

and we can check that Sfinite�L � 1� agrees with this.
It is also possible to compute the entanglement entropy

in the � � 4 case. This corresponds to the index calcula-
tion in the NS sector TrNS��1�F and is not related to any
realistic thermal distribution. In this case, similarly we
obtain

 

~S 2 � �
�L
�
� 2 log2� 4�

X1
l�1

���l � L

��e�2�lL=�� � 1�

� 4
X1
l�1

���l

l
�

�Ll
� coth�Ll� � 1

e2�l=� � 1
: (5.40)

In the �! 1 limit, (5.15) and (5.40) vanish, respectively.
This implies the boundary condition in the thermal direc-
tion can be neglected in this limit, as expected. The thermal
entropy is
 

Sthermal � 2 log2�
2�
3�
� 4

X1
m�1

log�1� e��2�m=���

�
8�
�

X1
m�1

m

e2�m=� � 1
; (5.41)

and we can check that Sfinite�L � 1� agrees with this.

H. Temporal entanglement entropy: Beyond the
horizon

For simplicity, here we take � � i�, which corresponds
to the case of nonrotating black holes. It is worthwhile to
take some notice of the case in which z � �t� i �2 in the
above generalization. The imaginary shift t! t� i �2 of
the Lorentzian time takes us from one boundary to the
other boundary [43,44] (see Fig. 7).

When � is sufficiently small, using the high temperature
expansion, we find

 SA ’
c
3

log
�
�
�a

cosh
�
��t
�

��
: (5.42)

This entanglement entropy can be calculated also from the
bulk geodesic point of view, since it is related to the bulk
geodesic distance j�j between the points in which the twist
operators are inserted [9] as in (2.1). The bulk geometry is
the nonrotating BTZ black hole, and its Penrose diagram is
shown in Fig. 7. The metric follows from (2.2) by taking
r� � 0 and � � 2�R2

r�
. The geodesic which corresponds to

the above calculation can be seen in Fig. 7. Here we set
t � 0 at the initial point. The geodesic distance can be
exactly found [44],

 j�j � 2R log
�
�
�a

cosh
�
��t
�

��
: (5.43)

Since the central charge is given by c � 3R
2G�3�N

[51], we can

precisely show the equality Sent � SA.
We see, as above, that the bulk and the boundary calcu-

lations are identical. Notice that the geodesic involved in
the bulk computation now extends beyond the event hori-
zon. Even though we have a definite definition of this
temporal entanglement entropy in the Euclidean CFT, the
physical meaning of this temporal entanglement entropy is
not clear. It may be an analogue of the Polyakov loop in the
context of Wilson loops. Further understandings of this
quantity will deserve a future study.

VI. CONCLUSION AND DISCUSSION

In this paper, we have explored the origin of black hole
entropy from the viewpoint of AdS/CFT correspondence.
We have been particularly interested in the black holes
whose near horizon geometries include AdS2. Extremal or
near extremal black holes in 4D and 5D fall into this class.
We argued that the AdS2=CFT1 correspondence leads to
the equivalence between the black hole entropy and the
von Neumann entropy associated with the quantum entan-
glement between a pair of quantum mechanical systems.

FIG. 7 (color online). The Penrose diagram of the nonrotating
BTZ black hole. Red arrows stretching from one boundary to the
other represent the geodesics between two boundaries, from
which we compute a temporal analogue of entanglement en-
tropy.
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The remarkable fact that the AdS2 space in the global
coordinate has two timelike boundaries plays a crucial
role in this quantum entanglement. This turns out to be
the reason why we get nonzero entropy of extremal black
holes, though its dual AdS2 space is at zero temperature.
This may be comparable to the entanglement interpretation
for AdS black holes in higher dimensions considered in
[11].

In summary, the mechanism of producing nonzero en-
tanglement entropy is as follows. First, the BPS states in
the internal spaces (such as Calabi-Yau spaces, K3 or T4)
produce a large degeneracy of ground states. Then the
AdS2 space, which has two boundaries, maximally entan-
gles them, and in the end we obtain a large entanglement
entropy which agrees with the black hole entropy.

There is a possibility that we have to restrict the physical
spacetime to a certain region (e.g. outside the inner horizon
[11,46,47]) in the global AdS. However, our derivation of
entanglement entropy can still be applied without any
change even in such a case, as long as there are two time-
like boundaries. As we mentioned at the end of Sec. III, this
may lead to a subtle issue in the strictly extremal black
holes. Though we believe this is not a serious problem, the
better understanding of this subtlety, as well as the precise
derivation of the two-point functions (3.5) and (3.6) from
the CQM side, will be important future problems.

In the latter part of this paper, we computed the entan-
glement entropy in the 2D free Dirac fermion theory. We
obtained an analytical expression in the presence of both

the finite size and finite temperature effect. This is the first
analytical result of entanglement entropy in 2D CFT which
takes both effects into account. Importantly, the result
depends not only on the central charge of the CFT but
also on many other details of the theory. This analysis
enables us to show explicitly that the entanglement entropy
is reduced to the thermal entropy when the subsystem A
becomes coincident with the total system. As we pointed
out in Sec. II, this relation offers further evidence for the
holographic computation of entanglement entropy found in
[9], which also plays an important role in our discussions
of AdS2=CFT1. It is also interesting to extend our results to
a 2D free massless scalar field theory and eventually to the
symmetric orbifold theories which have clear holographic
duals.
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