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Bonnor stars are regular static compact configurations in equilibrium, composed of an extremal dust
fluid, i.e., a charged dust fluid where the mass density is equal to the charge density in appropriate units
and up to a sign, joined to a suitable exterior vacuum solution, both within Newtonian gravity and general
relativity. In four dimensions, these configurations obey the Majumdar-Papapetrou system of equations: in
one case, the system is a particular setup of Newtonian gravity coupled to Coulomb electricity and
electrically charged matter or fluid, in the other case, the system is a particular setup of general relativity
coupled to Maxwell electromagnetism and electrically charged matter or fluid, where the corresponding
gravitational potential is a specially simple function of the electric potential field and the fluid, when there
is one, is made of extremal dust. Since the Majumdar-Papapetrou system can be generalized to d
spacetime dimensions, as has been previously done, and higher-dimensional scenarios can be important in
gravitational physics, it is natural to study this type of Bonnor solutions in higher dimensions, d � 4. As a
preparation, we analyze Newton-Coulomb theory with an electrically charged fluid in a Majumdar-
Papapetrou context, in d � n� 1 spacetime dimensions, with n being the number of spatial dimensions.
We show that within the Newtonian theory, in vacuum, the Majumdar-Papapetrou relation for the
gravitational potential in terms of the electric potential, and its related Weyl relation, are equivalent, in
contrast to general relativity where they are distinct. We study a class of spherically symmetric Bonnor
stars within this theory. Under sufficient compactification they form point mass charged Newtonian
singularities. We then study the analogue-type systems in the Einstein-Maxwell theory with an electrically
charged fluid. Drawing on our previous work on the d-dimensional Majumdar-Papapetrou system, we
restate some properties of this system. We obtain spherically symmetric Bonnor star solutions in d �
n� 1 spacetime dimensions. We show that these stars, under sufficient compactification, form
d-dimensional quasi-black holes. We also show that in the appropriate low gravity limit theses solutions
turn into the solutions of Newtonian gravity, i.e., they are quasi-Newtonian Bonnor stars. In this
connection, we note that the star solutions in Majumdar-Papapetrou Newtonian gravity, when contrasted
to those solutions in Majumdar-Papapetrou general relativity, display clearly the branching off of the high
density objects that may arise in the strong field regime of each theory, mild singularities in one theory,
quasi-black holes in the other. Another important feature worth mentioning is that, whereas there are no
solutions for Newtonian or relativistic stars supported by degenerate pressure in higher dimensions,
higher-dimensional Bonnor stars, supported by electric repulsion, do indeed have solutions within
Newtonian gravity and general relativity. So the existence of stars in higher dimensions depends on the
number of dimensions itself, and on the underlying field content of those stars.
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I. INTRODUCTION

A. Definition

Extremal charged dust, or simply extremal dust, is
understood as charged dust fluid, or matter, with the mass
density being equal to the charge density, in appropriate
units, which implies that for each such a dust particle,
eventually composing a system, the gravitational attraction
is precisely balanced by the electric repulsion, both within
Newtonian gravity coupled to Coulomb electricity and an
electrically charged fluid or matter, i.e., the Newton-
Coulomb with charged fluid system, and within general

relativity coupled to Maxwell electromagnetism and an
electrically charged fluid, i.e., the Einstein-Maxwell with
charged fluid system. Bonnor stars are then defined as
regular static equilibrium configurations, in Newtonian
and general relativity contexts, composed of extremal
dust, with a finite boundary appropriately attached to an
asymptotically flat regular extremal charged vacuum, and
where the configuration of the matter dust can have any
shape, a spherical symmetric shape being of special inter-
est, due to the added symmetry and due to the fact that it
can be joined to an asymptotically flat regular extremal
outer Reissner-Nordström spacetime in the general relativ-
istic case, with mass M equal to charge Q in appropriate
units. Bonnor stars appear in d � n� 1 spacetime dimen-
sions, where n is the number of the spatial dimensions. The
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initial studies were performed for d � 4. Bonnor stars have
also been called Majumdar-Papapetrou stars, but here we
reserve the name Majumdar-Papapetrou for the type of
matter, and name the whole system, namely, Majumdar-
Papapetrou matter plus vacuum plus junction, as a Bonnor
star.

B. Four-dimensional analyses

1. Context

Such stars were studied mainly within general relativity,
although with some incursions onto Newtonian gravity, by
Bonnor [1–12] and in several other works; see, e.g., [13,14]
for Bonnor stars properly said and [15] for a variant where
there is no need for a junction. One striking property of
these solutions found in [13–15] is that when they ap-
proach their gravitational radius in a static sequence of
configurations, these stars do not form black holes, but
rather quasi-black holes, where a quasi-black hole is an
object indistinguishable to the exterior from a black hole
but with different intrinsic properties. In [16,17] the prop-
erties of quasi-black holes formed from Bonnor stars were
studied in detail. See also [18] for a further study on the
properties of Bonnor stars.

2. Vacuum Majumdar-Papapetrou solutions

Within Newtonian gravity coupled to Coulomb electric-
ity, i.e., the Newton-Coulomb system, electrically charged
solutions in vacuum represent charged point masses.
Within general relativity, electrically charged solutions,
in vacuum, have to be analyzed through the Einstein-
Maxwell system of equations, where one couples
Einstein gravity to Maxwell electromagnetism. These so-
lutions were found just after general relativity was formu-
lated. On one hand, Reissner [19], then Nordström [20],
then Jeffery [21], hit on the static vacuum charged spheri-
cally symmetric solution, the Reissner-Nordström solu-
tion, with its two parameters, the mass M and the charge
Q. We now know that for

����
G
p

M< �Q (we put the speed of
light c � 1 throughout), whereG is Newton’s gravitational
constant in four spacetime dimensions �G4 � G� and � �
1 if the charge is positive and � � �1 if the charge is
negative, one has a charged naked singularity, for

����
G
p

M>
�Q one has a Reissner-Nordström black hole, and

����
G
p

M �
�Q one has an extremal black hole (see [22] for an early
discussion and [23] for a full discussion of this type of
solutions).

On the other hand, with the purpose of seeking vacuum
static solutions electrically charged, a different route was
originated from Weyl [24], the route that will take us to the
Bonnor stars [1–18]. Wanting to go a step further from
spherical symmetry he sought axial symmetry. Define the
metric component g00 as g00 � W2, where, depending on
the situation, it can be more convenient to define U �
W�1, i.e., g00 � U�2. Then, Weyl asked himself, within

Einstein-Maxwell theory, what would happen if W2, in a
static axisymmetric vacuum electric system, is to have a
functional dependence on the electric potential field ’, i.e.,
the Weyl ansatz g00 � g00�’� or equivalently W � W�’�.
He found first what is now called the Weyl relation, i.e.,
W2 � �a0 � �

����
G
p

’�2 � b0, where a0 and b0 are constants
of integration and G is Newton’s gravitational constant,
and second that the spatial components of the metric had to
obey other specific differential equations. Majumdar [25]
made several improvements on Weyl’s work. He showed
that the Weyl relation, if it existed, was independent of the
symmetry, axial or otherwise. But further, he showed, still
in vacuum, that if the relation was to be a perfect square, so
that W � a0 � �

����
G
p

’, then the spatial part of the metric
could be put in a simple form, as 1=W2, i.e., U2, times the
flat spatial metric, and the Einstein-Maxwell system of
equations would reduce to one single equation for W,
i.e., for U, a Laplace equation in flat space. In this perfect
square case, one can show that specializing to spherical
symmetry, the mass M of the solution is equal to its charge
Q,

����
G
p

M � �Q. This makes contact with the Reissner-
Nordström family of solutions through the extremal solu-
tion,

����
G
p

M � �Q, although not through the other ones,
since the Reissner-Nordström family generically does not
admit a functional relationship between the metric and the
electric potentials. These vacuum

����
G
p

M � �Q solutions
were further commented by Papapetrou [26], who also
understood that since the gravitational attraction is equal
to the electric repulsion for such objects one could have
many discrete such objects scattered at will in space, and it
would also give a vacuum static configuration solution,
with no symmetry whatsoever. The perfect square relation
is usually called the Majumdar-Papapetrou relation, as we
do here, although sometimes it is called, perhaps more
appropriately, the Weyl-Majumdar relation. The complete
understanding of a single extremal Reissner-Nordström
solution, also a Majumdar-Papapetrou solution, was
achieved by Carter [27], through a Carter-Penrose diagram,
and the complete understanding of the vacuum Majumdar-
Papapetrou solutions, with many extremal black holes
scattered around, was performed by Hartle and Hawking
[28], who have done the maximal analytical continuation
in the molds of Carter [27].

3. Beyond vacuum: Dust Majumdar-Papapetrou
solutions

Things become more interesting if one goes beyond
vacuum and puts matter into the Newton-Coulomb system
of equations and into the Einstein-Maxwell system of
equations. Majumdar [25] and Papapetrou [26] understood
this, and within general relativity showed that, for some
special restrictions on the metric inspired from the vacuum
case, such as the relation W � a0 � �

����
G
p

’ (which in this
case can be considered an ansatz), one could find that the
system of equations yields a single equation that moreover
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reduces to a Poisson equation, and in which the mass
density �m times

����
G
p

is equal to the charge density �e,
up to a sign,

����
G
p

�m � ��e, with again � � �1. That is, the
matter is made of an extremal dust fluid. This is the
Majumdar-Papapetrou condition. Note that we call the
relation between the potentials the Majumdar-Papapetrou
relation, whereas we call the relation between the densities
the Majumdar-Papapetrou condition. As seen in [25,26], it
is remarkable that a simple obvious fact in Newton-
Coulomb theory with an electrically charged fluid, that if
the mass density and charge density are equal [in appro-
priate (geometric) units where G � 1] then there is exact
balancing of the gravitational and electric forces through-
out the matter and so there is a static solution, also holds in
Einstein-Maxwell theory with an electrically charged fluid,
with no need for further stresses, such as pressure or
tension. The basic feature of Majumdar-Papapetrou sys-
tems is that they describe static spacetimes filled either
with extremal charged vacuum or extremal charged dust
fluids, such that the metric and electromagnetic fields may
be characterized by two scalar functions, namely, the red-
shift metric function W, i.e., U�1, which plays the role of
the gravitational potential, and the electric potential ’,
which in turn obey the Majumdar-Papapetrou relation,
W � a0 � �

����
G
p

’. Further interesting developments were
achieved by Das [29], and De and Raychaudhuri [30], who
considered charged dust distributions in equilibrium, the
way envisioned by Majumdar and Papapetrou, and showed
some other conditions related to the functional form of the
metric in terms of the electric potential and the equality
between mass and charge densities. Das [29] revealed that
the equality between the densities implies the functional
form on the potentials, and De and Raychaudhuri [30]
proved that given the functional form above, and provided
there are no singularities in the distribution, the equality of
mass and charge densities follows directly from the field
equations. There are other interesting properties of
Majumdar-Papapetrou systems in the context of conformal
static charged solutions [31].

4. Bonnor stars: Junction of dust with vacuum
Majumdar-Papapetrou solutions

When one joins smoothly, within Newtonian gravity as
well as within general relativity, Majumdar-Papapetrou
interior matter solutions to Majumdar-Papapetrou exterior
vacuum solutions, i.e., the two types of solutions men-
tioned in the previous paragraphs, one obtains Bonnor stars
[1–12] and their developments [13–18]. Bonnor stars could
instead be called Majumdar-Papapetrou stars as was done
in [14], but it is more proper to characterize the matter part
as a Majumdar-Papapetrou system, and this combined with
placing a boundary and the corresponding junction to a
vacuum, bringing together a whole lot of new properties, as
a Bonnor star. Throughout his works, Bonnor gradually
improved the understanding of the properties of these stars.

In the first two papers [1,2] Bonnor worked out aspects
of electric Majumdar-Papapetrou solutions in an axial
symmetric vacuum and extended these results through
dualities to magnetic solutions. In [3] a pre-Bonnor star
is developed, and it is noted that for

����
G
p

�m � ��e, in a
Majumdar-Papapetrou system, the gravitational mass of
the system is equal to the matter mass because the negative
gravitational self-energy of the distribution is balanced by
the corresponding positive electrical self-energy, also
pointing out that

����
G
p

M � �Q models can have various
interests and applications. In [4,5] Bonnor understood for
the first time that although delicate, the balance can exist,
an atom stripped off of an electron immersed in about 1018

atoms is enough, and that the charge density can play an
important part in the equilibrium of large bodies, further
suggesting that it may halt gravitational collapse, at a time
where large body studies were in vogue due to the appear-
ance of quasars. It is also mentioned that bodies of arbitrary
shape comprised of such extremal dust can exist, construct-
ing explicitly a spherically symmetric solution, the first
Bonnor star. The way it is constructed delineates a standard
way of finding such types of solutions. Assuming a given
form for the gravitational potential U one can find the
density distribution, and one hopes that the assumption
yields a physical distribution of charged dust matter. It is
not a method for solving the differential equation of the
Majumdar-Papapetrou problem, it is an art of correct
guessing. In [6,7], both works in collaboration with
Wickramasuriya, interesting physical properties of some
Bonnor stars are discussed. In particular in [6] the name
electrically counterpoised dust is coined for the first time
for

����
G
p

�m � ��e dust, i.e., for what we call and will
always call, less contrived perhaps, extremal charged
dust, with the same acronym. Spherically symmetric exact
solutions are studied with the virtue that even when the
solutions are about to form a horizon the energy density �m

is finite. Prolate solutions are also studied showing that in
the disk solution limit the energy density �m is infinite,
naturally. Also, in particular, in [7] several important at-
tributes of the solutions are perceived. First, it is noticed
that, although no doubt matter thus delicately balanced is
rare, it is physically possible and easily understood.
Second, it is shown that one can construct spheres of matter
where infinite redshifts of light emanating from the surface
are attainable, whereas in an interior Schwarzschild solu-
tion, say, only finite redshifts are possible. Third, it dis-
plays exact solutions for spheroidal configurations, and
mentions that near the spheroidal horizon, nonspherically
symmetric features are filtered out. Fourth, it is argued
convincingly that these solutions are stable. In [8] the study
is interesting with strange results. First, there is an incur-
sion into solutions of the Newton-Coulomb with an electri-
cally charged fluid theory, where it is shown that for a given
Newtonian potential, call it V, there are equilibrium
non-Bonnor star solutions, not obeying the Majumdar-
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Papapetrou matter condition, although these are singular. It
also shows the analogue of De and Raychaudhuri’s theo-
rem [30], i.e., that Newtonian systems which do not obey
the Majumdar-Papapetrou condition, of the equality of
mass and charge densities, and which have equipotential
surfaces, are singular. Second, in turning into general
relativity, with axial symmetry, spacetimes obeying the
Majumdar-Papapetrou condition are found, one of them
being of physical interest with positive energy density �m,
and the others of less interest. In [9,10] it is understood,
perhaps for the first time, that when the radius of the
configuration r0 approaches the horizon radius, i.e., r0 �
M, where r is the Schwarzschildean radial coordinate and
M the mass of the configuration, the spacetime is somehow
singular, being thus an idea precursor of the concept of
what a quasi-black hole is. In these works the hoop con-
jecture is discussed and some lower bounds in connection
to it are given. In [11], spheroidal bodies made of extremal
charged dust are studied in connection still with the hoop
conjecture and also with the isoperimetric conjecture,
which says that under certain general conditions M �
�A=16��1=2, where A is the area of the apparent horizon
andM the mass of the configuration. In [12] it is reinforced
that spherically symmetric configurations made of physi-
cally reasonable matter, though admittedly not widely
available, i.e., made of extremal charged dust, yield solu-
tions that can come arbitrarily close to the horizon of an
extremal black hole, and a general class of such solutions is
constructed by correct guessing.

Bonnor stars were studied further by other authors. In
[13] a thick shell solution of Bonnor type was found. In
[14] it was noted that Bonnor star solutions and gravita-
tional magnetic monopole solutions have strikingly similar
properties, and a comparison of both solutions was per-
formed and discussed thoroughly. Previously, Lemos and
Weinberg [15], seeing in Bonnor’s wake that these stars,
which are made of normal matter obeying the several
important energy conditions, can probe deeply the space-
time structure, proposed new solutions, extended Bonnor
star systems with a more sophisticated density distribution
asymptotic to an extreme Reissner-Nordström solution, not
needing any junction. Similar properties were found for
Bonnor stars properly said as well as for extended Bonnor
stars. Most notably, is the fact that at the threshold of the
formation of an event horizon the system displays a very
peculiar trait, instead of an extremal black hole one has a
quasi-black hole, with the formation of a quasihorizon
instead of the usual event horizon. Although to external
observers the system looks like an extremal black hole, its
internal properties are very different from what one could
expect in the case of a standard black hole. These proper-
ties, along similar ones of gravitational magnetic mono-
poles and glued vacuum solutions with shells, have been
analyzed in [16,17]. In [18] other attributes of these sys-
tems were explored.

5. Further connections

One can associate these Bonnor stars to several related
topics. (i) Both astrophysically and physically, Bonnor
stars are of interest. On one hand, they can be realized if
a gravitating sphere, of neutral hydrogen which has lost a
fraction 10�18 of its electrons, forms. On the other hand,
they are supersymmetric solutions of N � 2 supergravity
[32], so are of interest in an elementary particle context.
(ii) A matter always of maximal interest is the stability of
the systems one is considering, in this case, the Bonnor
stars. Interestingly enough it was found, through different
methods, that these stars are neutrally stable. First, Omote
and Sato [33] found this stability criterion using both an
energy method and a small adiabatic radial oscillation
method, results which were later confirmed in [34,35].
(iii) When discussing static equilibrium configurations it
is always important to discuss the Buchdahl limits, where,
for instance for a perfect fluid sphere, the star cannot reach
beyond r0 < 9=8rSchw, where r0 is the star radius, rSchw is
the Schwarzschild radius, rSchw � 2GM [36], and r is the
Schwarzschildean radial coordinate. On the contrary, for
Bonnor stars, stars made of extremal charged matter, the
limits are precisely the horizon radius as was first noted by
Bonnor [1–12], and then in subsequent works [13–17]; see
also [37–41] for interesting discussions on the Buchdahl
limits for charged stars. (iv) The hoop conjecture is rele-
vant for these stars as was first noticed by Bonnor [9,10]
(see also [11]). The conjecture states that a black hole
forms when matter of mass M is compacted within a given
definite hoop, in [42] taken to be 	4�GM. Later, it was
shown that the hoop should be reduced for extremal
charged matter to 	2�GM [9,10]. However, it seems
that systems like Bonnor stars violate it, since no black
hole forms ever, only a quasi-black hole [16,17]. (v) A
pertinent question, specially related to stars, is whether
they can form from gravitational collapse or not. The issue
of the collapse of extremal charged dust solutions has not
been studied in detail; see, however, the interesting work of
De [43]. (vi) Concerning the generalization of Bonnor stars
to include pressure terms, and thus go beyond dust matter,
there are some stimulating developments. For instance,
still within the Majumdar-Papapetrou ansatz for the poten-
tial W � a0 � �

����
G
p

’, systems with pressure were studied
by Ida [44], where one finds, with an additional ansatz for
the pressure, a Helmholtz-type equation which can be
solved; in the case the pressure is zero see also [45].
These are thus extensions of Bonnor stars, stars that in-
clude charged matter, nonextremal, and pressure.
Extensions to solutions with potentials different from the
Majumdar-Papapetrou potential, and even different from
Weyl’s potential, were done in [46,47]. These solutions
include pressure and have interesting structure. Charged
stars with pressure were studied numerically in [48], a
paper that has attracted some attention, where the limiting
configuration is found to have mass equal to charge, in
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appropriate units, being thus a Bonnor star. In [49] a set of
static charged solutions with pressure were studied and it
was proposed that their gravitational collapse would lead to
the formation of a charged Reissner-Nordström black hole.
(vii) There are many other solutions of charged matter in
various situations which have been discovered throughout
the years. Many of them are interesting and would deserve
a review, but there are too many to be quoted here; see [50]
for a very partial list. (viii) Charged gravitating solutions
have also been used to study Abraham-type models for the
electron, with and without Poincaré stresses; see, e.g., [51–
53] and also [3,17]. (ix) A related issue to Bonnor star
solutions and quasi-black holes is the set of black holes
devised by Bardeen [54], in which the interior to the
horizon is nonsingular. These solutions are magnetically
charged, instead of electrically charged, and have been
further explored in [55]. The connection with the quasi-
black holes is that there is a theorem by Borde [56] which
says that if there is no singularity inside the event horizon
then the regular solutions have different inside and outside
topologies. Now, it is not possible to put extremal charged
dust, with positive rest mass, inside an extremal black
hole, à la Bardeen, a result first found in d-dimensional
studies (see below). So physical (positive rest mass)
Bonnor stars do not provide Bardeen-like solutions. On
the other hand quasi-black holes are not true black holes,
but have a weird topology and properties [16,17] approach-
ing considerably the topology change of Borde. For further
connections of Bonnor stars and quasi-black holes with
other issues, such as no hair theorems, naked black holes,
objects that mimic black holes, and the entropy issue, see
[16,17].

C. Higher-dimensional analyses

1. Context

The possibility of the existence of extra dimensions
arises in several theoretical schemes. In what is called a
Kaluza-Klein unification model, the unification idea has
emerged first as a way of unifying the gravitational and
electromagnetic fields in five spacetime dimensions, and
later the gravitational and Yang-Mills fields in seven space-
time dimensions. Within this idea the gravitational field in
higher dimensions gives rise to the gravitational field itself
and the other possible fields in four dimensions. Later, the
Kaluza-Klein process was enforced in theories which start
from the outset in higher dimensions, such as supergravity
or string-M theory, which can have up to 11 dimensions. In
the course of reducing the dimensions to four, a profusion
of new fields materialize; see [57] for the original papers.
These schemes require that the extra dimensions are com-
pactified in Planck size manifolds, and so due to the lack of
a properly accepted theory at these scales it is very hard to
do physics on the extra dimensions. There has now ap-
peared an idea that makes the higher dimensions large,

when compared to the Planck scale, which means, if cor-
rect, it can have measurable consequences on current or
near future experiments. By postulating that the gravita-
tional field propagates also in at least extra three space
dimensions, while electromagnetism and the standard
model fields propagate only in our universe, the brane, it
is possible to reduce the Planck scale to the electroweak
scale and make the extra dimensions large, of the order of
hundredths of a centimeter or a little less. The hierarchy
problem, of understanding the huge differences in the
gravity and electroweak scales, is now pushed into the
acceptance of the large extra dimensions (see [58–60];
see also [61] for possible developments).

Now, since within this arrangement gravity is an elec-
troweak scale phenomenon, so are black holes. Thus, for
instance, by splashing electrically charged particles to-
gether black holes or other gravitational objects can be
created in higher dimensions with the charge remaining in
the brane. In scenarios with extra dimensions it is thus
important to study charged solutions in connection to the
formation of these tiny black holes because the charge and
the solutions suggest that the charge may halt gravitational
collapse. Solutions for charged objects in such a frame are
certainly not spherically symmetric, thus not Reissner-
Nordström, and at the moment have not been found.
Nonetheless, it is certainly of interest to consider spheri-
cally symmetric electrically charged solutions in higher
dimensions because, first, such a study can give an idea of
how the existence of the charge influences the solution, and
second, other charged fields, analogous in many respects to
the electromagnetic field, may propagate in the higher
dimensions, making Maxwell electrically charged solu-
tions prototype solutions.

In addition, related to studies on the role played by the
dimensionality of space on the laws of physics and its
connection to the anthropic principle, it has been shown
that there are no Newtonian solutions for stars supported by
degenerate pressure in higher dimensions; i.e., a higher-
dimensional self-gravitating Fermi gas either collapses
into a black hole or evaporates. Indeed, interesting papers
discussing degenerate stars, like white dwarfs and neutron
stars, in higher dimensions have appeared [62,63]. In [62] a
complete heuristic study, following the original work of
Landau (see, e.g., [64]), was performed. Then in [63], the
full study, following the original works of Chandrasekhar
(see, e.g., [65]), was completed. The main conclusion is
that there are no Newtonian solutions for degenerate stars
in higher dimensions, thus no general relativistic solutions
either, because the Fermi pressure energy cannot balance
the gravitational energy. Of course this may not follow for
other stars. Stars supported by classical gas pressure may
perhaps exist in higher dimensions; no conclusive study
has been presented so far. Thus, it is of interest to show
whether stars, supported by electric repulsion, such as
Bonnor stars, do have solutions within Newtonian gravity
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and general relativity. In case there are solutions, one
shows by example that the existence of stars in higher
dimensions depends both on the number of dimensions
itself and on the underlying field content of the stars
themselves.

It is thus important, for the reasons just raised, to study
Bonnor stars in higher dimensions, prior to compactifica-
tion of any sort.

2. Vacuum Majumdar-Papapetrou solutions

Electrically charged solutions in vacuum in d dimen-
sions within Newton-Coulomb theory are a direct general-
ization from four dimensions. Within Einstein-Maxwell
theory the d-dimensional solutions were found by
Tangherlini [66], with a prescient discussion on the physi-
cal laws and their relationship to the three dimensionality
of space. These solutions generalize the four-dimensional
Reissner-Nordström solutions, and they also have the mass
M and the chargeQ, as the higher-dimensional parameters,
such that for

������
Gd
p

M< �Q one has a charged naked singu-
larity, for

������
Gd
p

M> �Q one has a Reissner-Nordström
black hole, and for

������
Gd
p

M � �Q one has an extremal black
hole, where � � �1 depending on the sign of the charge.
Here Gd is the d-dimensional Newton’s gravitational con-
stant, where in four spacetime dimensions we put G4 � G
(see Appendix A for more on this). If one takes Weyl and
Majumdar’s route into higher-dimensional Einstein-
Maxwell theory, see now [67], and seeks the initial ansatz
that the metric potential W, or its inverse U � W�1, de-
pends on the electric potential ’, i.e., W�’� with g00 �
W2, one finds the relation W2 � �a0 � �

������
Gd
p

’�2 � b0,
also independent of the symmetry. In the perfect square
Majumdar-Papapetrou case, i.e., W � a0 � �

������
Gd
p

’, one
can also show that specializing to spherical symmetry, the
mass M of the solution is equal in appropriate units to its
charge Q,

������
Gd
p

M � �Q. This makes contact with the
Tangherlini black holes through the extremal solution������
Gd
p

M � �Q, although not through the other ones, since
the Tangherlini family generically does not admit a func-
tional relationship between the metric and the electric
potentials. The complete understanding of a single ex-
tremal Reissner-Nordström solution can also be achieved
through Carter-Penrose diagrams, and the complete under-
standing of the vacuum Majumdar-Papapetrou solutions,
with many extremal black holes scattered around in d
dimensions was performed in [68].

Moreover, it is interesting to note that if instead of
working in Einstein-Maxwell theory one works in string-
M theory or in supergravity theory in 11 dimensions, there
are Majumdar-Papapetrou–type solutions, in the sense that
the attraction due to the gravitational field is counterbal-
anced by the repulsion of the charged field of the theory,
see, e.g., [69], as well as [70], for reviews on this topic
(see also [71] for a review on black hole and other solutions
of higher-dimensional vacuum general relativity and

higher-dimensional supergravity theories). In 11 dimen-
sions in string-M theory, there are two bosonic fields, the
metric and the A3 form field which is a variant of the
electromagnetic field with a corresponding charge, and
one fermionic field. Thus the bosonic part is as simple
as Einstein-Maxwell. One finds that for the solutions to
be purely bosonic one has to have that the mass of the
solution has to be equal to the A3 charge, in appropriate
units. Note that this is the analogue of the extremality
bound for Reissner-Nordström black holes. Solutions
with mass equal to charge are called Bogomolnyi-Prasad-
Sommerfield (BPS) spacetimes. The solutions are not
pointlike generically. They are branelike, and are called
p-branes, or black p-branes, where a zero-brane is a
zero dimensional object like a black hole, a one-brane is
a string like a black string, a two-brane is a membrane, and
so on. Indeed, in string-M theory, where supergravity in 11
dimensions is a low energy theory, there are the M2-brane
(a membrane, i.e., a two-brane electrically charged
under A3), the M5-brane (a five-brane magnetically
charged under A3), the wave solution or Aichelburg-Sexl
metric, and the Kaluza-Klein monopole. All of these are
BPS, the last two having momentum which is a form of
charge. These solutions are best found and studied in
isotropic, also called harmonic, coordinates, as is the
case of Majumdar-Papapetrou solutions in general relativ-
ity. One can then have, for instance, many M2-branes
scattered around, as one can have many black holes in
the Majumdar-Papapetrou case, since the charged field
force still balances the gravitational force. One can, in
addition, combine the solutions with different charge
type, for instance a M2-brane with a M5-brane, with no
analogue in Majumdar-Papapetrou since here there is
only one charge. Through careful dimensional reduction,
Kaluza-Klein or otherwise, these solutions are also solu-
tions of the reduced theories. Usually the branes in 11
dimensions are nonsingular and considered as solitonic
objects. But when one reduces to ten dimensions, singu-
larities in the solutions appear, in which case it is better
to consider the branes as coupled to extremal dust, in the
place of the singularities (see, e.g., [69,70]), making thus
the consideration of extremal dust solutions in higher
dimensions a subject of interest. It is also worth comment-
ing that in string-M theory in 11 dimensions one can
also perform some brane engineering, by adding together
solutions of the same type of charge. It is common practice
to stack an array of M2 electrically charged branes, for
instance, and then take the continuum limit, or smear,
the array in the correct direction, yielding a new brane
with a new dimension; see, e.g., [69,70]. Of course one can
also do the same type of manipulation in Majumdar-
Papapetrou general relativity. Draw an array of equally
sparse extremal black holes on a line, smear them together
correctly, and obtain a one dimensional extremal black
string obeying the d-dimensional Majumdar-Papapetrou
equations.
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3. Beyond vacuum: Dust Majumdar-Papapetrou
solutions

In d dimensions, as in four, things become more inter-
esting if one goes beyond vacuum and puts an electrically
charged fluid or matter into the Newtonian gravity or
general relativistic systems of equations. Leaning on the
general relativistic analysis of Majumdar [25], Lemos and
Zanchin [67] showed, for the special relation, or ansatz in
this context, on the metric inspired from the vacuum case,
i.e., W � a0 � �

������
Gd
p

’, that the whole system reduces to a
single equation, a Poisson type equation, in which the mass
density �m is equal to the charge density �e in appropriate
units,

������
Gd
p

�m � ��e. Thus, a basic feature of such a
system is that, although being a system containing charged
matter, it is described by the metric functionW, the redshift
function. The electric potential ’ can then be found im-
plicitly through the Majumdar-Papapetrou relation. It is
also possible to generalize to d dimensions the theorem,
proved in four dimensions in general relativity in [30], that,
provided the pressure is zero and there are no singularities
in the distribution, the Majumdar-Papapetrou ansatz W �
a0 � �

������
Gd
p

’ and condition
������
Gd
p

�m � ��e follow [72].
One can then show that the d-dimensional Newtonian limit
follows, with the four-dimensional situation studied in [8]
being a particular case. Also theorems with nonzero pres-
sure [47] can be render into d dimensions [72], namely, that
for perfect fluid solutions satisfying the Majumdar-
Papapetrou condition the pressure is related to redshift
function, as in the four-dimensional case [47].

4. Bonnor stars: Junction of dust with vacuum
Majumdar-Papapetrou solutions

In [67] it was proved that if the pressure is functionally
related to the redshift function, which in turn obeys the
Majumdar-Papapetrou relation for the potentials, then to
have a surface with zero pressure, i.e., a star, one has to
have the pressure equal to zero everywhere. This in turn
means the star is a Bonnor star, with a d-dimensional
Majumdar-Papapetrou interior and a d-dimensional ex-
tremal Reissner-Nordström exterior. This result is valid
within both Newtonian gravity and general relativity. The
aim of this paper is to discuss Bonnor star solutions in the
spherically symmetric case. We show that spherically sym-
metric Bonnor stars in d dimensions have a number of
interesting properties. In Newtonian theory their mass and
radius may be arbitrary and the object with the highest
compression is a point electric mass, i.e., a Newtonian
singularity. In general relativity the stars can yield very
large redshifts and their exteriors can be made arbitrarily
near to the exterior of an extremal charged black hole.
Even in these extremal situations, many of their character-
istics remain finite and nontrivial. These extremal kinds of
d-dimensional systems are the quasi-black holes, possess-
ing quasihorizons, already mentioned.

5. Further connections

As in four dimensions, in d dimensions one can try to
associate Bonnor stars to several related topics. (i) Bonnor
stars, or something related, in higher dimensions are of
interest in situations prior to compactification. Since astro-
physically the world is already compactified to four space-
time dimensions, the main interest in these solutions is for
high energy physics, for instance in a large extra dimension
scenario, where charged configurations in higher dimen-
sions can be of interest. It would be of interest to know
whether d-dimensional Bonnor stars, for generic d, are
supersymmetric solutions when embedded in some super-
gravity theory. (ii) Of course, the study of the stability of
these higher-dimensional stars is important, although we
do not do it here. (iii) Buchdahl limits in higher dimensions
have not been found for either uncharged or for charged
stars. We are preparing such a study. (iv) As far as we
know, there is no discussion of the hoop conjecture for
objects in d dimensions. (v) In d dimensions it is also
important to understand if the configurations under study
can form from gravitational collapse. Collapsing and static
charged shells in d dimensions within Einstein-Maxwell
theory with an electrically charged fluid have been ana-
lyzed in [73]. Static shells, with vanishing pressure, in this
context are Majumdar-Papapetrou solutions. Collapsing
charged shells in Lovelock theory have been studied in
[74]. (vi) One can also use the Majumdar-Papapetrou
relation for the potential W � a0 � �

������
Gd
p

’, and study
systems with pressure in much the same way as Ida [44].
We will not discuss this type of solutions in d dimensions.
(vii) There are a few other, non-Majumdar-Papapetrou–
type, solutions of charged matter, see, e.g., the interesting
ones discussed in [75,76], where charged spheres with
specific distributions of matter, charge, and pressure were
found. (viii) Electron models in the molds of Abraham and
Poincaré have not been studied in d dimensions. (ix) It
would be interesting to study Bardeen models and Borde’s
theorem in d dimensions. An interesting result first derived
in [73] is that for a shell in d dimensions with positive
proper mass there is no static solution inside the event
horizon, the result being valid in four dimensions as men-
tioned above, as well as in d > 4. This in some sense
connects with Borde’s theorem [56].

D. Layout

We start by analyzing, in Sec. II, the Newtonian theory
for charged fluids in higher dimensions, looking for static
solutions. We verify in Sec. II A that if the condition������
Gd
p

�m � ��e, with � � �1, is to be satisfied, then there
are equilibrium Bonnor star solutions in d � �n�
1�-dimensional spherically symmetric spacetimes, where
n is the dimension of the space; see Sec. II B. Bonnor stars
of Majumdar-Papapetrou general relativity are studied in
Sec. III. In Sec. III A we write the basic equations and
particularize them for spherical symmetry. Part of the
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section is devoted to review the main properties of
d-dimensional spherically symmetric solutions. A solution
of a d-dimensional Bonnor star is also analyzed in
Sec. III B in some detail. Its generic properties are shown,
as well as its quasi-black hole and its quasi-Newtonian
limits. In Sec. IV we present final comments and
conclusions.

II. NEWTON-COULOMB THEORY WITH AN
ELECTRICALLY CHARGED FLUID IN

d-DIMENSIONAL SPACETIMES (d � n� 1, n
BEING THE NUMBER OF SPACE DIMENSIONS):

WEYL AND MAJUMDAR-PAPAPETROU
ANALYSIS AND BONNOR STAR SOLUTIONS

In d-dimensional Newtonian gravity coupled to both
Coulomb electricity and a charged fluid matter, one can
find solutions representing charged stars, where here d is
the number of spacetime dimensions, with d � n� 1, n
being the number of space dimensions. The dynamics of
such a kind of system is governed by the Euler equation,
where the gravitational and electric force fields are deter-
mined conjointly by Newtonian gravity and Coulomb elec-
tricity. The fluid can be in static equilibrium even with zero
pressure and stresses, because the electric repulsion coun-
terbalances the gravitational pull if the charge density of
the fluid, �e, equals its mass density �m in appropriate
units, i.e.,

������
Gd
p

�m � ��e, where Gd is Newton’s gravita-
tional constant in d dimensions (see Appendix A), and � �
�1. This condition makes it possible to build a distribution
of charged dust with any shape in neutral equilibrium.
Charged fluids with

������
Gd
p

�m � ��e are called extremal
charge dust fluids. By introducing a convenient boundary
one turns the solutions into stars. In this section we study
some properties of these objects. One can also put some
form of pressure, either positive or negative, into these
systems and find solutions which of course do not obey
the extremal condition. Solutions with pressure will not be
considered here.

A. Gravitating Newtonian charged dust fluid and Weyl
and Majumdar-Papapetrou–type analysis

1. Gravitating Newtonian charged dust fluid

We consider first the dynamics of a gravitating
Newtonian charged fluid in a n � �d� 1�-dimensional
Euclidean space according to the Euler description. A
dust fluid is completely specified by its velocity vector,
with components vi, with i � 1; . . . ; d� 1 (Latin indices
run through 1 to n � d� 1), and its matter density �m, all
being functions of the position vector represented by spa-
tial coordinates ri, and of the universal time t. Thus, vi �
vi�rj; t� and �m � �m�rj; t�. The basic equations governing
the flow of a Newtonian fluid are the continuity equation,
which expresses mass conservation, and the Euler equa-
tion, which expresses momentum conservation. Consider a

fluid element with mass dm � �mdV , in the �d�
1�-dimensional space, dV being the �d� 1�-dimensional
space volume element. Then, the continuity and the Euler
equations may be written as

 

@�m

@t
�ri��mvi� � 0; (1)

 �m
dvi
dt
� Fi; (2)

respectively, where d=dt � @=@t� viri is the convective
temporal derivative,ri is the �d� 1�-dimensional gradient
operator,Fi is the volumetric external force acting upon the
fluid element, and the sum convention on indices is
adopted. The Newtonian systems we are interested in
here are gravitating charged fluids distributions in static
equilibrium. The fluid is then allowed to have some net
electric charge, so that the charge of a fluid element is
dq � �edV , �e being the electric charge density of the
fluid. Thus, there are two independent forces acting on a
fluid element, the gravitational and electrostatic forces.
Both these forces may be derived from scalar potentials,
V and �, respectively, such that one has

 Fi � ��mriV � �eri�: (3)

The gravitational potential V is related to the mass density
�m by

 r2V � Sd�2Gd�m; (4)

while the electric potential � is related to the charge
density �e by

 r2� � �Sd�2�e; (5)

where the operator r2 is the Laplace operator in
d� 1 space dimensions, Sd�2 is the area of the unit sphere
in a �d� 1�-dimensional space given by Sd�2 �

2��d�1�=2=���d� 1�=2�, � is the usual gamma function,
and Gd is Newton’s gravitational constant in d � n� 1
dimensions (see Appendix A for the definition ofGd). Sd�2

reduces to 4� in four spacetime dimensions and Eqs. (4)
and (5) are the natural generalizations of the corresponding
three-dimensional Poisson equations for the potentials V
and � to �d� 1�-dimensional space.

We will consider only static systems, so all quantities are
functions of the d� 1 space coordinates only, and the
fluid’s velocity can be put equal to zero, vi � 0. Then
the Euler equation (2) for the charged fluid in static equi-
librium reads

 �mriV � �eri� � 0: (6)

Equations (4)–(6) are the important equations for the
problem. Equations (4) and (5) are the field equations
that determine the gravitational and the electric potentials
once the mass and charge densities are given, while Eq. (6)
is the equilibrium equation for the system.
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2. Weyl and Majumdar-Papapetrou–type analysis

In vacuum, doing for Newtonian gravity what Weyl did
for general relativity [24], assume now an ansatz, i.e., a
functional relation, between the gravitational and the elec-
tric potential,

 V � V���: (7)

Equation (7) is the Weyl ansatz which implies that V and�
have the same equipotential surfaces. With this ansatz,
Weyl originally worked out the Einstein-Maxwell vacuum
equations that would follow and found that the relativistic
potential is a quadratic function of the electric potential.
Doing the same here in Newtonian gravity, we find that the
ansatz (7), in vacuum, �m � 0 and �e � 0, when put into
Eqs. (4) and (5), gives the following equation, �V 0�2r2��
V 0V 00�ri��2 � 0, where the prime stands for the derivative
with respect to �. Thus, since r2� � 0 in vacuum, and
�ri��2 � 0, it follows that V 00 � 0, i.e., V��� �
a0 � const
�, where a0 is an arbitrary constant, that
without loss of generality can be put to zero. In addition,
with our choice of units one has that const � ��

������
Gd
p

.
Thus,

 V��� � a0 � �
������
Gd

p
�: (8)

This is the Weyl relation for the Newton-Coulomb theory
in vacuum. Following Majumdar’s [25] and Papapetrou’s
[26] lead in general relativity, it is interesting to investigate
the consequences of the linear relation between electric
and Newtonian potentials, V � a0 � const
�, and see
what happens in the presence of matter. Such a relation is a
particular case of Weyl’s general ansatz (7), and is the same
as in Eq. (8), i.e., it is the same as Weyl’s relation for
vacuum. It is remarkable that the Majumdar-Papapetrou
relation is equivalent to Weyl’s relation in Newton-
Coulomb theory in vacuum, while it is not so in general
relativity. We use this relation (8) to also treat solutions
with matter, as has been done in general relativity [67].

In matter, we work out the basic equations using the
general form (8) and so generalize to higher dimensions the
analysis in four dimensions done by Bonnor [8]. We show
for d� 1 space dimensions the interesting result that the
equality of mass and charge densities follows from the field
equations as long as there are no singularities within the
charged matter distribution (see Bonnor [8] for Newtonian
systems, and De and Raychaudhuri [30] for general rela-
tivistic systems in four dimensions). The basic equations
(4)–(6) can be rewritten by taking the Weyl ansatz (7) into
account. To begin with, it is convenient to consider first
Eq. (6), which now reads ��mV

0 � �e�ri� � 0. So, the
two fields V and � have the same equipotential surfaces.
Since we consider ri� � 0, Eq. (6) is then equivalent to
�mV 0 � �e � 0, where again the prime stands for the
derivative with respect to �. By substituting �m from the

previous equation into Eq. (4), one finds �V 0�2r2��
V0V00�ri��

2 � �Sd�2�e, where we made use of the as-
sumption V � V���. Then, with the help of Eq. (5) one
finds ri�

����
Z
p
ri�� � 0, where Z is defined as Z � Gd �

V02. Now, in order to have a nonsingular solution with
closed boundary it is required that Z � 0, or equivalently,
�V 0�2 � Gd. All equilibrium solutions with �V 0�2 � Gd
with a closed equipotential hypersurface S have a singu-
larity within S. The most physically interesting solutions
are then those for which �V0�2 � Gd. Therefore, the
Majumdar-Papapetrou relation for the Newton-Coulomb
theory with a charged dust fluid is V��� � a0 � �

������
Gd
p

�,
where � � �1, implying, after Eq. (8), that the const
appearing before the potential � is indeed ��

������
Gd
p

.
Thus, for the Weyl relation or Majumdar-Papapetrou rela-
tion (they are the same here), Eq. (8), with the equations
�mV 0 � �e � 0 and V��� � a0 � �

������
Gd
p

� derived above,
gives �e � �

������
Gd
p

�m. This last equation is the Majumdar-
Papapetrou condition in Newtonian gravity. Observe that
the relation between the potentials we call Majumdar-
Papapetrou relation and the relation between the densities
we call Majumdar-Papapetrou condition. In the case the
Majumdar-Papapetrou condition holds, distributions of
charged dust of any shape can be put in equilibrium. All
the quantities can now be given. Once the mass density �m

is given, the gravitational potential is determined by the
Poisson equation (9) and all the other quantities, including
the electrogravitational Newtonian spacetime structure,
and possible singularity structure, follow from V and �m.
The resulting system of equations can be put in the form

 r2V � Sd�2Gd�m; (9)

 � � �
�������
Gd
p V; (10)

 �e � �
������
Gd

p
�m; (11)

where the zero points of the potentials are suitably chosen.

B. Spherical d spacetime (n space) dimensional
Newtonian Bonnor star solutions

1. Equations in spherical coordinates

We now assume the mass distribution is spherically
symmetric, in which case all the dynamical variables and
fields depend only on the radial coordinate r in �d�
1�-dimensional space. Our interest here is in spherical
solutions to Eqs. (9)–(11). First we define the mass m�r�
and the electric charge q�r� inside a sphere of radius r,
respectively, as

 m�r� � Sd�2

Z r

0
�m�r�rd�2dr; (12)
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 q�r� � Sd�2

Z r

0
�e�r�r

d�2dr: (13)

Equations (9)–(11) are then conveniently written explicitly
in terms of the radial coordinate as

 

dV�r�
dr

� Gd
m�r�

rd�2
; (14)

 

d��r�
dr

� �
q�r�

rd�2
; or ��r� � �

�������
Gd
p V�r�; (15)

 q�r� � �
������
Gd

p
m�r�; (16)

where the zero points of the potentials were suitably
chosen. In Eq. (14) there is also a term C0=r

d�2 which
we have put to zero, without loss of generality, i.e., C0 � 0.
This term can be included in the term Gdm�r�=rd�2 by an
appropriate choice of the function m�r�.

2. Solutions

(a) Electrovacuum solutions in d � n� 1 spacetime
dimensions

The solution to Eq. (14) in vacuum is

 V � �
1

d� 3

GdM

rd�3
; (17)

 M � const; (18)

with M representing the Newtonian mass of the source. To
complete the solution one must give the electric potential
�, which is obtained from Eq. (15), � � �d�
3��1Q=rd�3, with Q being the total charge of the source,
which in turn satisfies Eq. (16), Q � �

������
Gd
p

M. These two
equations, together with Eqs. (17) and (18), form the set of
equations corresponding to the solution of a Newtonian
Majumdar-Papapetrou vacuum system in n � d� 1 space
dimensions. Such a set of solutions also follows from the
Poisson equations in which the mass and charge densities
are Dirac delta functions, �m�r� � M��r� and �e�r� �
Q��r�, and Q � �

������
Gd
p

M.

(b) Newtonian Bonnor star solutions in d � n� 1 space-
time dimensions

Now we find a class of solutions to the Newton-
Coulomb system with electrically charged fluid matter,
considering the Majumdar-Papapetrou relation (8) (which
in the Newtonian case is also Weyl’s relation) and a spheri-
cally symmetric distribution of matter. Upon joining this

class of solutions to an external vacuum we obtain Bonnor
stars in the Newtonian theory. The relevant equations are
the ones presented in system (12)–(16).

Let us call r0 the radius of the star. Physical conditions
require the mass density to be a continuous function with a
finite value at the center of the star. One can choose a mass
density function ��r� and the remaining functions are then
obtained by integrating the appropriate equations. For in-
stance, one can give �0�r=r0�

�, for 0 � r � r0, and make
it zero in all the exterior region for r > r0. Integration of
the Poisson equation (14) gives a power law function for
the potential, a1r

��2 � a2=r
d�2 � a3, where the constant

a2 is made equal to zero in order to avoid a singularity at
r � 0, and the constant a3 is fixed by the matching con-
ditions at r � r0. Alternatively, instead of giving �m�r�,
one can choose a potential V�r� satisfying reasonable
boundary conditions, and then obtain the other functions
from it. This is the simplest route, the one we follow
here. We can choose the following interesting potential,
for the interior Vi�r�, given by Vi�r� � c0 � c1�r=r0�

� �
c2�r=r0�

�, for r � r0, where � and � are arbitrary constant
parameters, possibly satisfying some restrictions. The
other constants, c0, c1, and c2, are fixed by imposing
appropriate matching conditions at the surface of the star,
r � r0. One can impose that the potentials are C1 functions
at r0, which is usually done in order to simplify the
calculations. This means continuity of the potential and
continuity of the gravitational field strength. Then, in this
case, the density has a finite discontinuity at the boundary,
falling from some finite value just inside matter to zero just
outside. Also through the junction conditions above, one
can find the constants c0, c1, and c2, with one of them
arbitrary, c1 say. Here we want to go a step further and
impose that the potentials are C2 functions at r0, i.e.,
continuity of the potential, continuity of its first derivative,
and continuity of its second derivative. Continuity of the
first derivative of the potential means that the gravitational
field strength is continuous, and continuity of the second
derivative means that the mass density at the surface of the
star is continuous with zero value. Continuity of the po-
tential gives Vi�r0� � Ve�r0� � ��d� 3��1GdM=r

d�3
0 ,

where Ve�r� � ��d� 3��1GdM=r
d�3 is the Newtonian

potential in the exterior region, r � r0, with Ve zero at
infinity, and M is the total mass of the star. Continuity of
the gravitational field strength gives V 0i �r0� � V 0e�r0� �
GdM=rd�2. Continuity of the mass density at the surface
of the star gives �m�r0� � 0. With these choices, the
spherical Newtonian star is described by the following
potential

 V �

(
Vi � �

Gd
d�3

M
rd�3

0

�1� �d�3����d�3�
������ �1� � rr0

��
 � �d�3����d�3�
������ �1� � rr0

��
� r � r0

Ve � �
Gd
d�3

M
rd�3 r > r0;

(19)
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and by the following mass density

 �m �

(
���d�3����d�3�
�d�3������

M
Sd�2r

d�1
0

�� rr0
���2 � � rr0

���2
 r � r0

0 r > r0:

(20)

In these equations M is the mass and r0 is the radius of the
star, withM being obtained from Eq. (12) with r � r0, i.e.,
M � m�r0�, and � and � are arbitrary constant parameters
satisfying the restrictions � � 2 and � � 2. In addition,
the parameters � and � must be different from each other,
� � �, in order that the mass density be finite at r � 0,
and the other functions that follow from it be also finite
there. Such conditions ensure also the positivity of the
mass density. Note that the quantity M=�Sd�2r

d�1
0 �

appears naturally, indeed in Newtonian theory one can
define the mean density of the matter by ��m �
�d� 1�M=�Sd�2r

d�1
0 �. The other quantities, � and �e,

are obtained by substituting the expression for the gravita-
tional potential and for the mass density given in Eqs. (19)
and (20) into Eqs. (10) and (11), respectively.

So the class of Bonnor stars is defined essentially by
Eqs. (19) and (20), through the parameters Gd, M, r0, d, �,
and �. In the analysis of these Bonnor stars, an important
parameter appears, the d-dimensional generalization of the
mass to radius ratio of the star,

 a �
Gd

d� 3

M

rd�3
0

: (21)

It measures how compact the star is, and is a free parameter
in the model. TakingM as a fixed parameter, different stars
are parametrized by different values of a, which means
different values of the radius r0. There are no constraints on

a for Newtonian stars, it can vary from 0, a highly dis-
persed star, to 1, a point mass, i.e., the limiting configu-
ration here is a Newtonian singularity at r � 0 obeying the
Majumdar-Papapetrou condition Q � M. As we will see,
in the relativistic case a cannot be larger than unity (see
also [13–15]).

The relevant functions V�r� � 1, �m�r�, ��r�, and �e�r�,
given in terms of the coordinate r follow from the above
relations. They are dependent on the variable r, and also
depend on two other arbitrary parameters, the mass and the
radius of the star,M and r0, respectively. Instead of writing
the explicit form of such functions, it is more convenient to
plot them for several choices of parameters. In the calcu-
lations we normalized the coordinate r to the mass parame-
ter � � �GdM=�d� 3��1=�d�3� which was kept fixed. In
fact, the important parameter to this end is the mass to
radius ratio a, given by Eq. (21). The function V�r� � 1:
The behavior of the rescaled potential V�r� � 1 as a func-
tion of the rescaled coordinate r=�, for four different
values of a (a � 0:1, a � 0:4, a � 0:7, and a � 1), and
in four different spacetime dimensions (d � 4; 5; 6; 7) is
shown in Fig. 1. We plot the rescaled function V�r� � 1
instead of simply V�r� for direct comparison with the
relativistic case studied later. Now, the parameters � and
� in the solution (19) and (20) are free parameters. We
have chosen them so that � � 3�=2 � 3�d� 3�, which is
a convenient choice when one studies the counterparts of
these solutions in general relativity. With this choice, the
form of the curves depends on the number of spacetime
dimensions d and on the parameter a alone. Note that all
the interior functions Vi�r; a� match the exterior solution
Ve�r� � 1 � 1�GdM=��d� 3�rd�3�, each one at a differ-
ent value of r0. The reason for that is because the change of
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FIG. 1. The rescaled Newtonian potential V�r� � 1 as a function of r=�, where � � �GdM=�d� 3��1=�d�3�, for four spacetime
dimensions, d � n� 1, d � 4 (top left panel), d � 5 (top right panel), d � 6 (bottom left panel), and d � 7 (bottom right panel), and
for four different values of the parameter a. The lowest, solid, curve is for a � 1, the dot-dashed line is for a � 0:7, the dashed line is
for a � 0:4, and the dotted line for a � 0:1.
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a is made by keeping the mass of the star fixed, while r0

varies accordingly. The function �m�r�: Another quantity
of interest is the mass density �m�r�. In Fig. 2 we plot
�m�r�=	m as a function of the normalized radial coordinate
r=�. The density 	m is defined as 	m �

���d�3����d�3�
�d�1��d�3������ ��m,

where the mean density ��m is given by ��m � �d�
1�M=�Sd�2r

d�1
0 �. For our choice of parameters, � �

3�=2 � 3�d� 3�, one has 	m �
12
d�1 ��m. It is seen that

�m�r� is finite at r � 0. In fact, with our choice, �m

vanishes at r � 0 for all d > 4. In addition it goes to
zero at the surface of the star, defining thus the radius r0

in each plotted case. The behavior of the potential ��r� is
simply given by ��r� � ���=

������
Gd
p
�V�r�, and it is not

plotted. The behavior of the charge density is �e�r� �
�

������
Gd
p

�m, and it is not plotted. Note that the potentials V
and � are C2 functions of r, so that the corresponding field
strengths are continuous (C1 functions, in fact) through the
surface of the star. The mass and charge densities, �m and
�e, are C0 functions vanishing at r � r0. When r0 ! 0 one
obtains a point charge with a central Newtonian, mild,
singularity. It is mild because it is not a nasty spacetime
singularity, it is a matter singularity only.

III. EINSTEIN-MAXWELL THEORY WITH AN
ELECTRICALLY CHARGED FLUID IN d

SPACETIME DIMENSIONS (d � n� 1): WEYL
AND MAJUMDAR-PAPAPETROU ANALYSIS AND

BONNOR STAR SOLUTIONS

In d-dimensional general relativity coupled to both
Maxwell electromagnetism and a charged fluid matter

one can also find solutions representing charged stars.
The fluid can be in static relativistic equilibrium if it is
made of extremal matter, where the electric repulsion from
the charge density of the fluid, �e, counterbalances the
gravitational pull from its mass density, �m, in appropriate
units, i.e.,

������
Gd
p

�m � ��e. Thus, relativistic Bonnor stars in
d dimensions can also be constructed. Within general
relativity the behavior and properties of these solutions
are much richer, allowing the possibility of quasi-black-
hole behavior, for a sufficient compact object, rather than
the pointlike dull singularity of Newtonian objects. In this
section we study some properties of relativistic charged
fluids in the context of a Majumdar-Papapetrou analysis
and the corresponding Bonnor stars.

A. Gravitating relativistic charged dust fluid and Weyl
and Majumdar-Papapetrou analysis

1. Relativistic gravitating charged dust fluid

With the aim of finding exact solutions for
d-dimensional Bonnor stars we first write the basic equa-
tions for the Majumdar-Papapetrou systems and analyze
their general properties in brief. In the following sections
we particularize for spherically symmetric spacetimes,
show a particular solution, and study it in some detail.

The general relativistic analog of the Newtonian charged
fluid discussed in the preceding section was considered in
[67]. Such a relativistic system is described by the
d-dimensional Einstein-Maxwell with an electrically
charged fluid system of equations which read (we use units
such that c � 1),
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FIG. 2. The normalized Newtonian mass density �m�r�=	m as a function of r=�, where 	m �
12
d�1 ��m, ��m being the average density

(see text), and � � �GdM=�d� 3��1=�d�3�, for four different spacetime dimensions (d � n� 1 � 4; 5; 6; 7, as indicated) and for four
different values of the parameter a. The solid line is for a � 1, the dot-dashed curve is for a � 0:7, the dashed line is for a � 0:4, and
the (lowest) dotted line is for a � 0:1. The normalized Newtonian mass density �m�r�=	m goes to zero at the surface of the star,
defining thus the radius r0 in each plotted case.
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 G�
 �
d� 2

d� 3
Sd�2Gd�E�
 � T�
�; (22)

 r
F�
 � Sd�2J�; (23)

with G�
 being the Einstein tensor, such that G�
 �

R�
 �
1
2g�
R, R�
 being the Ricci tensor and R the

Ricci scalar. The right-hand side of Eq. (22) bears a uni-
versal constant Gd, which in four dimensions corresponds
to Newton’s gravitational constant (see Appendix A for the
definition of
Gd). Sd�2 � 2��d�1�=2=���d� 1�=2�, where � is the
usual gamma function, and the whole factor �d�
2�GdSd�2=�d� 3� corresponds to the 8�G term in four
dimensions. The electromagnetic energy-momentum ten-
sor, E�
, is given by

 E�
 �
1

Sd�2

�
F��F
� �

1

4
g�
F��F

��
�
; (24)

where F�
 � r�A
 �r
A�, A� is the electromagnetic
gauge field, with r� being the covariant derivative. J�, in
Eq. (23), is the current density

 J� � �eu�; (25)

where �e is the charge density and u� is the velocity of the
fluid in the d-dimensional spacetime with g�
u�u
 � �1.
Finally, T�
 is the matter energy-momentum tensor for
dust given by

 T�
 � �mu�u
; (26)

with �m being the energy density of the fluid. In all the
above definitions, Greek indices �, 
, etc., run from 0 to
d� 1, where 0 represents the time, and the other d� 1
coordinates are spacelike.

It is assumed the spacetime is static, in which case the
metric can be written in the form

 ds2 � �W2dt2 �
1

W2=�d�3�
hijdx

idxj; (27)

where Latin indices run from 1 to d� 1, hij is the metric in
�d� 1�-dimensional space, and W is a function of the
spacelike coordinates xi only. The four-velocity and the
gauge field are then given, respectively, by

 u� � W�0
�; (28)

and

 A� � �’�
0
�; (29)

where the electric potential ’ is also a function of the space
coordinates alone. (Note that in the definition of A� we
have put a minus sign in front of ’. Although not the usual
choice, this is the useful choice to compare with the
Newtonian case.)

From Einstein-Maxwell with charged dust fluid equa-
tions one obtains the following equations for W and ’:
 

r2W �
1

W
�riW�

2 �
Gd

W
�ri’�

2 � Sd�2GdW
�d�5�=�d�3��m;

(30)

 r2’ � 2
riW
W
ri’� Sd�2W�d�5�=�d�3��e; (31)

where ri stands for the covariant derivative with respect to
the space metric hij. Making now the connection to the
Newton-Coulomb theory with a charged dust fluid, one
may say that Einstein-Maxwell with charged dust fluid
equations, Eqs. (30) and (31), correspond to the Poisson
equations for the gravitational and electric potentials,
Eqs. (4) and (5), respectively. Moreover, continuity and
Euler equations (1) and (2) are, in a certain sense, analo-
gous to the relativistic conservation equations r�E�
 �
r�T�
 � 0, which in turn also follow from the general
relativity equations. In the present case one has

 �mriW � �eri’ � 0; (32)

for the conservation equation, which has the same form as
Eq. (6).

2. Weyl and Majumdar-Papapetrou analysis

In vacuum, the generalization of the Majumdar-
Papapetrou system to d-dimensional spacetimes was
done in [67] and, for completeness, we summarize the
main properties of such systems here. Following the lines
of that work but changing the strategy in order to compare
the present analysis to the Newton-Coulomb case of pre-
vious sections, we assume there is a Weyl-type functional
relation between the metric potential W and the relativistic
electric potential ’

 W � W�’�: (33)

This is the relativistic Weyl’s ansatz. For the sake of
comparison to the Newtonian case, let us review here the
main consequences of the last equation. For the vacuum
case, �m � �e � 0. So, Eqs. (30) and (31) can be com-
bined to yield �ri’�2�WW00 �W02 �WGd� � 0. Since
�ri’�

2 � 0, this equation implies WW00 �W02 �WGd �
0, which integrates to W2 � �a0 � �

������
Gd
p

’�2 � b0, where
a0 and b0 are integration constants. This form of the metric
potential W is known as the Weyl potential or, in our
context, the Weyl relation. Moreover, in the particular
case where b0 � 0, W2 assumes the form of a perfect
square so that

 W � a0 � �
������
Gd

p
’; (34)

where � � �1, and without loss of generality we kept the
plus sign when taking the square root of W2. In general
relativity, this form of W is known as the Majumdar-
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Papapetrou potential, and one usually refers to Eq. (34) as
the Majumdar-Papapetrou relation.

In matter, we now render into d dimensions De and
Raychaudhuri’s theorem [30] (see [72] for the generaliza-
tion of it for systems with pressure). To begin with, one
substitutes Eq. (33) into the conservation equation (32) and
finds ��mW

0 � �e�ri’ � 0 which, for ri’ � 0, is then
equivalent to

 �mW
0 � �e � 0; (35)

where the prime denotes derivative with respect to ’. This
is the general relativistic analog to the equilibrium equa-
tion of Newtonian theory, cf. the equation �mV

0 � �e � 0
derived in Sec. II A 2. Using Eq. (35), it is also readily seen
that, together with Eqs. (30) and (31), it implies
ri�

����
Z
p
ri’=W� � 0 where here Z � Gd �W

02. This
equation is to be compared to its Newtonian analog and,
in fact, has the same form. So it is possible to generalize the
theorem by De and Raychaudhuri [30] to higher dimen-
sions (see also [14]). According to such a theorem, in order
to have charged dust solutions satisfying Weyl hypothesis
without singularities, the quantity Z must vanish. This
implies W02 � Gd, as in the Newton-Coulomb with elec-
tric matter theory, so that the result is the Majumdar-
Papapetrou relation, the same as in the relativistic vacuum
case [see Eq. (34)], W � a0 � �

������
Gd
p

’, with � � �1, and
a0 being an integration constant. Then, substituting W
from the latter equation into Eq. (35) gives �e �
�

������
Gd
p

�m as in the Newtonian case. To summarize, let us
write the resulting equations for the important functionsW,
’, �m, and �e. In order to get a field equation similar to
Poisson equation (9), it is convenient to introduce a new
potential U such that

 U �
1

W
: (36)

The relevant equations are then

 r2U � �Sd�2GdU
�d�1�=�d�3��m; (37)

 ’ � �
1������
Gd
p

�
1�

1

U

�
; (38)

 �e � �
������
Gd

p
�m; (39)

where an arbitrary constant in the potentials was adjusted
to unity. Some special solutions to these types of systems
are going to be analyzed in the next sections. Equation (39)
is the Majumdar-Papapetrou condition. Note that these
equations can be compared to the Newton-Coulomb with
an electrically charged fluid case. In fact, taking the
Newtonian limit in which U ’ 1� V, with jVj � 1, one
sees that Eqs. (37)–(39) reduce exactly to Eqs. (9)–(11),
respectively.

B. Spherical d spacetime dimensional relativistic
Bonnor star solutions

1. Equations in spherical coordinates

In what follows we confine attention to spherically
symmetric static spacetimes and write the foregoing equa-
tions in isotropic and Schwarzschild spherical coordinates.

Equations in isotropic coordinates: The starting point is
the metric (27), which with Eq. (36) now reads

 ds2 � �U�2dt2 �U2=�d�3��dR2 � R2d�2
d�2�; (40)

with d�2
d�2 being the metric on the unit �d�

2�-dimensional sphere Sd�2. U is now a function of the
radial coordinate R only, and it obeys

 

d
dR

�
Rd�2 dU

dR

�
� �Sd�2Gd�mRd�2U�d�1�=�d�3�; (41)

which is obtained from Eq. (37). The matter and charge
densities are also functions of R only, �m � �m�R� and
�e � �e�R�, and they are related to each other through
Eq. (39). From Eq. (41), and in analogy with the
Newtonian theory, define the mass function m�R� and the
charge function q�R� (see other mass function definitions
in Appendix B) as

 m�R� � Sd�2

Z R

0
�m�R�U�R�

�d�1�=�d�3�Rd�2dR; (42)

 q�R� � Sd�2

Z R

0
�e�R�U�R�

�d�1�=�d�3�Rd�2dR: (43)

Equations (37)–(39) may then be written as

 

dU�R�
dR

� �Gd
m�R�

Rd�2
; (44)

 

d’�R�
dR

��U�R��2 q�R�

Rd�2
; or ’�R� �

�������
Gd
p

�
1�

1

U�R�

�
;

(45)

 q�R� � �
������
Gd

p
m�R�; (46)

where arbitrary constants in the potentials were set to one.
In addition, terms of the form const=Rd�2 in Eqs. (44) and
(45) were not written explicitly since they are implicitly
absorbed in those equations, and moreover they should be
put to zero as the fields shall be regular functions of the
radial coordinate R. Equations (44)–(46) can then be com-
pared to the Newton-Coulomb with an electrically charged
fluid case. In fact, taking the Newtonian limit in whichU ’
1� V, with jVj � 1, and R ’ r, one sees that Eqs. (44)–
(46) reduce exactly to Eqs. (14)–(16), respectively. For
future reference we write here the Kretschmann (K) and
Ricci (R) scalars for the metric (40):
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K �
d� 1

d� 3

4U002

U2�d�1�=�d�3�
�

�
8�
�3d� 8��4d� 11�

�d� 3�3

�



2U04

U4�d�2�=�d�3�
�
�d� 2��2d� 5�

�d� 3�2
4U02U00

U�3d�5�=�d�3�

�
8Sd�2

d� 3
Gd

�m

U�d�1�=�d�2�




�
U00 �

U02

U
�
Sd�2

2
Gd

d� 2

d� 3
�mU

�d�1�=�d�3�

�
;

(47)

 R �
2Sd�2

d� 3
Gd�m �

d� 4

d� 3

U02

U2�d�2�=�d�3�
; (48)

where the prime stands for the derivative with respect to R.
From this it is seen that spacetime singularities occur at
points where U � 0, as long as the derivatives of U do not
vanish at the same points as U does. Although the field
equations are easily written and solved by working in
harmonic coordinates, the physical interpretation of the
solutions is clearer if one uses Schwarzschild coordinates.

Equations in Schwarzschild coordinates: In
Schwarzschild coordinates the line element reads

 ds2 � �B2dt2 � A2dr2 � r2d�2
d�2; (49)

where B � B�r� and A � A�r�, r being the
Schwarzschildean radial coordinate. By comparing
Eq. (40) to Eq. (49), we see that the radial coordinates in
the two systems are related by

 rd�3 � URd�3; (50)

and that the metric potentials are related by

 B �
1

U
; (51)

and

 A � 1�
1

d� 3

r
U
dU
dr
: (52)

Equation (50) gives r as a function of R. Although this
implicitly determines R as a function of r, it is only in
special cases that this relation can be worked out explicitly.
For the sake of completeness, we present here the
Schwarzschild coordinate form of the field equations.
With the metric in the form of Eq. (49), Eq. (37) turns into

 

1

A

d
dr

�
rd�2 1

AB
dB
dr

�
� Sd�2Gdr

d�2�m: (53)

This is, in fact, the equation for the potential B, since A is
not independent of B. Namely, Eqs. (51) and (52) give

 A � 1�
1

d� 3

r
B
dB
dr
; (54)

which is a consequence of the Majumdar-Papapetrou con-
dition in a fluid with vanishing stresses. At last, the electric

functions are expressed in Schwarzschild coordinates. No
effort is needed to obtain the electric charge density since it
is proportional to the mass density. The electric potential
’�r� comes after Eqs. (38) and (51), i.e.,

 ’ �
�������
Gd
p �1� B�; (55)

where, as usual, the arbitrary constant was set to unity.
Now, defining M�r� and Q�r� (see for comparison other
mass definitions in Appendix B) as

 M �r� � Sd�2

Z r

0
�m�r�A�r�r

d�2dr; (56)

 Q �r� � Sd�2

Z r

0
�e�r�A�r�r

d�2dr; (57)

Eqs. (37)–(39) may be written as

 

dB�r�
dr

� GdA�r�B�r�
M�r�

rd�2
; (58)

 

d’�r�
dr

� �A�r�B�r�
Q�r�

rd�2
; or ’�r� �

�������
Gd
p �1� B�r��;

(59)

 Q �r� � �
������
Gd

p
M�r�; (60)

and A�r� is given in terms of B�r� by Eq. (54). These are the
fundamental equations in Schwarzschild coordinates. The
Newtonian limit is obtained by noticing that for weak
gravity fields one has that the metric functions B�r� and
A�r� are close to unity, B�r� � 1� �B�r�, and A�r� � 1�
�A�r�, with � indicating small quantities. Hence, to the
first order approximation, the above equations reduce,
respectively, to Eqs. (14)–(16).

2. Solutions

(a) Electrovacuum solutions in d spacetime dimensions

As a first example and to set up notation let us report
here on the case of d-dimensional vacuum Majumdar-
Papapetrou solutions. These are nothing but the extreme
Reissner-Nordström spacetimes generalized to higher di-
mensions that were first studied in Ref. [66]. The general
solution of Eq. (44) in vacuum is usually written in the
form

 U � 1�
Gd

d� 3

M

Rd�3
; (61)

 M � const; (62)

where M is an integration constant equal to the total mass
of the source. The electric potential follows from Eq. (45),
� � ��1� 1=U�=

������
Gd
p

, and the electric charge is related to
the total mass of the source by Q � �

������
Gd
p

M, as required
by the Majumdar-Papapetrou condition and in agreement
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with Eq. (46). The corresponding spacetime metric is
 

ds2 � �

�
1�

Gd

d� 3

M

Rd�3

�
�2
dt2

�

�
1�

Gd

d� 3

M

Rd�3

�
2=�d�3�

�dR2 � R2d�2
d�2�: (63)

Using Eqs. (50)–(52) we find the relation between r and R,
given by

 rd�3 � Rd�3 �
Gd

d� 3
M: (64)

One also finds that B � 1
A � �

Rd�3

Rd�3��Gd=�d�3�
M
� �

�1� Gd
d�3

M
rd�3� which leads to the metric for an extreme

Reissner-Nordström black hole with mass and charge equal
to M, and holds for all d � 4,

 ds2 � �

�
1�

Gd

d� 3

M

rd�3

�
2
dt2 �

dr2

�1� Gd
d�3

M
rd�3�

2

� r2d�2
d�2: (65)

The coordinate r can be extended until r � 0, which is in
fact a singularity. This is seen from the Ricci and
Kretschmann scalars which are, respectively,
 

K � 4
�d� 1��d� 2�2

d� 3

G2
dM

2

r2�d�1�

� 2
�
8�
�3d� 8��4d� 11�

�d� 3�3

�
G4
dM

4

r4�d�2�

� 4
�2d� 5��d� 2�2

�d� 3�2
G3
dM

3

r�3d�5�
; (66)

 R � �
d� 4

d� 3

G2
dM

2

r2�d�2�
; (67)

where we used Eqs. (47), (48), (50), and (64). The region of
the spacetime which in Schwarzschild coordinates corre-
sponds to 0< r � �GdM=�d� 3��1=�d�3� is not covered by
the isotropic coordinates. The maximal analytical exten-
sion of these vacuum solutions representing extremal black
holes can then be found following the usual methods.

(b) Relativistic Bonnor star solutions in d spacetime
dimensions

Interesting exact solutions in the context of Majumdar-
Papapetrou relativistic systems are the Bonnor stars, see
now specifically [6,7,12], which are spherically symmetric
distributions of a charged dust fluid satisfying the Einstein-
Maxwell with matter equations in four-dimensional space-
times. The d-dimensional version of this kind of stars is the
solution to Eq. (42), or Eq. (53), with appropriate boundary
and matching conditions. We look for solutions using the
equations in harmonic coordinates, and then do the analy-
sis in Schwarzschild coordinates. In order to find solutions

to Eq. (42), a first, possible, procedure is to provide the
mass density as a function of the radial coordinate, �m �
�m�R�. This is the procedure usually adopted because it
furnishes by construction physically acceptable mass dis-
tribution for the star. In the present case, however, such a
strategy is not advisable because it results in a second order
nonlinear differential equation for U�R�, whose solutions
can be found just after fixing the number of dimensions of
the spacetime. A second procedure, of no interest in the
Newtonian case, but valuable here, is to choose the energy
density profile in such a way to transform Eq. (42) into an
equation whose solutions are known, such as the case of
sine-Gordon equation used in Ref. [45], or transforming it
into a linear equation, so that one can use the well-known
methods to solve ordinary linear second order differential
equations to find solutions. A third alternative procedure is
to fix a priori the metric potential U � U�R�, and then
determining the other physical quantities that follow from
it. This is the strategy we follow here, it allows us to write
the solutions in closed form, and it is the same strategy as
the one opted for in the Newtonian Bonnor stars studied
above.

(i) Solutions with smooth boundary conditions and some
special solutions:—First we make the analysis in isotropic
coordinates. We consider the general relativistic analog of
the one studied in Sec. II B 2 b (see also [6,7,12]). We then
choose

 U �
�
Ui � c0 � c1R� � c2R� R � R0

Ue � 1� 1
d�3

GdM
Rd�3 R> R0;

(68)

where � and � are real numbers and R0 shall be identified
as the surface of the star. The arbitrary constants c0, c1, and
c2 are fixed in such a way to guarantee the matching
conditions at the surface of the star, R � R0. Bonnor
[6,7,12] imposed U to be a C1 function and the energy
density to be a step function at the boundary. In this case
one can verify that the constants are given by c0 � 1�
Gd
d�3

M
Rd�3

0

���d�3
� � � c1

���
� R�0 , c1 one can take as arbitrary,

and c2 � �
Gd
�

M
R��d�3

0

� �
� c1R

���
0 . To reproduce Bonnor’s

choice for U [12] one puts d � 4, c1 � 0, and � � n
(where n was the letter chosen for the exponent in [12]).
Of course, if one wishes, one can choose U to be of any
degree of differentiability at the boundary. Since it is
interesting to test whether this choice of differentiability
has any important influence on the properties of the star,
one can, still in the spirit of Bonnor, go a step further and
instead of choosingU as a C1 function imposeU to be a C2

function of R. As a bonus, one gets in addition that the
energy density is a C0 function, i.e., continuous at the
boundary R0, indeed zero, which is more in accord with
the usual properties of stars. For a C2 choice forU there are
no free constants and one finds
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c0 � 1�
1

d� 3

GdM

Rd�3
0

�
1�

d� 3

�� �

�
�� d� 3

�
�
�� d� 3

�

��
; (69)

 c1 � �
��� d� 3�

���� ��
GdM

R��d�3
0

; (70)

 c2 � �
��� d� 3�

���� ��
GdM

R��d�3
0

: (71)

It then follows the potentials Ui and Ue are

 U �

(
Ui � 1� Gd

d�3
M
Rd�3

0

�1� �d�3����d�3�
������ �1� � RR0

��
 � �d�3����d�3�
������ �1� � RR0

��
� R � R0

Ue � 1� 1
d�3

GdM
Rd�3 R> R0:

(72)

Equation (37) then gives the mass density

 �m �

(
���d�3����d�3�
�d�3������

M
Sd�2R

d�1
0

�� RR0
���2 � � RR0

���2
 1
U�d�1�=�d�3� R � R0

0 R> R0:
(73)

In the region outside the mass distribution, the solution
takes the extreme Reissner-Nordström form (63), as ex-
pected. Since U is a C2 function, the spacetime metric
satisfies the Israel matching conditions at R � R0. In order
that �m be a well-defined function and everywhere non-
negative, we must have �;� � 2. The quantity
M=�Sd�2R

d�1
0 � appears naturally with units of mass den-

sity. Note that the electric potential ’ and the electric
density �e can be found directly from Eqs. (45) and (46).
The function ’ is a continuous C2 function through the
surface of the star, which means the field strength is C1 and
the charge density is C0. Moreover, using Eqs. (42) and
(73) one finds that indeed M � m�R0�, making the whole
procedure a consistent one. This Bonnor star solution looks
like the Newtonian star studied in Sec. II B 2. In fact, the
resulting mass density, Eq. (73), resembles the function
given by Eq. (20).

Second, we make the analysis in Schwarzschild coordi-
nates. Schwarzschild coordinates are interesting to analyze
the physical properties of the spherical solutions found
above. Equations (50) and (72) establish the relation be-
tween the harmonic radial coordinate R and the
Schwarzschild radial coordinate r

 rd�3 �

(
c0Rd�3 � c1R��d�3 � c2R��d�3 R � R0

Rd�3 � 1
d�3GdM R> R0:

(74)

These relations furnish R as a function of r, R � f�r�,
which is in fact defined by two functions. Let us call
them, respectively, fi�r� for the internal region and fe�r�
for the external region. The surface of the star, defined by
R � R0, is obtained in terms of the Schwarzschild coor-
dinates, by imposing the continuity of the function r�R�
through such a surface, i.e.,

 rd�3
0 � Rd�3

0 Ui�R0� � Rd�3
0 Ue�R0�

� Rd�3
0 �

1

d� 3
GdM; (75)

whereUi andUe are defined by Eq. (72). The aim now is to
find the metric potentials B and A as functions of r. In order
to do that one needs to find the functions fi�r� and fe�r�,
which is done by solving Eqs. (74) for R. For r � r0 one
has

 Bi�r� �
1

Ui�r�
� �c0 � c1f

�
i � c2f

�
i �
�1; (76)

 

Ai�r� � 1�
r
fi

dfi

dr
��c1f

�
i � �c2f

�
i �


 �c0 � c1f
�
i � c2f

�
i �
�1; (77)

with fi � fi�r� being a suitable solution of the following
algebraic equation:

 c2f
��d�3
i � c1f

��d�3
i � c0f

d�3
i � rd�3 � 0: (78)

The constants c0, c1, and c2 are now to be written in
terms of r0 instead of in terms of R0. The corresponding
expressions are obtained by substituting R0 � �r

d�3
0 �

GdM=�d� 3��1=�d�3� into Eqs. (69)–(71). For r � r0 one
has

 Be�r� �
1

Ae�r�
� 1�

1

d� 3

GdM

rd�3
: (79)

Third, we find some special solutions with a simple
algebraic structure. Generally, the only way of finding
the solutions to Eq. (78) is by specifying the values of
the parameters � and � and the number of spacetime
dimensions d. Even in that case, in general, only numerical
solutions are possible to find and we do not perform such
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an analysis here. There are, however, some special values
of � and � for which Eq. (78) can be solved exactly for
fi�r�. Thus, in order to investigate some more properties of
d-dimensional Bonnor stars, we consider a particular case
that can be dealt with algebraically. For instance, one may
choose

 � �
3

2
� � 3�d� 3�; (80)

so that one finds a fourth degree polynomial equation to
solve for Rd�3:

 c2�Rd�3�4 � c1�Rd�3�3 � c0Rd�3 � rd�3 � 0; (81)

where now the coefficients c0, c1, and c3 are simplified to

 c0 � 1�
2Gd

d� 3

M

Rd�3
0

; c1 � �
2Gd

d� 3

M

R3�d�3�
0

;

c2 �
Gd

d� 3

M

R4�d�3�
0

:

(82)

This polynomial equation can be solved in terms of radi-
cals, and the physical quantities can then be expressed

explicitly in terms of the coordinate r. In order to condense
expressions, we first define the parameter a by

 a �
Gd

d� 3

M

rd�3
0

; (83)

with 0 � a � 1. As in the case of Newtonian stars [see
Eq. (21)] this parameter measures how compact the star is
and it is useful to parametrize the numerical solutions.
Further, we define

 b�r� �
1

16

�
1�

1

a

�
2
�

1

4a

�
r
r0

�
d�3

;

c�r� �
1

6
�

1

6a
�

1

3a

�
r
r0

�
d�3

;

e�r� � �b�r� �
����������������������������������
�b�r�
2 � �c�r�
3

q
�1=3;

s�r� �

��������������������������������������
1� 2e�r� � 2

c�r�
e�r�

s
;

(84)

where we have used the relation Rd�3
0 � rd�3

0 � Gd
d�3M.

Then, the solution for R�r� is

 R�r�d�3 �

(
�12�

s�r�
2 �

1
2

�������������������������������������������������
2� 2s�r� � 2 c�r�

e�r� �
2

as�r�

q
��rd�3

0 � Gd
d�3M� r � r0

rd�3 � Gd
d�3M r> r0:

(85)

Fourth, the relevant functions B�r�, A�r�, �m�r�, ’�r�,
and �e�r�, given in terms of the Schwarzschild coordinates,
follow from the above relations. They are dependent on the
variable r, and also depend on two other arbitrary parame-
ters, the mass and the radius of the star, M and r0, respec-
tively. Instead of writing the explicit form of such
functions, which are cumbersome, it is more convenient
to plot them for several choices of parameters. In the
calculations we normalized the coordinate r to the mass
parameter � � �GdM=�d� 3��1=�d�3� which was kept
fixed. In fact, the important parameter to this end is the
mass to radius ratio a, given by Eq. (83), which measures
how relativistic the system is. Here we have the constraint
0< a< 1, and for small a the system is Newtonian, while
for a close to unity it is fully relativistic. The function B�r�:
The simplest function to be found in Schwarzschild coor-
dinates is the metric potential B�r�, which is immediately
obtained through the relation B�r� � 1=U�r�. Figure 3
shows B�r� as a function of r=� in d � 4; 5; 6; 7, as in-
dicated. It is also seen in that figure the behavior of B�r; a�
as a function of a, for different values of the parameter a, as
shown by the four curves in each graph. All the interior
functions Bi�r; a� match the exterior extreme Reissner-
Nordström solution Be�r� � 1� ��=r�d�3, each one at a
different value of r0. The reason for that is because the
change of a is made by keeping the mass of the star fixed,
while r0 varies accordingly. Notice also that for a! 1 the

function Bi�r� approaches zero in the whole region interior
to r � r0, meaning that the redshift with respect to infinity
is infinite. For the extreme value (a � 1) the mass and the
charge of the charged star are concentrated inside a quasi-
horizon at r � r0. In this limit, the spacetime solution is a
quasi-black hole, similar to what was found for four-
dimensional spacetimes (see [13–17]). There are no singu-
larities inside r0, the curvature is finite, so are the mass and
charge densities of the charged dust [see also item (ii)
below]. It can also be seen the Newtonian limit of the
solution by comparing the curves for the smaller values
of a in Fig. 3 with the corresponding curves for the
Newtonian potential, Fig. 1 [see also item (iii) below].
The function A�r�: The behavior of the other metric poten-
tial A�r� is seen in Fig. 4, where we plot 1=A against r=�
for the same values of d and a as in Fig. 3. The quasi-black-
hole formation is seen in this case as 1=A�r� going to zero
at r � r0 for a! 1. It appears in the figure as the sharp
elbow in the solid line (lowest) curve shown in the graph.
The exterior function is Ae�r� � 1=Be�r�, and all the inner
functions Ai�r; a� for different amatch Ae�r� at a particular
value of r0. The function �m�r�: Another quantity of inter-
est is the mass density �m�r�. In Fig. 5 we plot the normal-
ized mass density �m�r�=	m as a function of the
normalized radial coordinate r=�. Here 	m is defined as
	m �

���d�3����d�3�
�d�1��d�3������ ��m, where ��m, a kind of average den-

sity, here is given by ��m � �d� 1�M=�Sd�2r
d�1
0 �. For our
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choice of parameters, see Eq. (80), one has 	m �
12
d�1 ��m.

We plot �m�r�=	m against r=� for the same values of d and
a as in Figs. 3 and 4. Notice that for d > 4 the general
properties of this function do not depend upon the specific
value of d. It is clearly seen that �m�r� is finite at r � 0. In
fact, with our choice, �m vanishes at r � 0 for all d > 4. In
addition it goes to zero at the surface of the star, defining
thus the radius r0 in each plotted case. Moreover, the mass
density is everywhere well defined even in the quasi-black-
hole limit. The comparison to the Newtonian case can be
done considering the curves for small a in Fig. 5, and

comparing the corresponding curves in Fig. 2 [see below
item (iii)]. The functions ’�r� and �e�r�: The other two
functions, the electric potential ’�r� and the electric charge
density �e�r�, are so closely related to the respective gravi-
tational quantities B�r� and �m�r� that no plot needs to be
drawn for them. In fact, they are promptly obtained from
their relations to the functions studied above [see Eqs. (55)
and (39)]; namely, ’�r� � ��B�r� � 1�=

������
Gd
p

and �e�r� �
�

������
Gd
p

�m�r�:
(ii) Quasi-black-hole limit:—For the full relativistic

limit, a � 1� ", with "� 1, it is clear from the previous
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FIG. 4. The metric potential 1=A�r� as a function of r=�, for d � 4; 5; 6; 7, and for four values of a in each graph (from top to
bottom: a � 0:1, a � 0:4, a � 0:7, and a � 1).
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plots that the function 1=A�r� attains a minimum at r=� �
1� ", such that 1=A�r� � ", where again, � �
�GdM=�d� 3��1=�d�3�. Also, for such a small but nonzero
" the configuration is regular everywhere with a nonvan-
ishing metric function B. Moreover, in the limit "! 0 the
interior metric potential Bi obeys Bi ! 0 for all r=� � 1.
These three features define a quasi-black hole; see [16,17].
These three features imply, among other things, that
(a) there are infinite redshift whole regions rather than
surfaces, (b) the object displays naked behavior, i.e., gen-
eration of infinite tidal forces in a freely falling frame,
(c) outer and inner regions become impenetrable and dis-
joint, and (d) for external distant observers the spacetime is
indistinguishable from that of extremal black holes. The
quasi-black hole is on the verge of forming an event
horizon, but it never forms one, instead, a quasihorizon
appears.

It is of interest to see that in the quasi-black-hole limit
the metric is well defined and everywhere regular. We
check this for the interior. One defines, from the isotropic
radial coordinate R, a new spatial coordinate x by

 x �
R
R0
; 0 � x � 1; (86)

from which one sees that the surface of the star is now
located at x � 1. Substituting this transformation into the
interior metric functions and choosing a new time coordi-
nate T according to

 dT �
�d� 3�Rd�3

0

GdM
dt; (87)

the interior metric is now
 

ds2 � � ~U�2dT2

�

�
GdM
d� 3

�
2=�d�3�

~U2=�d�3��dx2 � x2d�2
d�2�; (88)

where
 

~U � 1� �d� 3�
�
�� d� 3

���� ��
�1� x��

�
��� d� 3�

���� ��
�1� x��

�
: (89)

This metric is regular throughout the interior region and
also at the surface of the star. Moreover, at x � 1 one has
~U � 1. This means that even in the quasi-black-hole limit
the surface of the star is timelike for internal observers. On
the other hand, one can verify that, being the exterior
metric the extremal Reissner-Nordström metric, the
quasi-black-hole limit gives a null surface for external
observers. There is thus a mismatch, implying in this
case that the interior and exterior regions are disjoint, as
was fully analyzed in [16,17].

(iii) Quasi-Newtonian limit: Newtonian Bonnor stars
discussed previously:—It is expected that in the weak field
approximation a relativistic Bonnor star reduces to a
Newtonian Bonnor star. Here, we show that indeed the
relativistic star studied in this section, i.e., Sec. III B 2,
reduces to the Newtonian star studied in Sec. II B 2.

In the relativistic theory two coordinate systems are
involved in the solutions, the isotropic and the
Schwarzschild spherical coordinates. Initially we show
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FIG. 5. The normalized relativistic mass density �m�r�=	m as a function of r=�, where 	m �
12
d�1 ��m, ��m being a kind of average

density (see text), and � � �GdM=�d� 3��1=�d�3�, for the cases d � 4; 5; 6; 7 (as indicated), and with a � 1 (upper curve), a � 0:7
(dot-dashed curve), a � 0:4 (dashed curve), and a � 0:1 (lowest curve) for each d. The normalized relativistic mass density �m�r�=	m

goes to zero at the surface of the star, defining thus the radius r0 in each plotted case.
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that to first order approximation in the weak field limit the
two coordinate systems are identical. In order to deal with
the issue we take the special case considered in paragraph
(b)(i) of Sec. III B 2. The weak field limit inside the spheri-
cal star corresponds to small values of the parameter a �
GdM=��d� 3�rd�3

0 �. Hence, considering the approxima-
tion of Eq. (85) up to the first order in a it follows that
 

Rd�3

Rd�3
0

�
rd�3

rd�3
0

�
1�

Gd

d� 3

M

rd�3
0

�
1� 2

�
rd�3

rd�3
0

�
2
�

�
rd�3

rd�3
0

�
3
��
:

(90)

At the lowest order approximation it results in

 

Rd�3

Rd�3
0

�
rd�3

rd�3
0

; (91)

as expected. Therefore, when comparing the first order
approximation of the relativistic solution to the
Newtonian solution one may work with the isotropic co-

ordinates, identifying the radial coordinate R with the
Newtonian radial coordinate r.

The next step is obtaining the potentials and densities in
the weak field approximation and comparing them to the
Newtonian case. In such a limit one has the relation U �
1� V, where V is the Newtonian potential. Now using the
relation (91) and Eq. (72) one can write Ui up to first order
in M=rd�3

0 ,
 

Ui � 1�
Gd

d� 3

M

rd�3
0

�
1�
�d� 3���� d� 3�

���� ��




�
1�

�
r
r0

�
�
�

�
�d� 3���� d� 3�

���� ��

�
1�

�
r
r0

�
�
��
: (92)

From this equation, and from the exterior solution Ue, one
then finds the potential in Newtonian approximation, V �
1�U, as

 V �

8<:Vi � �
Gd
d�3

M
rd�3

0

�1� �d�3����d�3�
������ �1� � rr0

��
 � �d�3����d�3�
������ �1� � rr0

��
� r � r0

Ve � �
Gd
d�3

M
rd�3 r > r0:

(93)

The resulting expression is to be compared to the gravita-
tional potential of the Newtonian star as given in Eq. (19).
The two expressions become identical if one identifies the
gravitational constant Gd, the radial coordinate r, and the
mass of the star M in both equations. We have already
shown that, in the weak field approximation, it results
R � r�O�M=rd�3

0 �, and also U�R� � U�r� �
1�O�M=rd�3

0 �. Therefore, substituting such results into
Eq. (73) we find the first order approximation for the
relativistic mass density,

 �m �

8<:
���d�3����d�3�
�d�3������

M
Sd�2rd�1

0

�� rr0
���2 � � rr0

���2
 r � r0

0 r > r0:

(94)

In order for this result to be identical to Eq. (20) the mass
M and the coordinate rmust be the same in both equations.
It is then straightforward to show that the weak field limits
of other relativistic quantities such as the metric functions
B�r� and A�r�, the electric charge density, and electric
potential all agree with their Newtonian counterparts, as
expected.

Notice that units have been normalized in such a way
that the gravitational coupling constant in Einstein equa-
tions equals the Newtonian gravitational coupling constant
in Poisson equation (see Appendix A). Furthermore, the
mass densities carry identical units and normalizations due
to the similarity between Poisson equation for Newtonian
gravity, Eq. (4), and the corresponding equation coming
from Majumdar-Papapetrou relativistic system, Eq. (37).

IV. CONCLUSIONS

We have studied d-dimensional Bonnor star solutions,
spherical distributions of extremal charged dust joined to
extremal charged vacua, both in Newtonian gravity and
general relativity. We have found that the relativistic solu-
tions present many interesting properties such as forming
an extreme d-dimensional quasi-black hole, when the mass
to radius ratio reaches a critical value. We have also found
that the Newtonian solutions are limiting cases of the
relativistic ones. In this connection it is interesting to
note that the Bonnor star solutions in Majumdar-
Papapetrou Newtonian gravity, when contrasted to those
Bonnor solutions in Majumdar-Papapetrou general relativ-
ity, display clearly the departing of the high density struc-
tures that may arise in the strong field regime of each
theory, mild singularities in one theory, quasi-black holes
in the other. Moreover, whereas there are no solutions for
Newtonian stars supported by degenerate pressure in
higher dimensions, and so no general relativistic solutions
either, higher-dimensional Bonnor stars, supported by
electric repulsion do indeed have solutions. This means
that the existence of stars in higher dimensions depends on
the number of dimensions itself, and on the underlying
field content of those stars, as expected.
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APPENDIX A: NEWTON’S GRAVITATIONAL
CONSTANT Gd IN d SPACETIME DIMENSIONS

Within Newtonian gravity, the Poisson equation for the
gravitational field is given by

 r2V � k�m; (A1)

where k is a constant, related to Newton’s gravitational
constant Gd in d spacetime dimensions, to be determined.
Integrating over the space volume V and using the Gauss
theorem, one obtains
 Z

V
r2Vdd�1x �

I
Sd�2

riVn
idSd�2

� k
Z
V
�md

d�1x � kM; (A2)

where Sd�2 is the boundary surface surrounding the vol-
ume V , and ni is the unit normal to the surface Sd�2.
Considering now spherical symmetry, i.e.,

 riVn
i � �gr; (A3)

where gr is defined to be the radial component of the
gravitational field, one finds

 

I
Sd�2

riVnidSd�2 � �grSd�2rd�2: (A4)

Then (A2) and (A4) yield

 gr � �
k

Sd�2

M

rd�2
: (A5)

The choice in [59] for k is given by

 k � GdSd�2: (A6)

This is an interesting choice because it gives

 gr � �
GdM

rd�2
; (A7)

i.e., a straight generalization of Newtons force law to d
spacetime dimensions, although it puts Einstein’s equation
into a slightly awkward form,

 G�
 �
d� 2

d� 3
Sd�2GdT�
; (A8)

where G�
 is the Einstein tensor and T�
 is the energy-
momentum tensor. The choice in [68] for k is given by

 k � 8�Gd
d� 3

d� 2
: (A9)

This is also an interesting choice because although it gives

 gr � �
8�Gd

Sd�2

d� 3

d� 2

M

rd�2
; (A10)

Einstein’s equation is written as

 G�
 � 8�GdT�
; (A11)

i.e., a straight generalization of Einstein’s equation to d
spacetime dimensions. Both definitions of k give the cor-
rect definition in four dimensions for Gd�4 � G4 � G. In
this paper we have opted for the definition (A6), which
yields (A7) and (A8).

APPENDIX B: MASS DEFINITIONS

1. Mass functions in isotropic coordinates

Throughout the paper we used the mass function m�R�
defined in Eq. (42). In the literature, another mass function,
M�R�, is sometimes used. The connection between the two
definitions is given below. Using Eq. (42) one gets

 U�R� � 1�Gd

Z R m�R�

Rd�2
dR; (B1)

where an integration constant has been made equal to
unity. Equation (B1) is consistent with the usual form of
the potential U outside the mass and charge distributions,
i.e., R> R0. In fact, if we take m�R� � M � const,
Eq. (B1) yields U�R� � 1�GdM=��d� 3�Rd�3�, where
M is total mass of the source. The other mass function of a
charged dust distribution M�R� can then be defined in
analogy with the result for vacuum. This is done by taking
U�R� inside the dust in the same form as outside,

 U�R� � 1�
Gd

d� 3

M�R�

Rd�3
: (B2)

Hence, it follows the relation

 M�R� � ��d� 3�Rd�3
Z R m�R�

Rd�2
dR: (B3)

And so, one sees that the two massesm�R� andM�R� are in
general different from each other. The two definitions
agree just in the region outside the dust fluid, in which
case m�R� � M�R� � M is the total mass of the source.

2. Mass functions in Schwarzschild coordinates

The mass definition in Schwarzschild coordinates used
in the paper is given by Eq. (56). Besides such a definition,
there is a different route to define another mass function
M�r�. Usually, in the literature the mass within a certain
sphere of radius r,M�r�, is defined through a relation of the
form
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 A �
1

1� �Gd=�d� 3�
�M�r�=rd�3

: (B4)

Interestingly, this mass coincides with M�r� as defined in
Eq. (56). This can be shown as follows. From the last
equation it follows

 M�r� �
d� 3

Gd
rd�3

�
1�

1

A

�
: (B5)

Moreover, using the expression for dB=dr in terms of A
obtained from (54) one gets

 �d� 3�rd�3

�
1�

1

A

�
�
rd�2

AB
dB
dr
: (B6)

Therefore, comparing Eqs. (B5) and (B6) one obtains

 

rd�2

AB

dB
dr
� GdM�r�: (B7)

Substituting this result into Eq. (53) and integrating one has

 M�r� � Sd�2

Z r

0
�m�r�A�r�rd�2dr; (B8)

which is exactly M�r� as defined in Eq. (56). So, one has
the identity M�r� �M�r�.
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