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The generalized Chaplygin gas, which interpolates between a high density relativistic era and a
nonrelativistic matter phase, is a popular dark energy candidate. We consider a generalization of the
Chaplygin gas model, by assuming the presence of a bulk viscous type dissipative term in the effective
thermodynamic pressure of the gas. The dissipative effects are described by using the truncated Israel-
Stewart model, with the bulk viscosity coefficient and the relaxation time functions of the energy density
only. The corresponding cosmological dynamics of the bulk viscous Chaplygin gas dominated universe is
considered in detail for a flat homogeneous isotropic Friedmann-Robertson-Walker geometry. For
different values of the model parameters we consider the evolution of the cosmological parameters (scale
factor, energy density, Hubble function, deceleration parameter, and luminosity distance, respectively), by
using both analytical and numerical methods. In the large time limit the model describes an accelerating
universe, with the effective negative pressure induced by the Chaplygin gas and the bulk viscous pressure
driving the acceleration. The theoretical predictions of the luminosity distance of our model are compared
with the observations of the type Ia supernovae. The model fits well the recent supernova data. From the
fitting we determine both the equation of state of the Chaplygin gas, and the parameters characterizing the
bulk viscosity. The evolution of the scalar field associated to the viscous Chaplygin fluid is also
considered, and the corresponding potential is obtained. Hence the viscous Chaplygin gas model offers
an effective dynamical possibility for replacing the cosmological constant, and for explaining the recent
acceleration of the universe.
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I. INTRODUCTION

The observations of high redshift supernovae [1] and the
Boomerang/Maxima/WMAP data [2], showing that the
location of the first acoustic peak in the power spectrum
of the microwave background radiation is consistent with
the inflationary prediction � � 1, have provided compel-
ling evidence for a net equation of state of the cosmic fluid
lying in the range �1 � w � p=� <�1=3. To explain
these observations, two dark components are invoked: the
pressureless cold dark matter (CDM) and the dark energy
(DE) with negative pressure. CDM contributes �m � 0:3
and is mainly motivated by the theoretical interpretation of
the galactic rotation curves and large scale structure for-
mation. DE is assumed to provide �DE � 0:7 and is re-
sponsible for the acceleration of the distant type Ia
supernovae. There are a huge number of candidates for
DE in the literature (for recent reviews see [3,4]).

One possibility are cosmologies based on a mixture of
cold dark matter and quintessence, a slowly varying, spa-

tially inhomogeneous component [5]. An example of im-
plementation of the idea of quintessence is the suggestion
that it is the energy associated with a scalar field Q with
self-interaction potential V�Q�. If the potential energy
density is greater than the kinetic one, then the pressure
p � _Q2=2� V�Q� associated to the Q-field is negative.
Quintessential cosmological models have been intensively
investigated in the physical literature [6].

A different line of thought has been followed in [7–9],
where the conditions under which the dynamics of a self-
interacting Brans-Dicke (BD) field can account for the
accelerated expansion of the Universe have been analyzed.
Accelerated expanding solutions can be obtained with a
quadratic self-coupling of the BD field and a negative
coupling constant ! [7].

Dissipative effects, including both bulk and shear vis-
cosity, are supposed to play a very important role in the
early evolution of the Universe. A cosmic fluid (pressure-
less and with pressure) obeying a perfect fluid type equa-
tion of state cannot support the acceleration [9]. A solution
to this problem, and thus avoiding the necessity of a
potential for the BD field, is to assume that some dissipa-
tive effects of bulk viscous type take place at the cosmo-
logical scale [8]. A combination of a cosmic fluid with bulk
dissipative pressure and quintessence matter can drive an
accelerated expansion phase of the Universe and also solve
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the coincidence problem (the observational fact that the
energy density of cold dark matter and of Q-matter should
be comparable today) [10]. The dynamics of a causal bulk
viscous cosmological fluid filled flat homogeneous uni-
verse in the framework of the BD theory was considered
in [11]. The bulk viscous pressure term in the matter
energy-momentum tensor leads to a nondecelerating evo-
lution of the Universe.

Neither CDM nor DE have direct laboratory observatio-
nal or experimental evidence for their existence. Therefore
it would be important if a unified dark matter-dark energy
scenario could be found, in which these two components
are different manifestations of a single fluid [12]. A can-
didate for such an unification is the so-called generalized
Chaplygin gas, which is an exotic fluid with the equation of
state p � �B=�n, where B and n are two parameters to be
determined. It was initially suggested in [13] with n � 1,
and then generalized in [14] for the case n � 1. The
Chaplygin gas also appears in the stabilization of branes
in Schwarzschild-AdS black hole bulks as a critical theory
at the horizon [15] and in the stringy analysis of black holes
in three dimensions [16]. The Chaplygin equation of state
can be derived from Born-Infeld type Lagrangians [14,17].
This simple and elegant model smoothly interpolates be-
tween a nonrelativistic matter phase (p � 0) and a
negative-pressure dark energy dominated phase.

The cosmological implications of the Chaplygin gas
model have been intensively investigated in the recent
literature [18]. The Chaplygin gas cosmological model
has been constrained by using different cosmological ob-
servations, like type Ia supernovae [19], the CMB anisot-
ropy measurements [20], gravitational lensing surveys
[21], the age measurement of high redshift objects [22],
and the X-ray gas mass fraction of clusters [23]. The
obtained results are somewhat controversial, with some
of them claiming good agreement between the data and
the Chaplygin gas model, while the rest ruling it as a
feasible candidate for dark matter. In particular, the stan-
dard Chaplygin gas model with n � 1 is ruled out by the
data at a 99% level [23]. The exact solutions of the gravi-
tational field equations in the generalized Randall-
Sundrum model for an anisotropic brane with Bianchi
type I geometry, with a generalized Chaplygin gas as
matter source, were obtained in [24].

The possibility of constraining Chaplygin dark energy
models with current integrated Sachs Wolfe effect data was
investigated in [25]. In the case of a flat universe the
generalized Chaplygin gas models must have an energy
density such that �c > 0:55 and an equation of state w<
�0:6 at 95% confidence level. The extent to which the
knowledge of spatial topology may place constraints on the
parameters of the generalized Chaplygin gas (GCG) model
for unification of dark energy and dark matter was studied
in [26]. By using both the Poincaré dodecahedral and
binary octahedral spaces as the observable spatial topolo-

gies, the current type Ia supernovae (SNe Ia) constraints on
the GCG model parameters were examined. An action
formulation for the GCG model was developed in [27],
and the most general form for the nonrelativistic GCG
action consistent with the equation of state has been de-
rived. The thermodynamical properties of dark energy
have been investigated in [28]. For dark energy with con-
stant equation of state w>�1 and the generalized
Chaplygin gas, the entropy is positive and satisfies the
entropy bound. Observational constraints on the general-
ized Chaplygin gas (GCG) model for dark energy from the
nine Hubble parameter data points, the 115 SNLS Sne Ia
data, and the size of baryonic acoustic oscillation peak at
redshift z � 0:35 were examined in [29]. At a 95.4%
confidence level, a combination of the three data sets gives
0:67 � B=�1�n

0 � 0:83 (where �0 is the present day en-
ergy density) and �0:21 � n � 0:42, which is within the
allowed parameters ranges of the GCG as a candidate of
the unified dark matter and dark energy. However, the
standard Chaplygin gas model (n � 1) is also ruled out
by these data at the 99.7% confidence level. A geometrical
explanation for the generalized Chaplygin gas within the
context of brane world theories, where matter fields are
confined to the brane by means of the action of a confining
potential, was considered in [30].

The evolution of the Universe contains a sequence of
important dissipative processes, including grand unified
theory phase transition, taking place at t � 10�34 s and a
temperature of about T � 1027 K, when gauge bosons
acquire mass, reheating of the Universe at the end of
inflation (t � 10�32 s), when the scalar field decays into
particles, decoupling of neutrinos from the cosmic plasma
(t � 1 s, T � 1010 K), when the temperature falls below
the threshold for interactions that keep the neutrinos in
thermal contact, nucleosynthesis, decoupling of photons
from matter during the recombination era (t � 10 s, T �
103 K), when electrons combine with protons and no lon-
ger scatter the photons, etc. [31].

The first attempts at creating a theory of relativistic
dissipative fluids were those of Eckart [32] and Landau
and Lifshitz [33]. These theories are now known to be
pathological in several respects. Regardless of the choice
of the equation of state, all equilibrium states in these
theories are unstable and in addition signals may be propa-
gated through the fluid at velocities exceeding the speed of
light. These problems arise due to the first-order nature of
the theory, that is, it considers only first-order deviations
from the equilibrium leading to parabolic differential equa-
tions, hence to infinite speeds of propagation for heat flow
and viscosity, in contradiction with the principle of cau-
sality. Conventional theory is thus applicable only to phe-
nomena which are quasistationary, i.e. slowly varying on
space and time scales characterized by mean free path and
mean collision time.

A relativistic second-order theory was found by Israel
[34] and developed in [35–37] into what is called ‘‘tran-
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sient’’ or ‘‘extended’’ irreversible thermodynamics. In this
model deviations from equilibrium (bulk stress, heat flow,
and shear stress) are treated as independent dynamical
variables, leading to a total of 14 dynamical fluid variables
to be determined. For general reviews on causal thermo-
dynamics and its role in relativity see [31,38]. Causal bulk
viscous thermodynamics has been extensively used for
describing the dynamics and evolution of the early
Universe, or in an astrophysical context [39].

It is the purpose of this paper to consider the effects of a
possible existence of a bulk viscosity of the generalized
Chaplygin gas on the cosmological dynamics of the
Universe. The viscous effects are described by using the
truncated Israel-Stewart theory [35]. By using the Laplace
transformation and the convolution theorem, the second-
order differential equation describing the evolution of the
Hubble parameter H is transformed into an integral equa-
tion. The field equations are solved by means of an iterative
scheme. Then the general solutions of the equations are
obtained in a parametric form in the zero, first, second, and
mth order approximation, and the relevant cosmological
parameters (scale factor, energy density, Hubble parame-
ter, deceleration parameter, etc.) are obtained. The scalar
field interpretation of the Chaplygin gas is generalized to
take into account the viscosity and dissipative effects.

In order to compare the predictions of the model with the
observational data we have fitted the luminosity distance-
redshift relation with the latest observational data of the
type Ia supernovae. The model fits well these data. From
the fitting we determine both the equation of state of the
Chaplygin gas, and the parameters characterizing the bulk
viscosity. Even by taking into account the effect of the bulk
viscosity, the n � 1 Chaplygin gas models are ruled out by
the observations.

The present paper is organized as follows. The physical
model and the basic equations are presented in Sec. II. The
evolution equation for the Hubble parameter is studied in
Sec. III, and the behavior of the cosmological parameters is
obtained. The observational data have been compared with
the theoretical predictions of the model in Sec. IV. In
Sec. V we discuss and conclude our results. In the present
paper we use a system of units so that 8�G � c � 1.

II. GEOMETRY, FIELD EQUATIONS, AND
CONSEQUENCES

Perfect fluids in equilibrium generate no entropy and no
frictional type heating, since their dynamics is reversible
and without dissipation. A perfect fluid model is adequate
for the description of many processes in cosmology.
However, real fluids behave irreversibly, and some pro-
cesses in astrophysics and cosmology cannot be under-
stood except as irreversible processes. An important
irreversible effect is bulk viscosity, which typically arises
in mixtures, either of different species, as is the case of the
radiative fluid, or of the same species, but with different

energies, as in a Maxwell-Boltzmann gas. Physically, in
cosmology we can think of bulk viscosity as an internal
friction due to the different cooling rates in an expanding
gas. The dissipation due to bulk viscosity converts kinetic
energy of the particles into heat, and thus we expect it to
reduce the effective pressure in an expanding fluid [31,38].

For a flat homogeneous Friedmann-Robertson-Walker
(FRW) with a line element

 ds2 � dt2 � a2�t��dx2 � dy2 � dz2�; (1)

filled with a bulk viscous cosmological fluid the energy-
momentum tensor is given by

 Tki � ��� p���uiuk � �p����ki ; (2)

where � is the energy density, p the thermodynamic pres-
sure, � the bulk viscous pressure and ui the four velocity
satisfying the condition uiui � 1. The effect of the bulk
viscosity of the cosmological fluid can be considered by
adding to the usual thermodynamic pressure p the bulk
viscous pressure �, and formally substituting the pressure
terms in the energy-momentum tensor by peff � p��.
The particle and entropy fluxes are defined according to
Ni � nui and Si � �Ni � ���2=2�T�ui, where n is the
number density, � is the specific entropy, T 	 0 is the
temperature, � is the bulk viscosity coefficient and � 	 0 is
the relaxation coefficient for transient bulk viscous effect
(i.e. the relaxation time). The evolution of the cosmologi-
cal fluid is subject to the dynamical laws of particle number
conservation Ni

;i � 0 and Gibb’s equation Td� �
d��=n� � pd�1=n� [31,38]. In the following we shall also
suppose that the energy-momentum tensor of the cosmo-
logical fluid is conserved, that is Tki;k � 0, where ; denotes
the covariant derivative with respect to the metric.

The gravitational field equations together with the con-
tinuity equation Tki;k � 0 imply

 3H2 � �; (3)

 2 _H� 3H2 � �p��; (4)

 _�� 3��� p�H � �3H�; (5)

where H � _a=a is the Hubble parameter.
For the evolution of the bulk viscous pressure � we

adopt the truncated evolution equation [31,38], obtained in
the simplest way (linear in �) to satisfy the H-theorem
(i.e. for the entropy production to be nonnegative, Si;i �
�2=�T 	 0 [35]. The evolution equation for � is given in
the framework of the truncated Israel-Stewart theory by
[31]

 � _��� � �3�H; (6)

where � the bulk viscosity coefficient and � the relaxation
time. The truncated equation is a good approximation of
the full causal transport equations if the condition
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j�d�a3�=�T�=dtj<<a3H=T holds [31,38]. In order to
close the system of Eqs. (4) and (6) we have to give the
equation of state for p and specify � and �.

We assume that the isotropic pressure p of the cosmo-
logical fluid obeys a modified Chapylin gas equation of
state [40],

 p � ���
B
�n
; (7)

where 0 � � � 1 and 0 � n � 1. B is a positive constant.
When � � 1=3 and the comoving volume of the

Universe is small (�! 1), this equation of state corre-
sponds to a radiation dominated era. When the density is
small, �! 0, the equation of state corresponds to a cos-
mological fluid with negative pressure (the dark energy).
Generally the modified Chaplygin equation of state corre-
sponds to a mixture of ordinary matter and dark energy. For
� � �B=��1=�n�1� the matter content is pure dust with p �
0. The speed of sound vs � �@p=@��1=2 in the Chaplygin
gas is given by

 v2
s � ��1� n� �

np
�
: (8)

For the bulk viscosity coefficient and for the relaxation
time of the viscous Chaplygin gas we assume the following
phenomenological laws

 � � ��s; � � ���1 � ��s�1; (9)

where 0 � � � 1, � 	 0, and s 	 0 are constants [41].
Equations (9) are standard in cosmological models,
whereas the equation for � is a simple procedure to ensure
that the speed of viscous pulses does not exceed the speed
of light.

The truncated Israel-Stewart theory is derived under the
assumption that the thermodynamical state of the fluid is
close to equilibrium, that is the nonequilibrium bulk vis-
cous pressure should be small when compared to the local
equilibrium pressure j�j<<p � ��� B=�n. If this
condition is violated then one is effectively assuming that
the linear theory holds also in the nonlinear regime far
from equilibrium. However, for a fluid description of the
matter, the condition ought to be satisfied.

To see if a cosmological model accelerates or not it is
convenient to introduce the deceleration parameter

 q �
dH�1

dt
� 1 �

�� 3p� 3�

2�

�
1

2
�

3��n� 1�

2n

�
1�

v2
s

�n� 1��

�
�

3�

2�
: (10)

The positive sign of the deceleration parameter corre-
sponds to standard decelerating models whereas the nega-
tive sign indicates accelerated expansion.

By using the assumptions given by Eqs. (9) for the bulk
viscosity coefficient and the relaxation time, the evolution

equation for the Hubble parameter H for the viscous dis-
sipative Chaplygin gas dominated flat homogeneous cos-
mological models is obtained from the field equations as
 

�H �
�

3��� 1�H �
nB
3n
H�2n�1 �

31�s

�
H2�2s

�
_H

�
31�n�s

2�
BH2�2s�2n �

32�s��� 1�

2�
H4�2s �

9

2
H3 � 0:

(11)

III. ITERATIVE SOLUTIONS OF THE EVOLUTION
EQUATION

In order to obtain a simpler form of Eq. (11) we intro-
duce the dimensionless functions 	 and h by means of the
definitions

 H � �3s��1=�1�2s�h; 	 �
3���
2
p �3s��1=�1�2s�t; s �

1

2
;

(12)

and we denote 
0 � �B=3n�1��3s���2�1�n�=�1�2s�, s � 1=2.
In these variables Eq. (11) takes the form

 

d2h

d	2 �
���
2
p

��� 1�h� n
0h

�1�2n � h2�1�s��
dh
d	

� 
0h
2�1�s�n� � ��� 1�h2�2�s� � h3 � 0; s �

1

2
:

(13)

Introducing the new variables h �
���
y
p

and � �
R ���

y
p
d	,

respectively, Eq. (13) becomes
 

d2y

d�2�
���
2
p
��� 1�

dy
d�
� 2y�

���
2
p
�n
0y�n�1� y�1=2��s�

dy
d�

� 2
0y
�1=2��s�n� 2��� 1�y�3=2��s � 0; s�

1

2
:

(14)

Therefore for a fixed equation of state and known values
of s and n the evolution of the viscous Chaplygin gas
cosmological models is determined by a single numerical
parameter 
0.

Because of the complicated nonlinear character of the
evolution Eq. (14), it is very difficult to obtain exact
solutions of this equation in the framework of the truncated
Israel-Stewart theory. The cosmological model presented
above could be robust if the cosmological solutions of
Eq. (14), depicting the causal bulk viscous FRW space-
time, could be studied for an arbitrary range of values of s,
n, and � in the hope of leading to the possibility of correct
physical description of a well-determined period in the
evolution of our universe. By using the Laplace transform
and convolution theorem, the differential Eq. (14) is
equivalent with the following integral equation:
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 y��� �
Z �

0
F��� x�


���
2
p
�n
0y

�n�1 � y�1=2��s�
dy
d�

� 2
0y�1=2��s�n � 2��� 1�y�3=2��s�dx� y0���;

(15)

where

 F��� x� �
1

2�

e��������1�=

��
2
p
�����x�

� e�������1�=
��
2
p
������x��; (16)

 y0��� � e�����1�=
��
2
p
����Me��� � Ne���; (17)

 M �
n�y�0� � y��0�

2�
; N �

y��0� � n�y�0�
2�

; (18)

and we denoted � �
���������������������������
�2 � 2�� 5

p
=
���
2
p

, n
 �
���� 1�=

���
2
p

 �, and y��0� � �dy=d����0, respectively.

The solution of the integral Eq. (15) can be easily
obtained by using the method of successive approxima-
tions or method of iteration to obtain a solution to any
desired accuracy. Taking as an initial approximation the
solution of the linear part of Eq. (14), the general solution
of the integral Eq. (15) can be expressed in the first andmth
order approximation, m 2 N, as follows:
 

y1��� �
Z �

0
F��� x�


���
2
p
�n
0y

�n�1
0 �x�

� y�1=2��s
0 �x��y00�x� � 2
0y

�1=2��s�n
0 �x�

� 2��� 1�y�3=2��s
0 �x��dx� y0���; (19)

 � � �

 � � �

 

ym��� �
Z �

0
F��� x�


���
2
p
�n
0y�n�1

m�1 �x�

� y�1=2��s
m�1 �x��y0m�1�x� � 2
0y

�1=2��s�n
m�1 �x�

� 2��� 1�y�3=2��s
m�1 �x��dx� ym�1���; (20)

 y��� � lim
m!1

ym���: (21)

We can express the iterative solutions of the gravita-
tional field equations for a bulk viscous fluid filled FRW
universe in the framework of the truncated Israel-Stewart
theory for s � 1=2 in the following parametric form (in the
following equations we write � for the variable of integra-
tion in order to distinguish it from the independent vari-
able):

 	� 	0 �
Z �

�0

1����������
y���

p d�; a � a0e
�
��
2
p
=3��; (22)

 � � �0y���; p � �0

�
�y��� �


0

yn���

�
; (23)

 � �
������
�0

3

r
ys���; � �

������
�0

27

r
ys�1���; (24)

 q � �
3

2
���
2
p

1

y���
dy
d�
� 1; (25)

 � � �0

�
���� 1�y��� �


0

yn���
�

1���
2
p

dy
d�

�
; (26)

where a0, and t0 are arbitrary constants of integration, and
we denoted �0 � 3�3s��2=�1�2s�.

In order to solve the evolution equation iteratively we
need to chose the initial conditions for the cosmological
model. The initial value of the function y��� can be ob-
tained by fixing the initial value of the Hubble function or,
equivalently, of the density, by using the equation y�0� �
3H2�0�=�0 � ��0�=�0. The initial value of dy=d�j��0 can
be obtained by fixing the initial value of the deceleration
parameter, so that dy=d�j��0 � ��2

��������
2=3

p
�
q�0� � 1�. In

this way the mathematical initial conditions are fixed by
the physical characteristics of the Universe.

The behavior of the cosmological parameters of the bulk
viscous Chaplygin gas filled homogeneous and isotropic
dust universe, with � � 0, and, consequently, p �
�B=�n, are represented for some fixed values of n and s
and for different values of 
0 in Figs. 1–5. In Fig. 1 the
evolution of the scale factor a is represented as a function
of the dimensionless time 	.

The time variation of the density of the matter is plotted
against the time in Fig. 2. In the expanding universe the
density is a monotonically decreasing function of the cos-
mic time.

The behavior of the bulk viscous pressure � of the
Chaplygin gas is shown in Fig. 3. The negative bulk

0 0.5 1 1.5 2 2.5 3
θ

0.001

0.00105

0.0011

0.00115

0.0012

a

FIG. 1. The scale factor a of the bulk viscous Chaplygin gas
filled homogeneous and isotropic dust universe (� � 0) as a
function of the dimensionless time 	 � �1=�1�2s�t, for n � 0:1,
s � 1=4 and different values of 
0: 
0 � 0:01 (solid curve),

0 � 0:03 (dotted curve), 
0 � 0:05 (dashed curve), and 
0 �
0:07 (long dashed curve).
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viscous pressure gives a significant contribution to the total
negative pressure of the Chaplygin gas.

The time variation of the bulk viscosity coefficient of the
Chaplygin gas is represented in Fig. 4. Similarly to the
energy density, the bulk viscosity coefficient is a mono-
tonically decreasing function of time.

The time variation of the deceleration parameter q is
represented in Fig. 5. In the limit of the large times q < 0,
showing that the viscous Chaplygin gas filled universe
experiences an accelerated cosmological dynamics. For
large values of 	, after experiencing a superaccelerated
phase with q <�1, the viscous Chaplygin gas filled uni-
verse ends in a de Sitter regime, with q � �1.

When the bulk viscosity coefficient � is proportional to
the square root of the density, �� �1=2, that is, for s �
1=2, the transformations introduced in Eqs. (12) cannot be
applied. In this case a set of dimensionless variable is given
by

 H �
�
3n�1

B

�
��1=�2�1�n���

h;

	 �
3���
2
p

�
3n�1

B

�
��1=�2�1�n���

t;

(27)

while the dynamics of the Universe is determined by the
parameter � � 1=

���
3
p
�. In these variables and for s � 1=2

the evolution Eq. (11) takes the form

 

d2h

d	2 �
���
2
p

��� 1� ��h� nh�1�2n�

dh
d	
� �h1�2n

� 
��� 1��� 1�h3 � 0; s �
1

2
: (28)

The transformations h �
���
y
p

and � �
R ���

y
p
d	 reduces

Eq. (28) to
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FIG. 5. The deceleration parameter q of the bulk viscous
Chaplygin gas filled homogeneous and isotropic dust universe
(� � 0) as a function of the dimensionless time 	 � �1=�1�2s�t,
for n � 0:1, s � 1=4 and different values of 
0: 
0 � 0:01 (solid
curve), 
0 � 0:03 (dotted curve), 
0 � 0:05 (dashed curve), and

0 � 0:07 (long dashed curve).
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the bulk viscous Chaplygin gas filled homogeneous and isotropic
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0 � 0:03 (dotted curve), 
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d2y

d�2 �
���
2
p �

�� 1� �� ny�1�n
�
dy
d�
� 2�y�n

� 2
��� 1��� 1�y � 0: (29)

The general behavior of the viscous Chaplygin gas
models with s � 1=2 is qualitatively similar to the case
s � 1=2. Therefore we present only the time evolution of
the deceleration parameter q, which is shown in Fig. 6.

In the limit of large times the viscous Chaplygin uni-
verse with s � 1=2 ends in a superaccelerated state, with
q � �1:25.

IV. COMPARISON WITH OBSERVATIONAL DATA

From an observational point of view, fundamental tests
of cosmological models can be performed from the study
of the propagation in a curved space-time of the light
emitted by a source in a distant galaxy (like, for example,
a supernova) and detected on Earth on a telescope mirror.
The luminosity of the source is defined as L � dEem=dtem,
that is, the luminosity is the total energy emitted by the
source in unit time; the suffix em refers to emission. A
telescope detects a photon flux F � dErec=dtrec=AM,
where the suffix rec refers to reception. The flux is the
energy detected on the telescope mirror surface AM (as-
sumed to be perpendicular to the incident light beam) per
unit time interval [42].

An important observational parameter, the redshift z is
defined as 1� z � a0=a, where a0 is the present day value
of the scale factor, which is usually conventionally taken as
1, a0 � 1. From the definition of z we obtain da=dt �
�
a0=�1� z�

2�dz=dt. From the definition of the Hubble
function we have H � �1=a��da=dt� � �
1=�1� z���
�dz=dt�, which gives dz=dt � ��1� z�H. Because of
the cosmological expansion the elementary area changes
as a2 and the frequency ! of the light is redshifted during

the cosmic evolution so that ! / 1=a. Therefore F=L �
�1=Atot��a=a0�

2, where Atot represents the proper area of a
sphere centered in the light source and containing at the
time of reception the reception point on its surface. The
luminosity distance is defined as [42]

 dL�z� �

����������
L

4�F

s
� a0rem�1� z�; (30)

where rem is the comoving radius. The comoving coordi-
nate rem can be written in terms of another radial comoving
coordinate �em, so that

 �em � ��aem� �
Z a0

aem

da

a2H�a�
�

1

a0

Z z

0

dz0

H�z0�
: (31)

In a flat (k � 0) FRW geometry we have dL�z� � a0�1�
z��em. The luminosity distance-redshift relation is given by
[42]

 dL�z� � �1� z�
Z z

0

dz0

H�z0�
: (32)

In the case of a bulk viscous Chaplygin gas filled uni-
verse the luminosity distance dL�z� can be obtained by
simultaneously solving the following system of differential
equations, with z as an independent variable

 � 2�1� z�H
dH
dz
� 3H2 � ����

B
�n
��; (33)

 � �1� z�
d�
dz
� 3

�
�1� ����

B
�n

�
� �3�; (34)

 � ��1� z��s�1H
d�

dz
�� � �3��sH; (35)

and

 

ddL�z�
dz

�
1

1� z
dL�z� �

1� z
H�z�

; (36)

respectively. In order to simplify this system we introduce
a set of dimensionless variables, defined as

 H�z� � H0h�z�; ��z� � 3H2
0r�z�;

��z� � 3H2
0��z�; dL�z� �

DL�z�
H0

:
(37)

We denote 
 � B=3nH2n�2
0 , and choose � so that

3s�1�H2s�1
0 � 1. Substitution into Eqs. (33)–(36) trans-

form these equations into the form

 � 2�1� z�h
dh
dz
� 3h2 � �3�r�



rn
� 3�; (38)

 � �1� z�
dr
dz
� 3

�
�1� ��r�



3rn

�
� �3�; (39)
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FIG. 6. The deceleration parameter q of the homogeneous and
isotropic dust universe (� � 0) filled with a viscous Chaplygin
gas, with bulk viscosity proportional to the square root of the
energy density (s � 1=2) as a function of the dimensionless time
	 � t=

����
�
p

, for n � 0:1 and different values of 
0: 
0 � 0:01
(solid curve), 
0 � 0:03 (dotted curve), 
0 � 0:05 (dashed
curve), and 
0 � 0:07 (long dashed curve).
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 � �1� z�rs�1h
d�
dz
� � � �3rsh; (40)

and

 

dDL�z�
dz

�
1

1� z
DL�z� �

1� z
h�z�

; (41)

respectively. The initial conditions for the system of
Eqs. (38)–(41) are h�0� � 1, r�0� � 1, ��0� � �0, and
DL�0� � 0, respectively. In the equation of state one can
take � � 0. The physical luminosity distance can be writ-
ten as dL�z;
; n; s� � H�1

0 DL�z;
; n; s�. Once the dimen-
sionless function DL�z;
; n; s� is known from the
numerical integration of the system, the fitting with the

observational data will fix the numerical values of the
parameters 
, n, s.

The function dL�z� can be measured for distant type Ia
supernovae. The luminosity is evaluated by photometry,
while the redshift is evaluated from the spectroscopic
analysis of the host galaxy. Each cosmological model has
its own prediction for the function dL�z�. Therefore the
measured dL�z� data are powerful tests of the cosmological
models, and the luminosity distance can be used to fit the
free parameters of the model by using the observational
results.

Riess et al. [43] recently published a new set of 182 gold
supernovae, including new Hubble Space Telescope obser-
vations, and recalibrations of the previous measurements.
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FIG. 7 (color). The fit of the luminosity distance—redshift relation of the bulk viscous Chaplygin gas model to the Gold 2006 [43]
supernova data. Different panels show models for different 
 values, the inner (magenta) contours indicate the 1� � confidence
regions, the outer (turquoise) contours border the 2� � confidence regions. For all plotted values of 
 an accurate value of n with a
good fit can be established, while the fit remains acceptable for a wide range of the parameter s.
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We applied the same tests to the Gold 2006 data set [43], as
described in [42], by taking � � 0. Here n and s were
adjusted, and fixed values of 
 � 4:0, 4.5, 5.0, 5.5, 6.0, 6.5,
7.0, 7.5, 8.0 were taken into account. For any probed values
of 
, there exists a typical value of n, where a wide range of
s offers a fit to the supernovae data, as shown in Fig. 7. As
all panels in Fig. 7 show, the acceptable fits occur in several
disjunct regions, which are slightly separated by s. The
best-fit n value was searched in the marginal projections of
n (0< s < 2), instead of finding a global minimum. The
varying s caused only slight modifications of the fit, which
is characterized by the marginal projection of s within the
2� � confidence region.

The preferred n values and the variation with s for the
probed 
 values are represented in Table I. The first column
represents the values of 
 we have used for comparison.
The best fits for n are represented in the second column,
while the best-fit values for s as well as the allowed range
of the parameter is represented in the third column. In the
cases 
 � 5:5 and 
 � 8:0, respectively, a value of s > 1 is
required, and the fit quality increases with increasing s.

These results show that the model behaves with some
complexity in the prediction of the luminosity distance, as
the parameters do not behave monotonically (with the
exception of n). However, the fitting ellipsoids are well
defined (see Fig. 7), and in general the predictions of the
model fit well the supernova data.

V. DISCUSSIONS AND FINAL REMARKS

In the present paper we have considered the dynamics of
a bulk viscous Chaplygin gas filled flat homogeneous and
isotropic universe. We have derived and formulated the
evolution equations of the system, we have considered
their behavior by using both analytical and numerical
techniques, and we have compared the predictions of our
model with the supernova data. The most attractive feature
of the Chaplygin gas is that it could explain the main
observational properties of the Universe without appealing
to an effective cosmological constant. Generally, the ob-
tained analytical and numerical solutions of the gravita-
tional field equations describes an accelerating universe,

with the effective negative pressure induced by the
Chaplygin gas and the bulk viscous pressure driving the
acceleration.

From the equation of state of the Chaplygin gas with
� � 0 it follows that for the critical values pc and �c of the
pressure and density the parameter wc � pc=�c is given by
wc � �B=�

n�1
c ��c=�c. Evaluating this relation at the

present time when �c � �c0 gives B � �wc0�
n�1
c0 �

���c0��
n
c0. The Chaplygin gas behaves like a cosmologi-

cal constant for wc0 � �1, which gives the relation be-
tween the constant B and the present day value of the bulk
viscous pressure as

 B � �n�1
c0

�
1�

���c0�

�c0

�
�

�
3H2

0

8�G

�
n�1

�
1�

���c0�

�c0

�
;

(42)

where H0 � 3:24� 10�18 hs�1, 0:5 � h � 1 is the
Hubble constant [3,4]. Since ���c0�< 0, the presence of
the bulk viscous effects can significantly increase the value
of B.

By comparing the model with � � 0 to the Gold 2006
supernova data, it turns out that a good agreement with
these observations can be established for a wide range of
the power s 2 �0:2; 2�which occurs in the phenomenologi-
cal laws (9), which characterize the bulk viscosity coeffi-
cient. The other viscosity parameter � can be obtained
from the equation 3s�1�H2s�1

0 � 1, and by choosing a
value for the Hubble parameter. For h � 0:7 (H0 �
2:268� 10�18 s�1) we obtain � � �6:2385�
10�11 s�0:6; 2:8573� 1052 s3� for the above-established
range of the parameter s. As for the equation of state of
the Chaplygin gas, by taking into account the definition of

, 
 � B=3nH2n�2

0 , and for the same value of the Hubble
parameter, the confrontation with supernova data selects
the pairs �n; B� represented in Fig. 8.

Scalar fields are supposed to play a fundamental role in
the evolution of the early universe. The Chaplygin gas
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FIG. 8. The parameter values B corresponding to the best-fit
values �
; n� represented in a logarithmic scale as a function of
n.

TABLE I. The preferred n values and the variation with s for
the probed 
 values.


 n s

4.0 0.1 0.8 (s > 0:2)
4.5 0.2 0.8 (s > 0:3)
5.0 0.25 0.8 (s > 0:5)
5.5 0.35 s > 1
6 0.4 1.7 (s > 0:8)
6.5 0.5 s > 0:7
7 0.6 1 (s > 0:7)
7.5 0.65 poor fit for any s
8 0.7 s > 1
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model can be also described from a field theoretical point
of view by introducing a scalar field � and a self-
interacting potential U���, with the Lagrangian
[13,14,19,40,44]

 L� �
1
2

_�2 �U���: (43)

The energy density and the pressure associated to the
scalar field � associated to the bulk viscous Chaplygin gas
are given by

 �� �
_�2

2
�U��� � �; (44)

and

 p� �
_�2

2
�U��� � ���

B
�n
��; (45)

respectively.
The scalar field and the potential can be obtained from

the equations

 ��t� ��0 �
Z t

t0

������������������������������������������
�1� ����

B
�n
��

s
dt; (46)

and

 U�t� �
1

2

�
�1� ����

B
�n
��

�
; (47)

respectively, where �0 is an arbitrary constant of
integration.

The dependence of the potential U��� on the scalar field
� is represented in Fig. 9.

In conclusion, we have found that the viscous Chaplygin
gas model offers a real possibility for replacing the effec-
tive cosmological constant and to explain the recent accel-
eration of the universe.
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