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(Received 24 October 2007; published 20 March 2008)

In paper I of this series we discuss how magnification bias distorts the 3D correlation function by
enhancing the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. This
lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-
magnification and magnification-magnification correlations. Here we extend the discussion to the power
spectrum and also to redshift space. In real space, pairs oriented close to the LOS direction are not
protected against nonlinearity even if the pair separation is large; this is because nonlinear fluctuations can
enter through gravitational lensing at a small transverse separation (or i.e. impact parameter). The
situation in Fourier space is different: by focusing on a small wave number k, as is usually done, linearity
is guaranteed because both the LOS and transverse wave numbers must be small. This is why
magnification distortion of the galaxy correlation appears less severe in Fourier space. Nonetheless, the
effect is non-negligible, especially for the transverse Fourier modes, and should be taken into account in
interpreting precision measurements of the galaxy power spectrum, for instance those that focus on the
baryon oscillations. The lensing induced anisotropy of the power spectrum has a shape that is distinct from
the more well-known redshift space anisotropies due to peculiar motions and the Alcock-Paczynski effect.
The lensing anisotropy is highly localized in Fourier space while redshift space distortions are more
spread out. This means that one could separate the magnification bias component in real observations,
implying that potentially it is possible to perform a gravitational lensing measurement without measuring
galaxy shapes.
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I. INTRODUCTION

The effect of magnification bias on the 3D galaxy/quasar
correlation function was studied in paper I [1]. (Galaxy and
quasar can be considered synonymous hereafter.) With the
important exception of the classic paper by Matsubara [2],
previous work on how magnification bias modifies cluster-
ing observations has largely focused on the 2D angular
correlation function [3–13]. The novelty of the 3D corre-
lation function, as emphasized by [1,2], is that magnifica-
tion bias makes it anisotropic. In this paper, we extend our
previous analysis by studying the anisotropy in Fourier and
redshift space. At first sight, the extension to Fourier space
might seem a trivial exercise. The calculations are indeed
straightforward, but as we will see, the results are far from
obvious: there are important qualitative differences be-
tween the results in Fourier space and real space that go
beyond the usual wave number-position (k-x) duality.

Let us recall the situation in real space, as depicted in
paper I. The anisotropy of the observed 3D correlation
function can be understood intuitively as follows. The
correlation function is measured by pair counts of galaxies.
A pair of galaxies that are aligned along the line-of-sight
(LOS) behave differently from a pair oriented transverse to

the LOS. In the former case, the closer galaxy can lens the
background one. The same does not happen in the trans-
verse orientation. The net effect is an anisotropy in the
observed correlation function, induced by gravitational
lensing (or equivalently, magnification bias; we refer to
this effect as magnification distortion). This reasoning
suggests the gravitational lensing corrections are largest
for a pair of galaxies oriented along the LOS. Indeed, the
corrections can be quite significant: consider for instance a
LOS separation of �100 Mpc=h; the intrinsic galaxy cor-
relation is rather weak on such a large scale, but the lensing
induced correction can be quite substantial, since for the
LOS orientation, the relevant lensing impact parameter, i.e.
transverse separation, is zero (keep in mind also that the
lensing effect grows with the LOS separation while the
intrinsic galaxy correlation generally drops with separa-
tion). In other words, for the LOS orientation, scales that
otherwise would be considered linear can in fact be se-
cretly affected by nonlinear fluctuations via lensing. A

large separation j�xj �
�����������������������������
��2 � j�x?j2

p
does not guaran-

tee linearity because nonlinear fluctuations can sneak in
through lensing with a small transverse separation j�x?j.

This peculiar mixing of linear intrinsic galaxy fluctua-
tions with nonlinear lensing fluctuations does not arise in
Fourier space. A small net wave number jkj is sufficient to
guarantee that both the LOS component kk and the trans-
verse component jk?j are small. Nonlinear lensing correc-
tions cannot sneak in as long as one focuses on a small jkj,
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as is usually done. This immediately tells us that the
anisotropy of the observed galaxy correlation must appear
milder in Fourier space. Our primary goal here is to quan-
tify this.

As discussed in paper I, the magnification bias induced
anisotropy in the observed 3D galaxy correlation has two
implications. First, precision measurements of the galaxy
correlation must take into account such magnification dis-
tortion. These include future galaxy surveys that hope to
determine the baryon oscillation scale to high accuracy
[14–20]. Second, the distinctive anisotropy pattern
makes it possible in principle to separately measure the
galaxy-galaxy, galaxy-magnification and magnification-
magnification correlations. (The last correlation was gen-
erally ignored in previous papers that focused on angular
correlation between galaxies at widely separated redshifts
[8–13], where the galaxy-magnification correlation domi-
nates.) Achieving such a separation requires that one
understands other sources of anisotropy. We therefore ex-
tend our Fourier analysis here to incorporate the anisotropy
due to both peculiar motions and the Alcock-Paczynski
effect.

The rest of the paper is organized as follows. In Sec. II,
we derive and numerically compute the magnification dis-
tortion of the observed galaxy clustering—Sec. II A sum-
marizes the results from paper I on the correlation function
while Sec. II B focuses on the power spectrum. Redshift
space distortion due to peculiar motion is next incorporated
in Sec. III, and we conclude in Sec. IV. In the appendix, we
discuss the Alcock-Paczynski anisotropy.

Before we start, it is useful to point out several related
papers. Vallinoto et al. [21] explored the impact of lensing,
especially magnification bias, on the baryon oscillation
signal in the real space correlation function. Their results
are consistent with ours in paper I, though they focus
exclusively on pair separations that are oriented transverse
to the LOS, and their work is therefore more connected to
our paper on the angular correlation function [22]. Wagner
et al. [23] examined the anisotropy of the 3D correlation
that is introduced by light cone effects. A discussion of the
classic paper by Matsubara [2] can be found in paper I.
Both [2] and paper I focused on the real/configuration
space correlation function, though peculiar motions and
the Alcock-Paczynski effect are also treated in [2]. A
recent paper by Zhang and Chen [24] explored the effects
of gravitational lensing in Fourier space in the context of
supernova observations. LoVerde et al. [25] examined the
impact of magnification bias on integrated Sachs-Wolfe
measurements.

II. MAGNIFICATION DISTORTION

Given an intrinsic galaxy overdensity �g, magnification
bias introduces a correction �� to the observed galaxy
overdensity �obs:

 �obs � �g � �� (1)

which is a function of the galaxy position, specified for
instance by the radial comoving distance � and the angular
position �. The magnification bias correction is given by
[3–8]:

 �� � �5s� 2��; (2)

where � is the lensing convergence:

 ���;�� �
Z �

0
d�0

�0��� �0�
�

r2
?���

0;��; (3)

� is the gravitational potential, andr2
? is the 2D Laplacian

in the transverse directions. We assume a flat universe—
generalization to an open or a closed universe is straight-
forward. The symbol s stands for

 s �
dlog10N�<m�

dm
; (4)

where N�<m� is the cumulative number counts for gal-
axies brighter than magnitude m. This assumes the galaxy
sample is defined by a sharp faint-end cutoff. A broader
definition of s for a more general galaxy selection is given
in Appendix A of paper I.

We define the galaxy bias b by �g � b�, where � is the
mass overdensity. Equation (1) can then be rewritten as

 

�obs

b
� ��

5s� 2

b
�: (5)

The relative importance of the intrinsic clustering and the
magnification bias correction is therefore controlled by,
among other things, the sample dependent ratio �5s�
2�=b.

The precise values of s and b depend sensitively on
details of how the galaxy/quasar sample is selected, for
instance subject to color cuts and so on. Unless otherwise
stated, we adopt throughout this paper the value �5s�
2�=b � 1 to illustrate the effect of magnification bias on
clustering measurements (see paper I for more details). An
implicit assumption is the linearity of the galaxy bias, a
subject we will return to in Sec. IV.

In all illustrative examples below, we employ the fol-
lowing cosmological parameters: the Hubble constant h �
0:7, matter density �m � 0:27, cosmological constant
�� � 0:73, baryon density �b � 0:046, power spectrum
slope n � 0:95 and normalization �8 � 0:8. We employ
the transfer function of [26], and the prescription of [27]
for the nonlinear power spectrum. In all equations we use
units where the speed of light is unity: c � 1.

A. The correlation function

Here, we summarize the main results of paper I.
Including lensing magnification, the observed two-point
correlation function is given by:
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 �obs��1;�1;�2;�2� � h�obs��1;�1��obs��2;�2�i

� �gg��1;�1;�2;�2�

� �g���1;�1;�2;�2�

� �g���2;�2;�1;�1�

� �����1;�1;�2;�2�; (6)

where the magnification bias corrections, the galaxy-
magnification and magnification-magnification correla-
tions, are:
 

�g���1;�1;�2;�2� � �g���2;�2;�1;�1�

�
3

2
H2

0�m�5s� 2��1� �z�j�2 � �1j

�
Z d2k?
�2��2

Pgm��z; k?�e
ik?� ����1��2� (7)

 �����1;�1;�2;�2� �

�
3

2
H2

0�m�5s� 2�
�

2

�
Z ��

0
d�0

�
� ��� �0��0

��

�
2
�1� z0�2

�
Z d2k?
�2��2

Pmm�z
0; k?�e

ik?��0��1��2�:

(8)

Here we have Taylor expanded �1 and �2 around the mean
�� and retained the lowest order contributions. The intrinsic
(unlensed) galaxy autocorrelation, or galaxy-galaxy corre-
lation, is
 

�gg��1;�1;�2;�2� � �gg�
���������������������������������������������������������
��1 � �2�

2 � ��2��1 � �2�
2

q
�

�
Z d3k

�2��3
Pgg��z; k�e

ik��x1�x2� (9)

ignoring for now the issue of redshift distortion, which will
be addressed in Sec. III. Note that x1 and x2 refer to the
points corresponding to �1;�1 and �2;�2. Note also Pmm,
Pgm, and Pgg denote, respectively, the mass-mass, galaxy-
mass, and galaxy-galaxy power spectra.

The observed correlation function is a sum of all three
correlations above [Eqs. (7)–(9)]. (A discussion of their
higher order Taylor corrections can be found in
Appendix B of paper I.). Viewed in this way, the anisotropy
of the lensing induced corrections is quite striking:
�g��1; 2� � �g��2; 1� scales linearly with the line-of-sight
(LOS) separation j�2 � �1j (i.e. it increases rather than
decreases with the separation), and ��� is independent of
the LOS separation. The intrinsic galaxy autocorrelation
�gg is isotropic and generally decreases with separation.

We can summarize the distinctive lensing induced an-
isotropy in the observed correlation function as follows:

 

�obs���;�x?�� �gg�
�����������������������
��2��x2

?

q
��f��x?����g��x?�;

(10)

where �� and �x? are the LOS and transverse separations,
respectively, f�� represents the galaxy-magnification cor-
relation and g represents the magnification-magnification
correlation. Here, f and g are functions of the transverse
separation only, and are determined by the galaxy-mass
and mass-mass power spectra. This distinctive form of the
anisotropy allows us in principle to separately measure
�gg, f, and g, from which we can infer the galaxy-galaxy,
galaxy-mass, and mass-mass power spectra. For instance,
at any given �x?, plotting �obs as a function of the LOS
separation �� would reveal a linear contribution at suffi-
ciently large ��’s where �gg is very small. Its slope tells us
f and its extrapolation to �� � 0 tells us g. Subtracting
��f� g from �obs then yields �gg. This is illustrated in
Fig. 2 of paper I, where we also present order of magnitude
estimates for the ratios ���=�gg and �g�=�gg:

 

���
�gg

�

�
5s� 2

b

�
2 �1� �z�2

50
� ��H0�

3 �H0

k	

�2�k	�

�2�k		�

2�g�
�gg

�

�
5s� 2

b

�
1� �z

2
���H0�

�H0

k	

�2�k	�

�2�k		�
:

(11)

The symbol �2�k� denotes the dimensionless variance at

scale k and redshift �z: 4�k3Pmm�k�=�2��3. Here, k		 �

1=
������������������������
��2 � �x2

?

q
, while k	 is equal to either 1=�x? or km,

whichever is smaller (km is the scale where k2Pmm�k�
peaks; km * 3 h=Mpc). These estimates work reasonably
well except for separations around or beyond the zero-
crossing scale.

For the LOS orientation, where �2�k	� can be much
larger than �2�k		�, the magnification bias corrections
��� and �g� can dominate over the intrinsic clustering
correlation �gg. The implications for baryon acoustic os-
cillation measurements are summarized at the end of
Sec. II B.

B. The power spectrum

For surveys with a simple geometry, the power spectrum
is often the more popular quantity to measure. Suppose the
survey geometry is specified by W�x� � Wk�xk�W?�x?�,
where x specifies a location with xk being the LOS com-
ponent and x? the transverse component. For instance, a
top-hat geometry in the radial direction is described by

 Wk�xk� � 1=
����
L
p

if � L=2< xk <L=2 � 0 otherwise

(12)

with L being the radial span. A Gaussian geometry in the
radial direction would be described by
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 Wk�xk� � ���2��1=4 exp
�x2
k
=�2�2��: (13)

Our normalization convention is that
R
d3xW2 � 1. Note

that the origin xk � 0 is chosen to be located at the mean
redshift of interest.

The Fourier counterparts of Eqs. (7) and (8), taking into
account the effects of the window, are

 2Pg��k� �
3

2
H2

0�m�5s� 2��1� �z�

G�kk�
Z d2k0?
�2��2

Pgm��z; k
0
?�j

~W?�k? � k0?�j
2

(14)

and
 

P���k� �
�

3

2
H2

0�m�5s� 2�
�

2
j ~Wk�kk�j

2

�
Z ��

0
d�0� ��� �0�2�1� z0�2

�
Z d2k0?
�2��2

Pmm�z
0; k0? ��=�0�j ~W?�k? � k0?�j

2;

(15)

where ~Wk and ~W? are Fourier transforms of the windows
Wk and W?, and G is defined as follows:

 G�kk� �
Z
dx1dx2jx1 � x2jeikk�x1�x2�Wk�x1�Wk�x2�;

(16)

where x1 and x2 represent the LOS distance.
The galaxy power spectrum is windowed in the usual

way:

 Pgg�k� �
Z d3k0

�2��3
Ptrue
gg �k

0�j ~W�k� k0�j2; (17)

where ~W is the Fourier transform of the total window W,
and Ptrue

gg represents the true/unwindowed galaxy power
spectrum.

The observed power spectrum is the sum:

 Pobs�k� � Pgg�k� � 2Pg��k� � P���k�; (18)

where Pobs�k� is defined to be
 

Pobs�k� �
Z
d3x1d

3x2h�obs�x1��obs�x2�i

�W�x1�W�x2�eik��x1�x2�: (19)

The survey window enters into these three contributions to
the observed power in distinct ways. For the galaxy-galaxy
power spectrum, the window function is convolved as
usual under an integral with the true 3D power. For P��,
only the transverse window function is convolved under an
integral with the power spectrum (Pmm). The LOS window
function is not convolved under an integral at all: P�� is
directly proportional to j ~Wkj2. For Pg�, it is also directly

proportional to some generalized LOS window function
G�kk�. This interesting behavior of the magnification-
magnification and galaxy-magnification power spectra
can be traced to the unique anisotropies of their real space
counterparts: referring back to Eq. (10), the appearance of
j ~Wkj2 in P�� is related to the fact that g is independent of
the LOS separation, and the appearance of G in Pg� is
related to the linear dependence of f�� on the LOS
separation.

The precise form of the window functions depends on
the exact geometry. For the example of the top-hat window
[Eq. (12)], they are
 

j ~Wk�kk�j
2 �

4

Lk2
k


sin�kkL=2��2

G�kk� �
2

k2
k

�
2

kkL
sin�kkL� � cos�kkL� � 1

�
:

(20)

At low kk, j ~Wkj
2 � L while G� L2=3.

The corresponding expressions for the example of the
Gaussian window [Eq. (13)] are
 

j ~Wk�kk�j
2 �

������������
4��2

p
e��

2k2
k

G�kk� � 4�2 � 8k2
k
�4

Z 1

0
dyek

2
k
�2�y2�1�:

(21)

At low kk, j ~Wkj
2 �

�������
4�
p

�, while G� 4�2. Illustrations of
j ~Wkj

2 and G can be found in Fig. 1 for both the top-hat and
Gaussian geometries.

For completeness, let us also give the window functions
in the transverse directions for a top-hat (a circle of radius

FIG. 1. The multiplicative LOS windows j ~Wkj
2 and Gk as a

function of the LOS wave number kk. The dashed lines are for a
top-hat geometry, with L � 706:6 Mpc=h and the solid lines are
for a Gaussian geometry, with � � 204 Mpc=h.
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R):

 W?�x?� � 1=
���������
�R2

p
if x? <R � 0 otherwise

~W?�k?� �
�

4�

k4
?R

2

�
1=2 Z k?R

0
drrJ0�r� �

�������
4�
p

k?
J1�k?R�;

(22)

where J0 and J1 are the Bessel functions, and for a
Gaussian:

 W?�x?� � ���2��1=2 exp
�x2
?=�2�

2��

~W?�k?� �
������������
4��2

p
exp
��2k2

?=2�:
(23)

Note that in Fourier space the galaxy power spectrum
Pgg can itself be anisotropic if the window function is
anisotropic. In the Gaussian case, if the same � were
chosen for both ~W? and ~Wk, the windowed galaxy power
spectrum will remain isotropic. In our computations below
in this section, we adopt this special choice in order to
more clearly show the anisotropy induced by magnification
bias. We have checked that using the top-hat geometry
yields a rather similar lensing anisotropy as long as one
makes the choice 2R� L�

������
12
p

� (the latter equality is
chosen such that the GaussianG and the top-hatG have the
same low kk limit).

As in the case of the correlation functions, it is useful to
give order of magnitude estimates for the ratios P��=Pgg
and Pg�=Pgg:
 

P��
Pgg
�

�
5s� 2

b

�
2 �1� �z�2

50
� ��H0�

3 j
~Wk�kk�j

2

H�1
0

Pmm�k?�
Pmm�k�

;

2Pg�
Pgg

�

�
5s� 2

b

�
1� �z

2
H2

0G�kk�
Pmm�k?�
Pmm�k�

; (24)

where k2 � k2
? � k

2
k
. The above expressions are approxi-

mate. For instance, we have approximated Pmm�k? ��=�0�
[Eq. (15)] by Pmm�k?�. Nonetheless, they agree with the
exact numerical integration to within factor of a few, and
they illustrate several important points.

The presence of j ~Wkj2 and G means that the effects of
magnification bias are largest for low kk’s. The simplest
limit to consider is the one with k? � kk (i.e. a k vector
that is oriented transverse to the LOS) in which case the
factors of Pmm cancel out in the ratios, since k� k?. In the
small kk limit, j ~Wkj2 � L and G� L2=3, where L is the
width of the redshift bin over which one is measuring the
power spectrum. One can see that for instance at �z� 1:5
where ��H0 � 1, and for �5s� 2�=b� 1, we have
P��=Pgg � 0:1H0L and 2Pg�=Pgg � 0:4�H0L�

2. A choice
of L� 900 Mpc=h (which corresponds to the redshift
interval 1:5 0:35) yields P��=Pgg � 0:03 and
2Pg�=Pgg � 0:04. In other words, the total effect of mag-
nification bias is quite modest, �7% in this configuration.
It should be kept in mind that (1) this estimate increases

with L, and (2) the P��=Pgg ratio increases strongly with
redshift: the cubic dependence on � ��H0� and quadratic
dependence on 1� �z means this ratio rises rapidly beyond
�z� 1:5.

Nonetheless, it is perhaps a little surprising that magni-
fication bias appears to have a much more modest effect on
the observed clustering in Fourier space compared to real
space, where the corresponding ratios ���=�gg and
2�g�=�gg can reach order unity or even higher in the
LOS orientation [Eq. (11); see paper I for details]. The
fundamental reason is the absence in Fourier space of this
potentially large boost factor, �2�k	�=�2�k		� in Eq. (11),
that is present for the correlation function. Consider a
separation vector �x that is oriented along the LOS, which
is the orientation that maximizes the magnification bias
effect. If j�xj is sufficiently large, the galaxy-galaxy cor-
relation �gg is essentially determined by the power spec-
trum in the linear regime [low k		 � 1=j�xj in Eq. (11)]
and is quite weak, while the galaxy-magnification correla-
tion �g� and the magnification-magnification correlation
��� are sensitive to the power in the nonlinear regime
[high k	 � 1=�x? in Eq. (11)] and can be appreciable. In
other words, in the LOS orientation in real space, one is
comparing intrinsic galaxy fluctuations and lensing fluctu-
ations on very different scales.

Consider, on the other hand, a vector k that points in the
transverse direction, which is the Fourier analog of a LOS
�x. In this case, k� k? and factors of the mass power
spectrum simply cancel out of the ratios in Eq. (24). There
is no boost coming from a ratio of powers on very different
scales, as in the case of the correlation function. In other
words, the mixing of magnification bias corrections with
the intrinsic galaxy clustering term occurs in a very differ-
ent manner in Fourier space than in real space.

Ultimately, the correlation function and the power spec-
trum are related by Fourier transform, and so should really
contain the same information. The important point to keep
in mind, however, is that for cosmological purposes, one
often focuses on scales that are perceived to be linear: in
the case of the correlation function, that means a large
j�xj, and in the case of the power spectrum, that means a
small jkj. With the presence of magnification bias, a large
j�xj no longer protects one against nonlinearity i.e. a
separation �x pointing along the LOS (i.e. small j�x?j)
is subject to large magnification corrections even if j�xj is
large. On the other hand, a small jkj means both kk and
jk?j must be small, which protects one against nonlinear
fluctuations.

Let us return to the order of magnitude estimates in
Eq. (24), to see what happens if one considers angular
averages. The monopole of any power spectrum P is
defined as

 monopole of P�k� �
Z �=2

0
P�k� sin	kd	k: (25)
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where 	k is the angle between the LOS and k. Let us focus
on the monopole P��=Pgg for a Gaussian window, where
the calculation is the simplest. Suppose one is interested in
a scale k such that k� * 3. Because of the Gaussian in
j ~Wkj

2, the integral over angle will be dominated by 	k �
�=2, and so one can approximate Pmm�k?� by Pmm�k�. The
remaining integral over angle is simple to do, and yields
the ratio:

 

monopole of P��
monopole of Pgg

�

�
5s� 2

b

�
2 �1� �z�2

50
� ��H0�

3 �H0

k

(26)

which is valid only for k� * 3. Note how the width of the
window � completely disappears from this ratio. A similar
expression holds for the top-hat case as well. This ratio is
small for k=H0 � 1, unless one goes to a sufficiently high
redshift. The corresponding ratio for galaxy-magnification

cannot be worked out analytically because the window G
has a more complicated form. On dimensional grounds,
one expects this ratio to scale with �. In practice, we find
that for redshifts where magnification bias matters, the
monopole of the galaxy-magnification power spectrum is
quite a bit smaller than that of the magnification-
magnification power spectrum, in part because of cancel-
lations that occur under the angular average.

The intuition gained above from the order of magnitude
estimates [Eqs. (24) and (26)] is confirmed by the exact
numerical evaluation of Pg�, P�� and Pgg according to
Eqs. (14), (15), and (17). This is shown in Figs. 2–5 for
redshifts �z � 1, 1.5, 2, 3. The magnification distortion
increases with redshift and, as discussed before, has the
most noticeable effects for small kk’s. Exactly how small
kjj needs to be to see a substantial effect depends on the
LOS width of the survey/sample selection function. For a

(a) (b)

FIG. 3 (color online). Analog of Fig. 2 for �z � 1:5. The contours in (a) are, left to right: log10�P=
Mpc=h�3� � 3:86 (red; double
contours), 3.76 (blue: double contours), 3.66, 3.56, . . ., 3.16 (black). A Gaussian window is assumed with � � 270 Mpc=h.

(a) (b)

FIG. 2 (color online). �z � 1: (a) Contours of constant Pobs (solid line) and Pgg (dotted line), left to right: log10�P=
Mpc=h�3� � 4:02
(red; double contours), 3.93 (blue: double contours), 3.83, 3.73, . . . 3.33 (black). (b) Various power spectra normalized by the same
BBKS (no baryon) galaxy power spectrum: Pobs for kk � 0 (red solid line), Pgg (black dashed line), monopole of Pobs [�5s� 2�=b � 1
for red dotted line and �5s� 2�=b � 2 for red dot-dashed line]. Note that k2 � k2

k
� k2

?. A Gaussian window is assumed with � �
204 Mpc=h for both panels, and �5s� 2�=b � 1 is adopted throughout except for the red dot-dashed curve.
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Gaussian window function the region of large magnifica-
tion distortion is kjj & ��1. Panels (b) of Figs. 2–5 show
that the monopole of the power spectrum is visibly dis-
torted as well, the effect at low k’s is particularly severe at
redshifts * 2.

There is the interesting question of how magnification
bias impacts baryon oscillation measurements. This was
addressed in paper I for the real space correlation function.
Briefly summarizing: we found that the observed baryon
acoustic scale can be shifted by up to �3% in the LOS
orientation, and up to �0:6% in the monopole, depending
on the exact values of the galaxy bias, redshift and number
count slope. The corresponding shifts in the inferred
Hubble parameter and angular diameter distance, if
ignored, could significantly bias measurements of the
dark energy equation of state (by up to �15%) . In
Fourier space, there are several wiggles, and the magnifi-
cation bias induced shift in the baryon oscillation scale is
likely more sensitive to exactly how this scale is extracted

from data. We therefore do not attempt to investigate this
further in this paper. Given the earlier discussions, it is
reasonable to expect that baryon acoustic oscillation mea-
surements are less affected by magnification bias in Fourier
space. However, it is worth emphasizing that magnification
bias introduces scale and orientation dependent corrections
to the observed power spectrum, and these corrections
depend on uncertain factors such as the galaxy bias. The
question is whether, in fitting the observed data for the
baryon oscillation scale, one should introduce additional fit
parameters to account for magnification bias, and what
impact they might have on the measurement accuracy of
the Hubble parameter and the angular diameter distance.
This certainly deserves more study.

It is also worth noting that, as can be seen from panels
(b) of Figs. 2–5, the radiation-matter equality peak loca-
tion/shape around k� 0:01 h=Mpc is likely significantly
affected by magnification bias, and one must be careful in
using it as a standard ruler [28].

(a) (b)

FIG. 4 (color online). Analog of Fig. 2 for �z � 2. The contours in (a) are, left to right: log10�P=
Mpc=h�3� � 3:71 (red; double
contours), 3.61 (blue: double contours), 3.51, 3.41, . . ., 3.01 (black). A Gaussian window is assumed with � � 323 Mpc=h.

(a) (b)

FIG. 5 (color online). Analog of Fig. 2 for �z � 3. The contours in (a) are, left to right: log10�P=
Mpc=h�3� � 3:47 (red; double
contours), 3.37 (blue: double contours), 3.27, 3.17, . . ., 2.77 (black). A Gaussian window is assumed with � � 397 Mpc=h.
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III. INCORPORATING REDSHIFT DISTORTION
DUE TO PECULIAR MOTIONS

The observed redshift of a source galaxy is dependent
upon both the distance to the source (the cosmological
redshift) and the peculiar velocity of the source. In redshift
space, the observed galaxy density is (to first order in
perturbations):

 �obs � �g � �� � �v (27)

where �g and �� are as in Eq. (1), and �v is

 �v � �
�1� �z�
H��z�

@vk
@xk

(28)

where vk is the LOS peculiar velocity, and H��z� is the
Hubble parameter at the mean redshift �z.

The observed two-point correlation function, instead of
Eq. (6), is now given by

 �obs�1; 2� � �gg�1; 2� � �g��1; 2� � �g��2; 1�

� ����1; 2� � �gv�1; 2� � �vg�2; 1�

� �vv�1; 2�; (29)

where we have used the arguments 1 and 2 as the shorthand
for the positions of the two points of interest in redshift-
space. We have used the Limber approximation which
makes the velocity-magnification cross-terms vanish (the
derivative with respect to xk in the velocity term pulls down
a factor of kk, which vanishes under the Limber approxi-
mation; see [2]). The galaxy-velocity cross-correlation and
the velocity autocorrelation are given by the well-known
results of Kaiser [29]:

 �gv�1; 2� �
�
a
a0
D0

D

�Z d3k

�2��3
k2
k

k2 Pgm�k�e
ik��x1�x2� (30)

and

 �vv�1; 2� �
�
a
a0
D0

D

�
2 Z d3k

�2��3
k4
k

k4 Pmm�k�e
ik��x1�x2�; (31)

where x1 � x2 has a LOS component �1 � �2, and trans-
verse components of ����1 � �2�. Here, a is the scale
factor, D is the linear growth factor, and a0 and D0 are
their derivatives with respect to conformal time. All time
dependent quantities are evaluated at the mean redshift �z.

The observed power spectrum, instead of Eq. (18), is
now given by
 

Pobs�k� � Pgg�k� � 2Pg��k� � P���k� � 2Pgv�k�

� Pvv�k�; (32)

where the first line is as before [Eqs. (14), (15), and (17)],
and

 Pgv�k� �
�
a
a0
D0

D

�Z d3k0

�2��3
k02
k

k02
Pgm�k0�j ~W�k� k0�j2

(33)

and

 Pvv�k� �
�
a
a0
D0

D

�
2 Z d3k0

�2��3
k04
k

k04
Pmm�k

0�j ~W�k� k0�j2:

(34)

To gain some intuition about the various effects at work,
it is useful to adopt the following approximation: integrate
out all the convolving windows as if they are delta func-
tions. (This approximation is made only in this section, not
in previous sections.) For instance:

 

Z d3k0

�2��3
P�k0�j ~W�k� k0�j2 � P�k�; (35)

where P represents Pgg, Pgm, Pgmk02k =k
02 and so on, and the

convolving window ~W could also be ~W?. This works well
if the power spectrum is sufficiently smooth and the con-
volving window is sufficiently narrow. With this approxi-
mation, we obtain

 

Pobs��z;k��Pgg��z;k�
��

1�
fD
b

k2
k

k2

�
2
e�k

2
k
�2
z

�q�1� �z�G�kk�
Pmm��z;k?�
Pmm� �z;k�

�q2j ~Wk�kk�j2

�
Z ��

0
d�0� ����0�2�1� z0�2

Pmm�z
0;k? ��=�0�

Pmm��z;k�

�
;

(36)

where

 fD �
d lnD
d lna

(37)

evaluated at the mean redshift �z, and

 q �
3

2
H2

0�m
�5s� 2�

b
(38)

and we have assumed a linear galaxy bias b (at redshift �z).
We have introduced an exponential factor exp
�k2

k
�2
z�

which accounts for a possible (Gaussian) dispersion in
redshifts, such as from photometric redshifts. Here �z is
the dispersion expressed in comoving Mpc/h (not in red-
shift). One can also think of this exponential factor as
modeling the effect of nonlinear or virialized peculiar
motions, though this description is at best approximate
[30]. Strictly speaking, with a nonzero �z, the multiplica-
tive window G in Eq. (36) should be replaced by
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Gz�kk� �
Z dz1dz2dz01dz

0
2

2��2
z

jz01 � z
0
2je

ikk�z1�z2�Wk�z1�Wk�z2�

� exp
�
�
�z01 � z1�

2

2�2
z

�
exp

�
�
�z02 � z2�

2

2�2
z

�
; (39)

where z1, z2, z01, z02 denotes LOS distances, not redshifts.
We find that as long as the LOS width of the survey/sample
selection Wk is large compared to �z (i.e. L� �z for a
top-hat geometry, or �� �z for a Gaussian geometry; see

Eqs. (20) and (21), the aboveGz is well approximated byG
as defined in Eq. (16).

The first line of Eq. (36), excluding the exponential
factor, represents the classic Kaiser distortion due to co-
herent infall. The second and third lines come from the
galaxy-magnification and magnification-magnification
correlations, respectively. We illustrate all these effects in
Figs. 6 and 7 by evaluating Eq. (36) for �z � 2. Figure 6
uses �z � 3 Mpc=h, which corresponds to a velocity dis-
persion of �300 km=s, or a redshift dispersion of 0.003.

(a) (b)

FIG. 7 (color online). Analog of Fig. 6 except that �z � 30 Mpc=h. The contours in (a) are, left to right: log10�P=
Mpc=h�3� � 3:71
(red; double contours), 3.61 (blue: double contours), 3.51, 3.41, . . ., 1.01 (black). In panel (b), note how the monopole (red dotted line
with magnification bias and black uniform dashed line without) is higher than the kk � 0 power (red solid line with magnification bias
and black short-long dashed line without) for small k’s due to the Kaiser effect, and lower for high k’s due to the finger-of-god effect
(from the large �z).

(a) (b)

FIG. 6 (color online). Analog of Fig. 4 for �z � 2, except redshift distortion is incorporated with fD=b � 0:475, and �z � 3 Mpc=h
[Eq. (36)]. (a) Contours of constant Pobs with magnification bias (solid line) and without magnification bias (dotted line), left to right:
log10�P=
Mpc=h�3� � 3:71 (red; double contours), 3.61 (blue: double contours), 3.51, 3.41, 3.31, 3.21 (black). (b) Various power
spectra normalized by the same BBKS (no baryon) galaxy monopole power spectrum: Pobs with magnification bias for kk � 0 (red
solid line), Pobs without magnification bias for kk � 0 (black short-long dashed line), monopole of Pobs without magnification bias
(black uniform dashed line), monopole of Pobs with magnification bias [�5s� 2�=b � 1 for red dotted line and �5s� 2�=b � 2 for red
dot-dashed line]. Note that k2 � k2

k
� k2

?. A Gaussian window is assumed with � � 323 Mpc=h for both panels, and �5s� 2�=b � 1

is adopted throughout except for the red dot-dashed curve.
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This is the level of dispersion one expects from virialized
motions on small scales.

For the scales shown in Fig. 6, the Kaiser distortion
dominates over the finger-of-god effect due to virialized
motions: the contours of constant Pobs are elongated in the
LOS direction for k’s larger than the radiation-matter
equality scale, and compressed otherwise. It is also worth
noting that magnification distortion survives the Kaiser
distortion. The two kinds of distortions have fundamentally
different shapes. Magnification distortion is localized to
small kk’s, whereas the Kaiser distortion is more spread
out. The localized nature of magnification distortion origi-
nates from the fact that the corrections it introduces [the
second and third terms on the right-hand side of Eq. (36)]
are proportional to the multiplicative windows G�kk� and
j ~Wk�kk�j

2, both of which peak at small kk’s.
Interestingly, the Kaiser distortion vanishes at kk � 0,

exactly where magnification bias has the largest effect.
This suggests it should be possible to disentangle the two
different distortions from data. For instance, the one free
parameter that controls the Kaiser distortion, fD=b, can be
determined from the observed power spectrum anisotropy
by excluding from consideration the small kk modes. With
this in hand, one should be able to predict the dotted
contours such as those in Fig. 6(a). The difference between
the observed (solid) contours and the dotted ones then
gives us the magnification bias corrections. The galaxy-
magnification and magnification-magnification contribu-
tions can be further separated from each other by using
the distinctive shapes of their respective multiplicative
windows G and j ~Wk�kk�j

2 (for instance, the latter is posi-
tive definite whereas the former can go negative; see
Fig. 1).

Figure 7 is analogous to Fig. 6 except that �z is in-
creased to 30 Mpc=h, corresponding to a velocity disper-
sion of �3000 km=s, or a redshift dispersion of 0.03. This
larger value for �z is chosen to mimic the effect of photo-
metric redshifts. In contrast to the case of �z � 3 Mpc=h,
one can clearly see here a finger-of-god effect of sorts: the
contours of constant Pobs are compressed in the LOS
direction, for sufficiently large k’s. As before, magnifica-
tion distortion is clearly visible, being well localized to
small kk’s. Its distinctive shape makes it in principle dis-
tinguishable from both the Kaiser distortion and the finger-
of-god effect, which are more spread out on the k?-kk
plane.

It is also worth noting that in cases where the power
spectrum is strongly anisotropic, such as in Fig. 7, the
monopole is probably not the most relevant quantity to
consider. This is because some orientations are much more
noisy than the others, and one might not want to weigh
them equally [or more precisely, according to Eq. (25)]. In
general, with sufficient redshift accuracy, one should make
use of the full 3D information available. In this vein, it is
not uncommon to consider higher multipoles of the aniso-

tropic power spectrum [31]. This is especially useful for
analyzing the Kaiser distortion since it gives rise to only 2
extra multipoles. However, a multipole expansion is likely
not helpful in analyzing magnification distortion, due to its
localized nature. It is probably more useful to take advan-
tage of the special dependence on G�kk� and j ~Wk�kk�j2 of
the galaxy-magnification and magnification-magnification
terms [Eq. (36)]. How to optimally extract these two con-
tributions from noisy data deserves further study.

In addition to redshift distortion due to peculiar motions,
another well-known effect is the so-called cosmological
distortion, or Alcock-Paczynski effect [32,33]. This is
taken up in the appendix.

IV. DISCUSSION

In paper I, we examined the effects of magnification
distortion in real/configuration space, and here we have
extended the analysis to Fourier and redshift space. The
observed galaxy/quasar correlation is endowed with a dis-
tinctive lensing induced anisotropy. This is encapsulated in
Eq. (10) for real space and Eqs. (14), (15), (17), and (18)
for Fourier space: the linear dependence on the LOS sepa-
ration �� in the real space galaxy-magnification correla-
tion gives rise to the multiplicative window G in the
galaxy-magnification power spectrum. Likewise, the inde-
pendence of the real space magnification-magnification
correlation on �� accounts for the appearance of the multi-
plicative window j ~Wkj2 in the magnification-magnification
power spectrum.

Qualitatively, the galaxy correlation becomes enhanced
for the transverse modes in Fourier space, and for pairs
oriented along the LOS in real space. Quantitatively, the
degree of enhancement is rather different for the dual
spaces. As explained in Sec. I and II B magnification
distortion is less severe in Fourier space: as long as one
focuses on modes with a small wave number k, as is
usually done when obtaining cosmological constraints,
both the intrinsic galaxy fluctuations and the lensing fluc-
tuations are in the linear regime. In real space, even if the
pair separation is large, one cannot help but mix up linear
intrinsic galaxy fluctuations with nonlinear lensing fluctu-
ations, as long as one considers the LOS orientation.
Incidentally, this implies that a linear galaxy bias is a better
approximation in Fourier space than in real space.

The above findings suggest that in precision measure-
ments of the galaxy power spectrum, such as those that
attempt to use the baryon oscillation scale to constrain dark
energy [14–20], the simplest way to immunize against
magnification bias could be to go to Fourier space, and
remove from consideration the small kk (transverse) modes
where magnification bias has the largest effect. However,
in a photometric redshift survey, these are probably the
modes with the highest signal-to-noise, and the Fourier
space also suffers from possible complications due to a
non-Poissonian shot noise [34]. A better strategy is perhaps
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to face the magnification bias corrections head on, and use
the full 3D information to constrain and measure them—
after all, they contain interesting cosmological information
too.

Precisely how magnification bias corrections might shift
the baryon oscillation scale is a subject worthy of a sepa-
rate paper. The precise shift will depend on exactly how the
oscillation scale is extracted from data. A preliminary
investigation in real space, where the acoustic oscillations
manifest as a single local maximum whose position is
easily defined, was presented in paper I: as discussed at
the end of Sec. II B, the impact on measurements of the
dark energy equation of state can be significant (shifting it
by up to �15%). It should also be emphasized that the
baryon oscillations are not the only large scale features of
interest. The radiation-matter equality peak at around k�
0:01 h=Mpc contains valuable cosmological information,
but it can be seen from Figs. 2–5 panels (b) that the power
spectrum at this scale is likely significantly affected by
magnification bias.

We have incorporated the effects of peculiar motion (and
redshift inaccuracy) on the power spectrum anisotropy in
Sec. III (the Alcock-Paczynski effect is further incorpo-
rated in the appendix). The main conclusion is that the
lensing induced features remain rather robust, thanks to
their localized nature to small kk’s. It should be in principle
possible to separately measure from data the galaxy-
galaxy, galaxy-magnification and magnification-
magnification power spectra, exploiting their different
shapes in the kk-k? plane [see Eq. (36)]. Exactly how to
do so in an optimal fashion when faced with noisy data
deserves further study. In particular, different galaxy types
have a different galaxy bias and number count slope; how
to best weigh their relative contributions to the observed
power spectrum?

Lastly, the findings in this paper and paper I cast a new
light on the well-known excess correlations seen in pencil
beam surveys [35,36]. Could these be the result of en-
hanced correlations due to magnification bias, particularly
if baryon oscillations are taken into account (see [37])?
Could the peculiar features seen in the power spectrum
analysis [36] be due in part to the corresponding multi-
plicative windows G and j ~Wkj2? We hope to address these
questions in the future.
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APPENDIX: INCORPORATING THE ALCOCK-
PACZYNSKI EFFECT

In this appendix, we incorporate the Alcock-Paczynski
distortion of the correlation function and power spectrum
[32,33]. The observed redshifts and angles are converted to
comoving radial and transverse distances using the Hubble
parameter and angular diameter distance. Let us denote the
parameters used in such a conversion by �HAP and ��AP.
Suppose the true values for these parameters are �H and ��.
Then, the two-point correlation function, taking into ac-
count possible Alcock-Paczynski distortion, is related to
the true two-point correlation by

 �AP
obs�x

AP
1 ; xAP

2 � � �obs�x1; x2�; (A1)

where the right-hand side is the true two-point correlation
given in Eq. (29), and ��AP � �� �H= �HAP and �xAP

? �

�x? ��AP= ��.
Ignoring for the moment redshift distortion due to pecu-

liar motions, putting Eq. (10) into Eq. (A1), we have
 

�AP
obs���

AP;�xAP
? �

��gg�
��������������������������������������������������������������������
��AP2

�1�
H�2��xAP2

? �1�
��
2

q
�

��1�
H���APf��1�
���xAP
? �

�g��1�
���xAP
? �; (A2)

where we have defined

 1� 
H � �HAP= �H; 1� 
� � ��= ��AP: (A3)

The important point is this: the exercise of separating the
three contributions to the observed galaxy correlation, out-
lined after Eq. (10) (see also Fig. 2 in paper I), still works,
with minor modifications. For a fixed �xAP

? , the magnifi-
cation bias corrections �1� 
H���APf� g still dominate
over �gg in the limit of a large ��AP. This allows one to fit
for the slope �1� 
H�f and the intercept g. The cosmology
dependent factor of 1� 
H can be absorbed into the galaxy
bias factor that is present in f, which describes the galaxy-
magnification correlation. The extrapolation back to
��AP � 0 gives the intercept g which describes the
magnification-magnification correlation. Both f and g are
determined up to an overall rescaling of their argument
�x?, which is an uncertainty that is always present to the
extent the cosmology dependent angular diameter distance
is uncertain. �gg can be obtained by subtracting the
inferred galaxy-magnification and magnification-
magnification contributions from �AP

obs.
It is common to consider the monopole (Eq. 16 in paper

I). Assuming 
H, 
� � 1, it can be shown that
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monopole of �AP
obs��x

AP�

� �gg��xAP�1� 

H � 2
��=3��

� �1� 
H��x
AP ~f��xAP�1� 
��� � ~g��xAP�1� 
���;

(A4)

where

 

~f��xAP� �
Z �=2

0
f��xAP sin	x� cos	x sin	xd	x~g��xAP�

�
Z �=2

0
g��xAP sin	x� sin	xd	x (A5)

and 	x is the angle between the separation vector and the
LOS.

The appearance of the factor 1� 

H � 2
��=3 in the
argument of �gg is the origin of the common statement that
the baryon oscillation scale measures the combination
� ��2= �H�1=3 [14], if one examines the monopole. Note,
however, the presence of the anisotropic corrections intro-
duced by magnification bias implies the observed mono-
pole is no longer related to the true monopole by this
overall rescaling of �x.

Let us give the expression for the observed correlation
function in the presence of both peculiar motions and the
Alcock-Paczynski effect:

 

�AP
obs��xAP� �

Z d3k

�2��3
Pgg��z; k�

�
1�

fD
b

k2
k

k2

�
2
e�k

2
k
�2
z eik��x � qb�1� �z�

Z d2k?
�2��2

Pgm��z; k?�eik?��x?

�
Z d�01d�

0
2

2��2
z
e���1��01�

2=2�2
z e���2��02�

2=2�2
z j�01 � �

0
2j � �qb�2

Z ��

0
d�0

�
� ��� �0��0

��

�
2
�1� z0�2

�
Z d2k?
�2��2

Pmm�z
0; k?�e

ik?��x? ; (A6)

where fD and q are as defined in Eqs. (37) and (38), and
�xAP and �x are related as in Eq. (A1). The first term on
the right accounts for both the Kaiser effect and, in a crude
form, the finger-of-god effect due to either virialized mo-
tions or photometric redshifts. The second term on the right
represents the contribution from galaxy-magnification cor-
relation. The finger-of-god dispersion has an effect here,
but its effect is negligible for large LOS separations (j�1 �
�2j � �z) where the galaxy-magnification correlation has
the largest effect (i.e. the integral over �01 and �02 yields
roughly j�1 � �2j � j��j). The third term on the right is
exactly ��� in Eq. (8): the finger-of-god dispersion has no
effect on this term, because it has no intrinsic dependence
on the LOS separation ��. In other words, to good ap-
proximation (unless �z is very large), the galaxy-

magnification and magnification-magnification terms take
the same form as in Eq. (A2). This means the exercise of
separating the three different contributions to the observed
correlation can be repeated here as well.

Lastly, let us give the corresponding expression in
Fourier space. Defining kAP, which is related to k by

 kAP
k
� kk �HAP= �H; kAP

? � k? ��= ��AP; (A7)

the Alcock-Paczynski distorted power spectrum PAP
obs is

related to the true (windowed) power spectrum Pobs by

 PAP
obs�k

AP� �
�H

�HAP

� ��AP�2

��2 Pobs�k�; (A8)

where Pobs is given by

 

Pobs�k� �
Z d3k0

�2��3
Pgg��z; k0�

�
1�

fD
b

�k0
k
�2

k02

�
2
e�k

02
k
�2
z j ~W�k� k0�j2 � qb�1� �z�Gz�kk�

�
Z d2k0?
�2��2

Pgm��z; k
0
?�j

~W?�k? � k0?�j
2 � �qb�2j ~Wk�kk�j

2
Z ��

0
d�0

�
� ��� �0��0

��

�
2
�1� z0�2

�
Z d2k0?
�2��2

Pmm�z
0; k0?�j ~W?�k? � k0?�

0= ���j2: (A9)

It is instructive to integrate out the convolving windows following Eq. (35), and obtain:

 

PAP
obs�k

AP� � �1� 
H��1� 
��
2Pgg��z; k�

��
1�

fD
b

k2
k

k2

�
2
e�k

2
k
�2
z � q�1� �z�G�kk�
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where we have adopted the approximation Gz �G as is
done in Eq. (36). Note how the distinctive multiplicative
windows G and j ~Wk�kk�j2, which are signatures of the
galaxy-magnification and magnification-magnification
correlations, remain intact in the presence of the Alcock-
Paczynski effect. They give rise to an enhancement in the
observed correlation that is localized to low kk’s. Just as in

the case of the real space correlation function, quantities
such as Pgm and Pmm [which are related to Fourier trans-
forms of f and g in Eq. (A2)] can be determined from data
only up to a rescaling of their argument k? [Eq. (A7)] (and
in the case of Pgm, an overall normalization which can be
absorbed into the galaxy bias).
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