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Cosmological phase transitions are predicted by particle physics models, and have a variety of
important cosmological consequences, which depend strongly on the dynamics of the transition. In this
work we investigate in detail the general features of the development of a first-order phase transition. We
find thermodynamical constraints on some quantities that determine the dynamics, namely, the latent heat,
the radiation energy density, and the false-vacuum energy density. Using a simple model with a Higgs
field, we study numerically the amount and duration of supercooling and the subsequent reheating and
phase coexistence. We analyze the dependence of the dynamics on the different parameters of the model,
namely, the energy scale, the number of degrees of freedom, and the couplings of the scalar field with
bosons and fermions. We also inspect the implications for the cosmological outcomes of the phase
transition.
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I. INTRODUCTION

Particle physics models predict the occurrence of several
phase transitions in the early Universe, such as e.g., the
electroweak phase transition or the quark-hadron phase
transition. Phase transitions in the early universe may leave
observable vestiges, such as topological defects [1], mag-
netic fields [2], the baryon asymmetry of the Universe [3],
baryon inhomogeneities [4,5], gravitational waves [6], or
black holes [7]. The effects of some of these relics can
constrain the model, as in the case, e.g., of monopoles and
domain walls. Late-time cosmological phase transitions
have also been proposed to act as seeds of the large-scale
structure formation and as an explanation of the dark
energy problem [8–11]. The outcome of a phase transition
depends, both quantitatively and qualitatively, on several
aspects of the dynamics, for instance, the nucleation rate,
the velocity of bubble expansion, and the temperature
variation during the development of the transition.

In general, the evolution of a first-order phase transition
can be divided in three stages, namely, supercooling, re-
heating, and phase coexistence. At T � Tc the free energy
has two degenerate minima separated by a barrier. Hence,
the bubble nucleation rate � vanishes. At T < Tc, ‘‘criti-
cal’’ bubbles nucleate. These are bubbles of the true vac-
uum which are large enough that their volume energy
dominates over their surface tension, so they can expand.
Assuming that the standard picture of bubble nucleation
applies, bubbles of the supercooled phase will nucleate in a
homogeneous background of true vacuum. The number of
bubbles will not be appreciable until a lower temperature
TN , which can be estimated as follows. The age of the

Universe is t�H�1, and a causal volume is VH � t3.
Then, if at least one bubble is to be created in a time �t
in a volume �VH, we must require that �t4 * 1. Thus, the
temperature TN is roughly determined by the condition
��H4.

In fact, this picture may not work and the supercooling
stage may be shorter (or not occur at all). For instance, the
presence of impurities (such as e.g. topological or non-
topological solitons) could trigger bubble nucleation [12].
Also, if the phase transition is weakly first order, i.e., if the
barrier of the free energy is sufficiently small, thermal
fluctuations called subcritical bubbles may dominate
[13]. In this case, there may be a two-phase emulsion
already at T � Tc. Then, subcritical bubbles may percolate
and true-vacuum domains may begin to grow at a tempera-
ture T > TN .

Initially, bubbles of true vacuum grow with a velocity
which is governed by the pressure difference across their
walls and by the viscosity of the hot plasma or relativistic
gas surrounding them. As bubbles expand, latent heat is
liberated and reheats the system back to a temperature Tr.
As a consequence, the expansion of bubbles slows down,
since the pressure difference decreases as T approaches Tc.
If the latent heat L is negligible, there will be no tempera-
ture variation. One expects that reheating will be important
if L provides the energy density difference needed to
increase the temperature of radiation from TN back to Tr �
Tc, i.e., when L� ��R � T

4
c � T

4
N . If L is much larger

than ��R, the temperature Tr will be very close to Tc.
When this happens, a stage of ‘‘slow growth’’ or ‘‘phase
coexistence’’ follows. Indeed, since T cannot increase
beyond Tc, bubbles will grow only at the rate at which
the expansion of the Universe takes away the injected
energy. The temperature will thus remain nearly constant
until every region of space has been converted to the stable
phase.
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Although the above picture is quite general, the details
of the dynamics depend on the specific model. A complete
analysis involves, even in the simplest cases, solving a set
of integro-differential equations for the nucleation and
expansion of bubbles, which takes into account the reheat-
ing of the thermal bath. Therefore, it is useful to find
general characteristics, which will permit to obtain some
conclusions before embarking on the task of computing the
development of a given phase transition. In Ref. [14], an
analytical approach was performed, which allowed to ob-
tain some general conclusions on the evolution. However,
due to the involved dynamics of reheating, the analytical
study requires some rough approximations, particularly for
the nucleation rate. A numerical investigation is thus nec-
essary in order to have a better understanding of the
dynamics of first-order phase transitions and their cosmo-
logical consequences.

In this work, we shall perform a detailed study of the
general dynamics of phase transitions. We shall be inter-
ested in first-order phase transitions occurring either in the
radiation dominated epoch, or in a sector composed of
radiation. In particular, we shall examine thermodynamic
constraints which apply to any first-order phase transition.
As we shall see, this allows to discuss on the possible
effects of a model without making numerical calculations.
We shall also make a numerical investigation of the dy-
namics. For that purpose, we shall use a simple model for
the free energy, which allows to consider different kinds of
phase transitions, both weak and strong. The model also
provides an approximation for realistic theories (e.g., dif-
ferent extensions of the standard model). We shall discuss
the implications of our results for the cosmological out-
comes of the phase transition.

The article is organized as follows. In the next section
we discuss some general properties of phase transition
dynamics, and we study model-independent relations be-
tween thermodynamical parameters. Then, in Sec. III we
consider a simple model, consisting of a scalar (Higgs)
field, which has Yukawa couplings to different species of
bosons and fermions. We write down the one-loop finite-
temperature effective potential for this model, and discuss
the different kinds of phase transitions the model can
present. In Sec. IV we consider the equations for the
evolution of the phase transition, and we compute them
numerically. We are particularly concerned with the
amount and duration of supercooling, and with the extent
of the phase-coexistence stage.

We apply the results of this investigation in Sec. V,
where we analyze some of the possible cosmological out-
comes of a phase transition to illustrate the effect of the
dynamics. We consider the formation of baryon inhomo-
geneities in the electroweak phase transition, the creation
of topological defects, and the generation of magnetic
fields. We also discuss on different proposals of late-time
phase transitions as solutions to the dark energy problem.

We show that thermodynamical constraints rule out some
of these models. Our conclusions are summarized in
Sec. VI. Some technical details of the calculation are left
to the appendix.

II. PHASE TRANSITION AND THERMODYNAMIC
PARAMETERS

We can use thermodynamic considerations to obtain
some general information on the amounts of supercooling
and reheating and on the duration of the phase transition,
without specifying the form of the free energy.

A. Supercooling and phase coexistence

Consider a system which undergoes a phase transition at
a temperature Tc. The high-temperature phase consists
only of radiation and false-vacuum energy, so the energy
density is of the form

 �� � �� � �R; (1)

where �� is a constant and �R � g��
2T4=30, where g� is

the number of relativistic degrees of freedom (d.o.f.). At
the critical temperature Tc the two phases have the same
free energy density, but different energy density. The dis-
continuity ���Tc� 	 ���Tc� � ���Tc�, with �� the en-
ergy density of the low-temperature phase, gives the latent
heat

 L 	 ���Tc� � Tc�s�Tc�; (2)

with �s � s� � s� the entropy density difference. This
entropy is liberated as regions which are in the high-T
phase convert to the low-T one.

Since entropy is conserved in the adiabatic expansion of
the Universe, the entropy density of the system can be
written as

 s � s��Tc��ai=a�3; (3)

where a is the scale factor, and ai is its value at the
beginning of the transition, i.e., at T � Tc. During the
phase transition, s is given by

 s � s��T� � �s�T�f; (4)

where f is the fraction of volume occupied by bubbles of
low-T phase.

If there is little supercooling (e.g., if the phase transition
is weakly first order, or if bubble nucleation is triggered by
impurities), the temperature TN at which bubbles form and
start to grow will be very close to Tc. In this case, a small L
can take the system back to Tc. Then, a good approxima-
tion is to consider that the phase transition develops en-
tirely at T � Tc, with equilibrium of phases [5,15]. Thus,
the fraction of volume is easily obtained from Eqs. (3) and
(4). The result is [14]

 f �
s��Tc�
�s�Tc�

�
1�

�
ai
a

�
3
�
: (5)
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The phase transition completes when f � 1, so its duration
is determined by the condition

 �ai=af�3 � 1� �s�Tc�=s��Tc�; (6)

where af is the scale factor at the end of the phase
transition.

In general, though, bubble nucleation does not begin as
soon as T reaches Tc. The temperature decreases until the
nucleation rate becomes comparable to the expansion rate.
During supercooling, the entropy of the system is that of
radiation, s��T� � sR�T�, with

 sR�T� �
4

3

�R
T
�

2g��
2

45
T3; (7)

so, from Eq. (3) we have T � Tcai=a. When the number of
bubbles becomes noticeable, the released entropy begins to
reheat the system. The minimum temperature Tm delimits
the end of supercooling. It is reached at a value am of the
scale factor given by Tm � Tcai=am. One expects that for
L * ��R 	 �R�Tc� � �R�Tm�, the temperature will go
back to T � Tc and a period of phase coexistence will
begin. We will now show that the condition for phase
coexistence to occur is in fact

 �s�Tc�> �sR; (8)

where �sR 	 sR�Tc� � sR�Tm�. In terms of energy, we
have Tc�s�Tc� � L and �sR � �4=3����R=T�, so the
above condition becomes L * �4=3���R.

Assuming that a phase-coexistence stage at Tr � Tc is
reached, we can go back to Eqs. (3) and (4), which lead
again to the result (6) for the total change of scale af=ai,
even though this time the temperature was not constant
from the beginning. Therefore, the final value of the scale
factor af is not affected by the previous supercooling and
reheating stages. This will only be possible, however, if
am < af, since the supercooling stage cannot be longer
than the total duration of the phase transition. During
supercooling, s � s�, so s��Tm� is given by Eq. (3) with
a � am. Comparing with Eq. (6), the condition am < af
gives s��Tm�> s��Tc� � �s�Tc�. Since s� � sR, Eq. (8)
follows.

The value of L can be easily calculated for any model,
since it is derived directly from the free energy. In contrast,
calculating ��� entails the evaluation of the nucleation
rate �, which must be calculated numerically, and then
solving the equations for the evolution of the phase tran-
sition in order to determine Tm. We will perform such a
calculation in Sec. IV. Provided that condition (8) is ful-
filled, the value of af will be independent of the amount of
supercooling, and given by Eq. (6). We can write equiv-
alently

 �ai=af�3 � 1� 3L=4�R: (9)

How long the phase transition will go on depends on how
large L is. Since the entropy difference is bounded by

�s�Tc�< s��Tc�, the latent heat has a maximum value
Lmax � Tcs� � 4�R=3. We see that af ! 1 in this limit.
This is because s� � 0, so all the entropy must be ex-
tracted from the system in order to complete the phase
transition, and this requires an infinite amount of work.

The duration �t of the phase transition is related to the
expansion factor af=ai through the expansion rate H.
Consequently, it depends on the different kinds of energy
(e.g., matter, vacuum, radiation) that make up the total
energy density �. If our system is uncoupled from other
sectors (as in the case of late-time phase transitions), then it
is not straightforward to calculate �t. In the early
Universe, instead, we can assume that all particle species
are in equilibrium with each other and constitute a single
system which is dominated by radiation. Then, for the
period of phase coexistence at T � Tc, the equation of
state is especially simple, since temperature and pressure
are constant. The energy density is given by

 � � Tcs��ai=a�3 � pc; (10)

where

 pc � �R�Tc�=3� �� (11)

is the pressure at T � Tc. Consequently, the Friedmann
equation1

 H2 	

�
_a
a

�
2
�

8�G
3

�; (12)

where G is Newton’s constant, can be solved analytically
[14–16]. We have

 

�
a
ai

�
3
�
Tcs�
pc

sin2�!�t� ti� � ��; (13)

where ! �
����������������
6�Gpc
p

and � � arcsin
������������������
pc=Tcs�

p
.

From Eqs. (6) and (13) we obtain

 

�t
~t
�

4

3

�������
��
pc

s
arcsin

�
3=4�����������������������

1��s=s�
p

������
pc
�R

s �������
��
p

�
�������
��
p������

�R
p

�
;

(14)

where ~t � �2Hi�
�1 � ti. Notice that �t=~t depends only on

the two parameters r � L=�R (equivalently, �s=s�) and
R � ��=�R. We remark that, as long as a temperature
Tr � Tc is reached after reheating, �t gives the total
duration of the phase transition, i.e., the time elapsed
from the beginning of supercooling at t � ti until the end
of phase coexistence at t � tf. As we have seen, the
condition for the validity of Eq. (14) is that supercooling
ends before this time. Otherwise, �t will be given essen-
tially by the duration of supercooling, since the subsequent
reheating stage will be short. In that case, Eq. (14) gives
just a lower bound for the duration of the phase transition.

1We neglected a term k=a2 in Eq. (12). This is correct for most
of the history of the Universe.
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B. Constraints on thermodynamic parameters

At the critical temperature, one expects that the energy
density of radiation is at least of the order of that of the
false vacuum, since radiation must provide the entropy
necessary to make the minima of the free energy degener-
ate. Notice that the exact relation between �R�Tc� and ��

can be determinant for the dynamics of phase coexistence.
Indeed, for �R=3<��, the pressure pc is negative and the
sine in Eq. (13) becomes a hyperbolic sine, which indicates
that the expansion of the Universe is accelerated. This
happens because the energy density (10) includes a con-
stant term �eff

� � �pc, which represents an effective cos-
mological constant [9,17]. In this case, �eff

� > 0. Moreover,
if �� � �R�Tc�, the false-vacuum energy may become
important before the phase transition, i.e., at T * Tc.

On the other hand, if �� <�R=3, we have �eff
� �

�pc < 0. Then, according to Eq. (13) the Universe will
collapse after a time tc � 1=!, unless phase coexistence
ends before this time, so that this equation is no longer
valid. Notice that phase coexistence may be long if L �
4�R=3. The collapse occurs because the energy density
(10) and, consequently, the expansion rate (12) vanish for a
finite value of a=ai. Nevertheless, the quantities L, �R, and
�� are constrained by thermodynamical relations, and we
will show that none of the above situations can arise, i.e.,
phase coexistence will not cause either accelerated expan-
sion nor collapse of the Universe.

The pressure of the relativistic system is given by p �
�F , where F is the free energy density. Hence, at T � Tc
we have pc � �F��Tc� � �F��Tc�. The free energy
density depends only on temperature, dF � �sdT �
�p�F �dV=V � �sdT. Since s > 0, F �T� must be a
monotonically decreasing function. Therefore we have in
particular F��T�<F��T � 0� for any T > 0. But at T �
0 the free energy matches the energy. Hence, assuming that
the energy density vanishes in the true vacuum, we have
F��T � 0� � ���T � 0� � 0. Then, F��Tc�< 0 and
pc > 0, so the condition for accelerated expansion is never
fulfilled. Moreover, the condition

 �� <�R�Tc�=3 (15)

implies that false-vacuum energy never dominates, unless
the system departs from thermal equilibrium (for instance,
�� may become dominating in the course of supercooling).

Now, since pc > 0, the Universe will not collapse only if
phase coexistence ends before � vanishes. According to
Eq. (10), this is true if �af=ai�3 < Tcs�=pc. Using Eqs. (7),
(9), and (11) the condition becomes

 L < �� � �� � �R�Tc�: (16)

But this is always fulfilled, since L � �� � ��, and
���T�> 0 at T > 0 [because d�=dT � Tds=dT > 0 and
���T � 0� � 0].

The inequalities above become equalities only for
F��T� � ���T� � 0, i.e., at T � 0. So, both limiting

values �� � �R=3 and L � �� � �R are attained only if
Tc � 0. In this limit �� and �R vanish, but still L=�R !
4=3. Hence, Eq. (9) implies that af ! 1. Thus, for a phase
transition with Tc � 0 we will have a long phase-
coexistence stage. For a given model with a fixed energy
scale v, small Tc means Tc 
 v, i.e., the metastable mini-
mum and the barrier must persist at T 
 v. At such low
temperatures, the free energy coincides approximately
with the zero-temperature potential, and the minimum �c

tends to the zero-temperature value v. This corresponds to
a very strongly first-order phase transition, with �c=Tc �
1. In this case one expects that the nucleation rate will be
suppressed and the supercooling stage will be long too.
However, it is not straightforward to compare the duration
�ts of supercooling to that of phase coexistence, since the
latter depends significantly on the total number of d.o.f. g�,
while �ts depends essentially on the bubble nucleation rate
�. In Sec. IV we will see that, depending on the model, we
can have either �ts 
 �t (i.e., little supercooling) or
�ts � �t (i.e., short phase coexistence).

In a specific model, the parameters ��, L, and �R can be
derived from the free energy. The constraints (15) and (16),
i.e., R � 1=3 and r � R� 1, should then be automatically
fulfilled.2 In general, �� and L will be even more con-
strained. For instance, the radiation density �R may contain
a component �l from particles which are in thermal equi-
librium with the system, but are not directly coupled to the
order parameter, and therefore do not contribute to L and
�� (e.g., ‘‘light’’ particles which do not acquire masses
through the Higgs mechanism). The inequalities above
hold for the radiation of the system alone, i.e., �R � �l,
so the constraints become �� � ��R � �l�=3 and L �
�� � �R � �l. If �l � gl�2T4=30, we have R � x=3
and r � R� x, where x � 1� gl=g�.

Figure 1 shows the region in the �R; r�-plane allowed by
thermodynamics, and inside that, the contours of constant
time �t. On the right axis we have indicated some values of
af=ai (which depend only on r). The points correspond to
some of the phase transitions considered in the next sec-
tion. We have plotted two sets of curves, corresponding to
gl � 0 and gl=g� � 0:44. The dashed line delimits the
allowed region for the latter case. As the phase transition
becomes stronger, the latent heat increases. However, the
limit L � �� � �R is reached for Tc ! 0, together with
the limit �� � �R=3. That is why all the curves approach
the upper-right corner of the allowed region.

The analytic approximation given by Eq. (14) for the
total duration of the phase transition is valid only if con-
dition (8) is satisfied. Furthermore, we cannot describe,
within this approach, the transition between supercooling
and phase coexistence, i.e., the reheating stage. A complete

2Notice that some approximations for the free energy may
allow values that fall outside this region (see e.g. the discussion
on dark energy models in Sec. V).
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description of phase transition dynamics involves the com-
putation of the nucleation rate. This requires specifying a
model for the free energy.

III. THE FREE ENERGY

We will consider a theory described by a scalar field �
with tree-level potential

 V0��� � �
�v2

2
�2 �

�
4
�4; (17)

which has a maximum at� � 0 and a minimum at � � v.
The one-loop effective potential is of the form

 V��� � V0��� � V1��� � ��; (18)

where V1��� is the one-loop zero-temperature correction,
and we have added a constant �� so that the energy density
vanishes in the true vacuum. Imposing the renormalization
conditions that the minimum of the potential and the mass
of � do not change with respect to their tree-level values
[18], the one-loop correction is given by

 V1��� �
X
i


gi

64�2

�
m4
i ���

�
log

�
m2
i ���

m2
i �v�

�
�

3

2

�

� 2m2
i ���m

2
i �v�

�
; (19)

where gi is the number of d.o.f. of each particle species,
mi��� is the �-dependent mass, and the upper and lower
signs correspond to bosons and fermions, respectively.

The free energy density results from adding finite-
temperature corrections to the effective potential,

 F ��; T� � V��� �F 1��; T�; (20)

where the one-loop contribution is

 F 1��; T� �
X
i

giT4

2�2 I�

�
mi���
T

�
; (21)

and I�, I� stand for the contributions from bosons and
fermions, respectively,

 I��x� � 
Z 1

0
dyy2 log�1� e�

����������
y2�x2
p

�: (22)

For simplicity, we will consider in general masses of the
form mi��� � hi�, where hi is the Yukawa coupling.
Thus, the free energy takes the form
 

F ��;T��V0����
Xgih4

i

64�2

�
�4

�
log
�2

v2�
3

2

�
�2v2�2

�

����
XgiT

4

2�2 I�

�
hi�
T

�
�
�2

90
glT4; (23)

where the last term accounts for the contribution of species
with hi � 0, so gl is the effective number of d.o.f. of
relativistic particles. The constant �� is obtained by im-
posing that V�v� � 0, so

 �� �

�
��

P
�gih

4
i

32�2

�
v4

4
: (24)

Notice that �� gives the energy density of the false vac-
uum, �� � V�0�.

At high temperature the free energy (23) has a single
minimum at � � 0. As the temperature decreases, a non-
zero local minimum �m�T� develops. Therefore, the free
energy in the high- and low-temperature phases is given by
F��T� 	 F �0; T� and F��T� 	 F ��m�T�; T�, respec-
tively. In the phase with � � 0, all particles are massless
and

 F � � �g��
2T4=90� ��; (25)

where g� �
P
gb � �7=8�

P
gf is the effective number of

d.o.f. (b stands for bosons and f for fermions). Thus we
have radiation and false vacuum. At the critical tempera-
ture Tc, the two minima � � 0 and �m�Tc� 	 �c have the
same free energy. Below this temperature, �m�T� becomes
the global minimum. In general, as temperature decreases
further the barrier between minima disappears and the
minimum at � � 0 becomes a maximum. This happens
at a temperature T0 given by

 T2
0 �

��
P
�gih

4
i =16�2P

gbh2
b=12�

P
gfh2

f=24
v2: (26)

Finally, at zero temperature we have F ��; 0� � V���, so
�m�0� � v. Notice, however, that the zero-temperature
boson contribution may turn the maximum at � � 0 of
the tree-level potential V0��� into a minimum of V���. In
this case, there will be two minima still at T � 0. Indeed,
for

P
gbh

4
b �

P
gfh

4
f � 16�2�, the right-hand side (r.h.s.)

of Eq. (26) becomes negative, which means that the barrier

0.0 0.1 0.2 0.3
0.0

0.5

1.0

1.5

1.25

1.00

1.50

2.00

4.00

FIG. 1 (color online). Contours of constant time in the allowed
region of the plane ���=�R; L=�R�. From bottom to top, the
curves correspond to �t=~t � 0:2, 0.5, 1, 2, 3, and 5. The points
correspond to varying hb in the model of Sec. III for hf � 0:7
(blue squares), hf � hb (black triangles), and hf � hb with
�b � 0 (red circles). The three curves on the right correspond
to gl � 0, and those on the left to gl=g� � 0:44.
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never disappears. Furthermore, for strongly coupled bo-
sons the origin can become the stable zero-temperature
minimum. Indeed, for

P
gbh4

b �
P
gfh4

f � 32�2� the
vacuum energy density (24) becomes negative. In that
case, the origin is stable at all temperatures, and there is
no phase transition.

The energy density can be derived from the free energy
by means of the relations � � Ts�F and s � �dF =dT.
Thus, from Eq. (25) we obtain �� � �� � �R, and �� �
�TF 0� �F�. At T � Tc, F� � F�, so the latent heat is
L � �Tc�F 0. Taking into account that @F =@�j���m

�

0, we find

 L �
X 2giT4

c

�2

�
�I��0� � I�

�
hi�c

Tc

�
�
hi�c

4Tc
I0�

�
hi�c

Tc

��
:

(27)

The functions I�x� are negative and monotonically in-
creasing, so we see that the one-loop effective potential
satisfies the thermodynamical bound L �P
�2giT4

cI��0�=�2 � 4�R=3. Furthermore, I� and I�
fall exponentially for large x. Therefore, L approaches
the limit L=�R ! 4=3 for hi�c=Tc ! 1.

For our purposes it will be sufficient to consider only
four particle species, namely, two bosons and two fermi-
ons. In this way we can have weakly coupled fermions and
bosons with Yukawa couplings hfl and hbl, and d.o.f. gfl
and gbl, respectively. These particles will be relatively light
in the low-temperature phase. We will consider also gb
bosons and gf fermions with variable couplings hb and hf,
respectively. The values of the Yukawa couplings are con-
strained by perturbativity of the theory, which sets a ge-
neric upper bound hi & 3:5 [19]. In addition, we include gl
light d.o.f., for which we assume hi � 0. This model
allows us to explore several kinds of phase transitions.

For instance, choosing v � 246 GeV we have a phase
transition at the electroweak scale. We obtain a good
approximation for the free energy of the standard model
(SM) if we consider gfl � 12 fermion d.o.f. with hfl � 0:7
(corresponding to the top), and gbl � 6 boson d.o.f. with
hbl � 0:35 (corresponding to the transverse gauge vectors
W and Z). The rest of the SM d.o.f. have h
 1, so their
contribution to the �-dependent part of the effective po-
tential is negligible. They only contribute to gl in Eq. (23).
To make the electroweak phase transition strongly first
order we need to add some extra particles to the SM. For
our purposes, we do not need to refer to any specific
extension of the model. We choose � � 0:12, which cor-
responds to a Higgs mass mH � 120 GeV, and we con-
sider for the time being adding equal numbers of bosons
and fermions, with gb � gf � 10 and hb � hf � 0:7,
which give a value �c=Tc � 1:3 for the minimum of the
potential at the critical temperature (see Fig. 2).

It is well known that heavy bosons enhance the strength
of the phase transition. We see in the left panel of Fig. 3

that the minimum �c, as well as the height of the barrier,
increase if we increase the value of hb. Besides, the critical
temperature decreases. Indeed, for fixed hf, according to
Eq. (26) the temperature T0 vanishes for a value hb � hb1

given by gbh
4
b1 � 16�2�� gfh

4
f � gflh

4
fl � gblh

4
bl. At

this point, a barrier appears in the zero-temperature effec-
tive potential, and � � 0 becomes a local minimum of
V���. If hb is increased further, the zero-temperature
barrier increases as the energy �� of the origin decreases.
According to Eq. (24), the two zero-temperature minima
become degenerate for a value hb � hb2 given by gbh4

b2 �

32�2�� gfh
4
f � gflh

4
fl � gblh

4
bl. For this value of hb the

critical temperature vanishes and �c � v. Beyond the
value hb2 there is no phase transition.

If we keep hf � hb as we increase hb, the behavior is
quite different, since the fermions compensate the effect of
the bosons. As we can see in Fig. 3 (right panel), the height
of the barrier increases more slowly with hb, and the value
of �c=T does not change significantly. With this symmet-
ric choice of parameters, the false-vacuum energy density
(24) does not depend on hb and hf. Thus, the origin will
never be the stable minimum at T � 0, and Tc will never
vanish. According to Eq. (26), the temperature T0 does not
vanish either, but it decreases as 1=hb. In the next section
we will analyze the effect of these two opposite variations.

For large couplings, the first-order phase transition be-
comes stronger and the latent heat (27) increases. The
maximum value L=�R � 4=3 will be achieved when all
the couplings hi are large. If gl � 0, this maximum be-
comes 4x=3, with x � �1� gl=g��. Consider the case
gbl � gfl � 0 and gb � gf � 10. For hf fixed, the maxi-
mum is reached at hb � hb2, i.e., when Tc � 0. For the
case hf � 0:7 we obtain the points in the �R; r�-plane that
are shown in blue squares in Fig. 1. For hf � hb, on the
contrary, there is no such limit on hb. In this case (black
triangles in Fig. 1), as the coupling is increased the points
accumulate near the point �x=3; 4x=3�, which is the corner
of the thermodynamically allowed region. In particular, for
gl � 0, we see that L=�R can be very close to the maxi-
mum 4=3, even though in this case Tc does not vanish.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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FIG. 2. The free energy around T � Tc.
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It is interesting to consider the case hf > hb. Notice,
however, that strong fermion couplings hf may destabilize
the zero-temperature potential, since they introduce nega-
tive quartic terms in V���. To stabilize the potential in the
case of a strongly coupled fermion, we can add a heavy
boson with the same coupling hf and d.o.f. gf, and a mass
m2
b��� � �2

b � h
2
b�

2 [19]. If �b is large enough, this
boson will be decoupled from dynamics at T � v. The
maximum value of �b consistent with stability is obtained
by requiring the quartic term to be positive for�� v. It is
given by

 �2
b � h2

fv
2

�
exp

�
16��2

gfh4
f

�
� 1

�
: (28)

For a weakly coupled fermion, �b is much larger than v
and the stabilizing boson is completely decoupled. On the
contrary, for large hf, mb approaches mf and we recover
the previous case. We have plotted in Fig. 1 the points of
the �R; r�-plane3 corresponding to a variation of hf (red
circles). For small values of hf we have only the fermion
contribution, and the phase transition is weakly first order.
In fact, there is a minimum value of hf for which the phase
transition becomes second order. At this point, the latent
heat vanishes for a finite value of ��. In contrast, for large
hf we have, as in the previous cases, a strongly first-order
phase transition.

As we see in Fig. 1, in all the cases the total duration of
the phase transition becomes significant for large hi.
However, the durations of supercooling and phase coex-
istence can be extremely different in each case.

IV. THE PHASE TRANSITION

A. Phase transition dynamics

The nucleation and growth of bubbles in a first-order
phase transition has been extensively studied (see e.g.

[4,18,20–23]). According to the conventional picture of
bubble nucleation, at T > Tc the field takes the value � �
0 throughout space. At T < Tc, bubbles of the stable phase
(i.e., with the value � � �m inside) nucleate. We remark
that in a weakly first-order phase transition this picture may
not work [13]. A quantitative determination of the impor-
tance of subcritical bubbles requires in general numerical
calculations and is out of the scope of the present inves-
tigation. For instance, lattice calculations for the case of
the minimal standard model (with unrealistically small
values of the Higgs mass) show that subcritical bubbles
may play a significant role at the onset of a weakly first-
order electroweak phase transition [24]. Thus, our results
for the amount of supercooling become unreliable in the
limit of very small values of the coupling hb.

The thermal tunneling probability for bubble nucleation
per unit volume per unit time is [25,26]

 � ’ A�T�e�S3=T: (29)

The prefactor involves a determinant associated with the
quantum fluctuations around the instanton solution. In
general it cannot be evaluated analytically. However, the
nucleation rate is dominated by the exponential in (29), so
we will use the rough estimation A�T� � T4

c . The exponent
in Eq. (29) is the three-dimensional instanton action

 S3 � 4�
Z 1

0
r2dr

�
1

2

�
d�
dr

�
2
��F ���r�; T�

�
; (30)

where �F ��; T� � F ��; T� �F �0; T�. The configura-
tion ��r� of the nucleated bubble may be obtained by
extremizing this action. It obeys the equation

 

d2�

dr2
�

2

r
d�
dr
�
@F
@�

: (31)

Hence, S3 coincides with the free energy that is needed to
form a bubble in unstable equilibrium between expansion
and contraction. At the critical temperature the bubble has
infinite radius, so S3 � 1 and � � 0. In contrast, at T �
T0 the radius vanishes, so S3 � 0 and �� T4

c , which is an
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FIG. 3. The effective potential at T � Tc. Left: hf � 0:7. Right: hf � hb. The numbers next to the curves indicate the corresponding
values of Tc=v.

3The definitions of �� and �R change slightly in this case.
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extremely large rate in comparison to H4 � �T2=MP�
4.

Therefore, the number of bubbles will become appreciable
at a temperature which is rather closer to Tc than to T0.
Thus, in order to have supercooling at T 
 Tc, the tem-
perature T0 must not exist, so that the barrier between
minima persists at T � 0.

After a bubble is formed, it grows due to the pressure
difference at its surface. There is a negligibly short accel-
eration stage until the wall reaches a terminal velocity due
to the viscosity of the plasma (see, e.g., [27]). The velocity
vw is determined by the equilibrium between the pressure
difference p� � p� � F� �F� 	 �F �T� and the
force per unit area due to friction with the surrounding
particles, ffriction � �vw. Thus,

 vw�T� � �F �T�=�: (32)

The friction coefficient can be written as � � ~�T�, where
~� is a dimensionless damping coefficient that depends on
the viscosity of the medium, and � �

R
�d�=dr�2dr is the

bubble-wall tension (for a review and a discussion see
[14]).

We will assume that the system remains close to equi-
librium, which is correct if vw is small enough. If the wall
velocity is lower than the speed of sound in the relativistic
plasma, cs �

��������
1=3

p
, the wall propagates as a deflagration

front. This means that a shock front precedes the wall, with
a velocity vsh > cs. For vw 
 cs, the latent heat is trans-
mitted away from the wall and quickly distributed through-
out space. We can take into account this effect by
considering a homogeneous reheating of the plasma during
the expansion of bubbles [4,28]. (For detailed treatments of
hydrodynamics see, e.g., [20,21]).

The radius of a bubble that nucleates at time t0 and
expands until time t is

 R�t0; t� � R0�T0�
a�t�
a�t0�

�
Z t

t0
vw�T00�

a�t�
a�t00�

dt00: (33)

The scale factor a takes into account the fact that the radius
of a bubble increases due to the expansion of the Universe.
The initial radius R0 can be calculated by solving Eq. (31)
for the bubble profile ��r�. It is roughly �T�1. Hence, R0

can be neglected, since the second term in Eq. (33), which
is determined by the dynamics, depends on the time scale
�t�H�1 �MP=T2.

The fraction of volume occupied by bubbles is given by

 f�t� � 1� exp
�
�
Z t

ti

�
a�t0�
a�t�

�
3
��T0�

4�
3
R�t0; t�3dt0

�
: (34)

The integral in the exponent gives the total volume of
bubbles (in a unit volume) at time t, ignoring overlapping.
The complete expression (34) takes into account bubble
overlapping [29]. The factors of a take into account that the
number density of nucleated bubbles decreases due to the
expansion of the Universe.

To integrate Eq. (34), we still need two equations in
order to relate the variables T, a, and t. Equations (5) and
(7) give the relation [14]

 T3 �
��F 0�T�

2�2g�=45
f�

T3
ca3

i

a3 ; (35)

where the first term, which is proportional to the released
entropy �s�T�f, accounts for reheating, and the second
term accounts for the cooling of the Universe due to the
adiabatic expansion. Finally, the Friedmann equation (12)
gives the relation

 

1

a

da
dt
�

��������������
8�G

3
�

s
; (36)

with � � ���T� � ���T�f, where �� � �� �
g��

2T4=30, and �� � �T�F 0 � �F .
The functions �F �T� and �F 0�T� are easily obtained

by numerically finding the minimum �m�T�. The nuclea-
tion rate ��T� can be calculated by solving numerically
Eq. (31) for the bubble profile, then integrating Eq. (30) for
the bounce action, and using the result in Eq. (29). We
solved Eq. (31) iteratively by the overshoot-undershoot
method.4 The thermal integrals (22) for the finite-
temperature effective potential can be computed numeri-
cally. However, we find that the computation time is low-
ered significantly by using instead low-x and high-x
expansions for I�x� (see the appendix).

B. Numerical results

We begin by considering a phase transition at the elec-
troweak scale, with the free energy plotted in Fig. 2. The
development of the phase transition depends on the specific
heat of the thermal bath, i.e., on the total number of d.o.f.
We can take into account the light d.o.f. of the SM by
setting gl � 90 in the last term of Eq. (23). The friction
coefficient ~� depends on the model and its computation is
not straightforward. For the time being, let us assume ~��
1. The solid curve in Fig. 4 shows the temperature variation
during the phase transition for this model. We observe a
considerable reheating, which indicates that the latent heat
is comparable to the energy density ��R needed to take the
radiation back to T � Tc. However, a phase-coexistence
stage is not achieved, which reveals that L & �4=3���R.
Notice that the large number of d.o.f (g� � 100) makes the
energy density of radiation much larger than the latent
heat. For lower values of gl, the thermal bath has a smaller
specific heat and is more easily reheated. This can be seen
in the dashed and dashed-dotted lines in Fig. 4.

We note that supercooling finishes at a temperature
which is quite closer to Tc than to T0. As mentioned before,

4We have checked our program by comparing with the results
of Ref. [22] for the bounce and Ref. [30] for the evolution of the
phase transition.
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this fact is quite general, as it is due to the extremely rapid
variation of the nucleation rate, which becomes �� T4 �
H4 at T � T0. Notice also that the different curves in Fig. 4
coincide during supercooling. This is because in this stage
the relation between the dimensionless variables T=Tc and
	 � �t� ti�=�2Hi�

�1 is almost independent of any parame-
ter of the model. Indeed, during supercooling T=Tc �
ai=a, and the dependence of the scale factor on time is
given by da=a � Hdt � �1=2��H=Hi�d	. Since a � ai
and H � Hi for T � Tc, we have d�T=Tc� � ��1=2�d	
as long as T does not depart significantly from Tc.

We can check the approximation (14) for the total du-
ration of the phase transition. The relevant parameters r �
L=�R and R � ��=�R are different for each curve in
Fig. 4, since �R depends on g�. We obtain the time lengths
�t=~t � 0:015, 0.023, and 0.055. As expected, this approxi-
mation gives the correct value only when T gets close to
Tc; otherwise, Eq. (14) gives just a lower bound for �t.

Fixing now an intermediate value gl � 30 (g� � 65),
which shows more clearly the effect of reheating, we
consider three different values of the friction (solid curves
in Fig. 5), in the range ~�� 0:1–10. These correspond to

velocities which have values between vw � 0:1 and vw �
10�3 before reheating. We see that, as expected, reheating
begins earlier for larger initial velocities. However, a varia-
tion of 2 orders of magnitude in ~� does not change sig-
nificantly the amounts of supercooling and reheating. For
the rest of the paper, we will consider ~�� 1.

It is interesting to examine the role of the energy scale in
the dynamics of the transition. The model of Eq. (23) has a
single parameter with dimensions, namely, the minimum
v, since the masses of all the particles are of the formmi �
hiv (notice that even the mass (28) of the stabilizing boson
is proportional to v). Thus, dimensionless quantities such
as e.g. the ratio Tc=T0 will not be altered if we change the
value of v. This holds for all the quantities that are derived
from the free energy (e.g., L=T4, �=T4), since the shape of
the normalized effective potential in Fig. 2 is unaffected.
Therefore, changing the scale v will not affect the dynam-
ics of the transition, except for the expansion rate of the
Universe Eq. (36), which depends on the ratio MP=T.

To see the effect of such a change of scale, we have
included in Fig. 5 a couple of examples in which the free
energy is the same as before, apart from the value of v. We
considered the QCD scale, v� 100 MeV, and a scale v�
10�3 eV, corresponding to a very recent phase transition
(right and left dashed lines, respectively). Again, the tem-
perature decreases at the same rate during supercooling, as
explained above. However, bubble nucleation and reheat-
ing begin sooner. This happens because at later epochs the
expansion rate H is slower. As a consequence, the nuclea-
tion rate � becomes �H4 with a smaller amount of super-
cooling. In contrast, L=T4 has the same value for any scale
v. Thus, since ��R is smaller, the temperature gets closer
to Tc. Hence, phase coexistence is favored in phase tran-
sitions occurring at later times. The parameters r and R
have the same values for all the curves in Fig. 5, and
Eq. (14) yields �t=~t � 0:029.

So far we have varied the parameters gl, �, and v, which
do not change the shape of the effective potential. We shall
now consider different values of the couplings hb and hf,
fixing for simplicity gb � gf � 10. We have checked that
fixing instead hb and hf and considering different values of
gb and gf gives similar results. In what follows, we will set
v � 100 MeV. The result is shown in Fig. 6. In the upper
panels we plot the temperature Tm reached during super-
cooling, together with the temperatures Tc and T0. Notice
that Tm is always closer to Tc than to T0. The lower panels
show the time at which the temperature Tm is reached, i.e.,
the duration �ts of supercooling (solid line). The estimated
duration �t of the phase transition is also shown, for
different values of gl. As we increase the number of light
particles (without changing the potential), we obtain less
reheating for the same amount of supercooling. Hence,
increasing gl gives the same �ts but a lower �t.

The left panels of Fig. 6 illustrate the effect of a variation
of hb with hf fixed. As we have seen in the previous
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FIG. 5. Temperature variation for gl � 30. The three solid
lines correspond to v � 246 GeV and, from right to left, to ~� �
50, ~� � 5, and ~� � 0:5. The dashed lines correspond to ~� � 5
and, from right to left, to v � 100 MeV and v � 10�3 eV.
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FIG. 4. The temperature variation for the potential of Fig. 2.
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section, in this case the temperature T0 vanishes for a value
hb � hb1, where a zero-temperature barrier appears. For a
value hb � hb2, the critical temperature also vanishes. The
temperature Tm lies between T0 and Tc, so it must vanish
for some value hmax with hb1 < hmax < hb2 (in the present
case, hmax � 1:3). Our numerical calculation does not
allow us to plot the curve of Tm up to this limit, because
the supercooling time diverges for hb ! hmax. This can be
seen in the lower left panel. For hb > hmax the system never
gets out of the supercooling stage. On the contrary, for
hb < hmax the phase transition completes in a finite time.
Regarding phase coexistence, it occurs when �ts <�t.
For a given gl, this happens up to a value of hb which is
less than hmax. Beyond that value, the supercooling tem-
perature Tm is too low for the latent heat to provide the
required amount of reheating. Then, the estimation (14) for
�t breaks down and the duration of the phase transition is
just given by �t � �ts, since the phase-coexistence stage
is replaced by a short reheating (see e.g. Fig. 4).

If we now keep hf � hb as we increase hb (right panels
in Fig. 6), we see that Tc does not vanish, and T0 decreases
like 1=hb as expected. In this case, the supercooling time
�ts does not diverge at any finite value of hb, and �t can be
considerably larger than �ts. We see that for small values
of gl there is phase coexistence for any value of hb. On the
contrary, for large values of gl there is no phase coexis-
tence at all, and the estimation for �t breaks down. The
curves of �t saturate for hb large because, for gl � 0, the

parameters R and r cannot get close to their limits R �
1=3, r � 4=3.

Let us now consider the case in which hf � hb, but the
boson mass squared has a constant term �2

b given by
Eq. (28) so it is partially decoupled from the thermody-
namics. The curves we obtained are similar to those in the
right panels of Fig. 6, except that the temperatures meet at a
finite value hmin. At this point the times fall to zero, since
the phase transition becomes second order. We have plot-
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FIG. 7. The fraction of time of supercooling for the cases hf
fixed (solid line), hf � hb (dashed line), and hf � hb with �b �

0 (dashed-dotted line). For each set of curves, from bottom to top
g� � 35, 60, and 120.
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FIG. 6. Plots of the temperatures and time intervals as functions of hb, for v � 100 MeV and gf � gb � 10. Upper panels: The
temperatures Tc, Tm, and T0 for hf � 0:7 (left) and hf � hb (right). Lower panels: The supercooling time �ts corresponding to the
upper panels (solid lines), and the total time �t for different values of gl.
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ted in Fig. 7 the ratio �ts=�t for this case and those of
Fig. 6. For each set of curves, the supercooling fraction
increases with gl, since �t decreases. We also see that
phase coexistence is favored for hf * hb. This is because
fermions contribute to the latent heat without enhancing
the strength of the transition.

In general, the energy density of radiation, �R, is much
larger than the latent heat, since only strongly coupled
particles contribute significantly to the latter. It is interest-
ing to consider the case in which there are no light d.o.f. at
all, i.e., gl � gbl � gfl � 0. Only in this case the parame-
ters can be close to the thermodynamical limits L � �R �
��, �� � �R=3. In the absence of light particles, all the
latent heat that is released during bubble expansion is
absorbed only by the heavy particles, which are thus
more easily reheated. Consequently, this scenario will be
the most favorable for phase coexistence. We plot the time
intervals in Fig. 8 for the case hf � hb. We find, as
expected, that the phase coexistence time is notably en-
hanced. For lower scales v we will have the same �t but a
smaller �ts.

V. PHASE TRANSITION DYNAMICS AND
COSMOLOGY

The cosmological implications of a phase transition
depend drastically on the dynamics. In this section we
discuss how the different steps in the evolution, namely,
supercooling, reheating, and phase coexistence, affect
some of the observable products of a phase transition.

A. Late-time phase transitions and false-vacuum
energy

Late-time phase transitions have been studied in con-
nection to the formation of large-scale structure and have
been related, for instance, to axions, domain walls, and
neutrino masses (see e.g. [8]). In contrast to those occur-
ring in the early Universe, which take place in the presence
of a hot plasma with a large number of degrees of freedom,

low-scale phase transitions happen in general in a sector
with a few d.o.f. and, consequently, a small specific heat.
Therefore, one expects a significant reheating during the
phase transition, and a long phase-coexistence stage [9].
Indeed, we have seen in Sec. IV that both a low v and a
small g� favor a long phase-coexistence period (see e.g.
Figs. 4 and 5). This stage can be significantly long for
strongly first-order phase transitions, as shown in Fig. 6
(lower right panel). In particular, if all the particles have
strong couplings, Fig. 8 shows that the coexistence of
phases can last for a time �t� ti.

Recently, late-time phase transitions have been consid-
ered with the aim of (partially) solving the dark energy
problem. While the system is trapped in the metastable
phase, the energy density of the false vacuum provides an
effective cosmological constant. Thus, a false-vacuum en-
ergy �� � �10�3 eV�4 could explain the observed accel-
eration of the Universe. This fact has motivated several
models in which a phase transition at a scale v� 10�3 eV
occurs in a hidden sector [9–11,31]. Such a false vacuum
must persist until the present epoch. Hence, since the
temperature of the hidden sector must be lower than that
of photons, T
 � 10�4 eV, the system must be in the
metastable phase still at T 
 v (for a discussion, see
e.g., [9,11]). This could be achieved, in principle, in several
ways, namely, due to a low critical temperature Tc 
 v
[10], due to a large amount of supercooling [11], or due to a
long phase-coexistence stage [9].

The constraint on the temperature of the hidden sector,
T < T
, comes from the big bang nucleosynthesis (BBN)
constraint on its radiation energy density, �R & 0:1�
.
Therefore, if the false-vacuum energy �� is to explain
the observed dark energy, the temperature of the system
must be such that

 �R�T� & 10�5��: (37)

One possible way out of this limitation would be to assume
that, although the BBN constraint T < T
 was satisfied for
most of the history of the Universe, when T reached Tc �
10�3eV the system entered a long phase-coexistence stage
at constant temperature [9]. Then, as T
 continued decreas-
ing, the temperature of the hidden sector was stuck at T �
Tc. Thus, the BBN condition �R < �
 would be violated
only at the present epoch, avoiding the restriction (37). As
we have seen in Sec. II, a very long phase-coexistence
stage is possible. However, the effective cosmological
constant during phase coexistence is �eff

� � �� � �R=3
which, according to the thermodynamical bound equa-
tion (15), is negative and does not lead to accelerated
expansion.

Because of the bound �R�Tc�> 3��, the condition (37)
cannot be fulfilled at T � Tc. This automatically rules out
any model in which false-vacuum energy is dominant
because the phase transition is yet to occur. For instance,
in Ref. [10] a potential with a negative quadratic term
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FIG. 8. The time intervals for gl � gbl � gfl � 0 and hf �
hb.
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�m2
��

2 is considered. In that model, the temperature is
assumed to be high enough that thermal corrections trap
the system in the false vacuum. Then, the condition (37) is
shown to be achieved for a somewhat small value of a
coupling constant �. Clearly the thermodynamical bound
is strongly violated. However, the thermal correction to the
effective potential is assumed to be �T2�2, which corre-
sponds to keeping only the quadratic term in the power
expansion of the thermal integral I��x�. It is then argued
that the field is trapped at the origin as long as T2 is large
enough to cancel the negative mass squared. This would be
correct in a second-order phase transition, in which Tc �
T0. However, with the parameters of Ref. [10] the phase
transition is strongly first order. Hence, at T � T0 the field
certainly lies in the minimum �m � 0. The critical tem-
perature can in fact be much larger than T0, as shown in the
upper-left panel of Fig. 6, where we see that T0 can vanish
while Tc is still of order v.

Another possibility to attain condition (37) is in a model
with a large amount of supercooling, so that �R�Tc� � ��

but T 
 Tc. This is possible in a strongly first-order phase
transition. For the model considered in the left panel of
Fig. 6, there is a maximum value of the coupling hb � hmax

for which the supercooling temperature Tm ! 0 and the
duration of supercooling becomes infinite. It is not clear,
however, that the required amount of supercooling can be
achieved in a realistic model. Notice that, even when T0

vanishes (i.e., for hb � hb1), we still have Tm � Tc. In the
example of Fig. 6, �R�Tm� � 2:37��. Thus, it is necessary
to go beyond hb � hb1, i.e., to consider a model which has
a barrier still at T � 0. In Ref. [11] the condition (37) was
accomplished in a specific model with T0 � 0 and some
fine-tuning of the parameters. However, the thermal cor-
rections were taken into account only by introducing a term
�T2�2. As pointed out in Ref. [9], this causes an unreal-
istically large value of the latent heat, which violates the
constraint equation (16).

B. Electroweak baryogenesis and baryon
inhomogeneities

It is well known that the electroweak phase transition
could be the framework for the generation of the baryon
number asymmetry of the Universe (BAU). A first-order
electroweak phase transition provides the three Sakharov’s
conditions for the generation of a BAU, although physics
beyond the minimal standard model is mandatory in order
to obtain a quantitatively satisfactory result [3]. Because of
CP violating interactions of particles with the bubble
walls, a net baryon number density nB is generated around
the walls of expanding bubbles. Assuming that CP viola-
tion is strong enough and that the baryon number violating
sphaleron processes are suppressed in the broken symme-
try phase, the resulting nB depends on the bubble-wall
velocity vw. If the velocity is too large, sphalerons will
not have enough time to produce baryons. On the other

hand, for very small velocities thermal equilibrium is
restored and sphalerons erase any generated baryon asym-
metry. As a consequence, the generated baryon number has
a peak at a given wall velocity, which is generally vw �
10�2 [32–34].

As we have seen, reheating is always appreciable, even
if there is no phase coexistence.5 The temperature rise
causes the wall velocity to descend significantly. Thus,
baryogenesis is either enhanced or suppressed, depending
on which side of the peak of nB�vw� the initial velocity lies
[4,28]. Furthermore, baryon inhomogeneities arise due to
the variation of vw. Electroweak baryon inhomogeneities
may survive until the QCD scale [36,37] and affect the
dynamics of the quark-hadron phase transition [36,38,39].
The geometry of the inhomogeneities was studied in
Refs. [4,30]. Since baryon number is generated near the
bubble walls, a spherical inhomogeneity with a radial
profile is formed inside each expanding bubble.

Notice that bubble nucleation stops as soon as reheating
begins. In fact, due to the exponential variation of the
nucleation rate with temperature, most bubbles are formed
in a small interval �t� around the time tm at which the
minimum temperature Tm is reached [30]. This interval is
in general much shorter than the time it takes expanding
bubbles to complete the phase transition. Therefore, it is a
good approximation to assume that all bubbles are created
at t � tm. At a later time, their walls are moving with a
velocity vw�T�t��. Hence, all the inhomogeneities have the
same profile.

In Refs. [4,30], the size and amplitude of the electro-
weak baryon inhomogeneities were investigated using a
simple effective potential, whose parameters were adjusted
so as to give the desired values of the thermodynamic
parameters. This approximation allows to vary indepen-
dently parameters such as, e.g., the latent heat or the
bubble-wall tension. These parameters, though, are gener-
ally related in a nontrivial way, which depends on the
extension of the SM that is considered. For instance, a
strongly first-order phase transition will have in general a
considerable amount of supercooling, and also a large
latent heat. However, the relative importance of supercool-
ing and reheating depends significantly on the specific
model, as can be seen, for instance, in Fig. 7.

The amplitude of the baryon inhomogeneities,
nBmax=nBmin, is bounded by the ratio of the highest and
lowest wall velocities reached during bubble expansion,
vmax=vmin. If L is freely varied, one can achieve values
vmax=vmin � 100 or higher [4,30]. However, in a specific
extension of the SM this will not be necessarily so. To
examine a more realistic situation, we have considered
extensions of the SM as in the previous sections. We find

5An exception could be the case of an extremely supercooled
electroweak phase transition, for which reheating may be neg-
ligible. Such a model has been considered recently in Ref. [35].
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that, if we add a strongly coupled boson, or a boson and a
fermion with hf � hb, the velocity variation is in general
vmax=vmin � 1. We find a sizeable ratio only in the case in
which the fermion dominates. The addition of strongly
coupled fermions was investigated in Ref. [19], in order
to make the electroweak phase transition strongly first
order.

Let us consider for simplicity an extension with gf � 10
fermionic d.o.f. with mass mf � hf�, and stabilizing bo-
sons with gb � gf, hb � hf, and a dispersion relation
m2
b � �2

b � h
2
b�

2, with �b given by Eq. (28). We obtain
the plot of Fig. 9. For hf in the range of the figure the value
of the order parameter is �c=Tc > 1, as required by elec-
troweak baryogenesis. The distance scale of the inhomo-
geneities is given by the final size of bubbles, which
depends on the distance between centers of nucleation.
Thus, it can be roughly estimated as d� n�1=3. For the
present case we obtain the dashed-dotted curve in Fig. 10.
Our results for the distance d agree in order of magnitude
with those of Refs. [4,30]. However, we see that the
amplitude of the inhomogeneities can be important only
for small values of hf. In particular, vmax=vmin * 100 is
reached for values of hf for which �c=Tc < 1. Therefore,
baryon inhomogeneities of significant amplitude are not
likely produced in the electroweak phase transition.

C. Topological defects and magnetic fields

If a global U�1� symmetry is spontaneously broken at a
first-order phase transition, the phase angle � of the Higgs
field takes different and uncorrelated values inside each
nucleated bubble. When bubbles collide, the variation of
the phase from one domain to another is smoothed out.
According to the geodesic rule, the shortest path between
the two phases is chosen [40]. When three bubbles meet, a
vortex (in two spatial dimensions) or a string (in 3d) may
be trapped between them. This mechanism can be gener-
alized to higher symmetry groups and other kinds of topo-
logical defects.

If the dynamics for the phase � is not taken into account,
the number density of defects depends only on the final

bubble size. The probability of trapping a string at the
meeting point of three bubbles is 1=4. Thus, the string
density (length per unit volume) is �1=4d2, where d is
the distance between bubble centers [41]. Figure 10 shows
the different possibilities for the length d. For stronger
phase transitions, the bubble separation is larger, since
the nucleation rate is more suppressed.

Taking into account the dynamics of phase equilibration,
the number density of defects depends also on the velocity
of bubble expansion. If the latter is much less than the
velocity of light, the equilibration between the phases of
two bubbles may complete before a third bubble meets
them, thus reducing the chances of trapping a string.
Consequently, reheating hinders the formation of topologi-
cal defects.

In the case of a gauge theory, a spatial variation of the
phase � is linked to a variation of the gauge field [41]. As a
consequence, a magnetic field is generated together with
the phase difference in the collision of two bubbles. Then,
one can say that a vortex is formed whenever a quantum of
magnetic flux is trapped in the unbroken-symmetry region
between three bubbles. The phase equilibration process is
thus related to flux spreading, and depends on the conduc-
tivity of the plasma. Bubble collision constitutes also a
mechanism for generating the cosmic magnetic fields (see
e.g. [42]). This mechanism may take place at the electro-
weak phase transition, where unstable cosmic strings and
hypermagnetic fields may be formed. The latter are sub-
sequently converted to U�1�em magnetic fields.

A detailed calculation of the density of defects and the
magnitude of the magnetic fields is beyond the scope of
this paper and we leave it for future research. Although
some simulations have been made (see, e.g., [43]), several
simplifications are generally used, which include assuming
a constant nucleation rate and a constant bubble-wall ve-
locity. As we have seen, this situation is hardly realistic.
Moreover, the formation of topological defects and mag-
netic fields depend strongly on the dynamics of the phase
transition. In particular, a long phase-coexistence stage

0.5 1.0 1.5 2.0 2.5 3.0
1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

FIG. 10. The distance d between centers of nucleation for
gf � 0 (solid line), gf � gb � 10 and hf � hb (dashed line),
and gf � gb � 10, hf � hb, with �b � 0 (dashed-dotted line).
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FIG. 9. The ratio vmax=vmin as a function of hf.
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with a very slow bubble expansion will affect significantly
the mechanism of phase equilibration during bubble
percolation.

VI. CONCLUSIONS

In this article we have investigated the different stages in
the development of first-order phase transitions of the
Universe. In particular, we have studied the amounts of
supercooling and reheating. If the entropy discontinuity
�s�Tc� is larger than the entropy decrease �s � s�Tc� �
s�TN� during supercooling, a phase-coexistence stage is
reached. Then, the total duration of the phase transition
can be calculated analytically. The ratio �t=�2H��1 de-
pends only on the parameters r � L=�R and R � ��=�R.
If �s�Tc� � �s, supercooling lasts for a time which is
longer than �t. In this case, there is no phase coexistence,
and �t gives only a lower bound for the total duration of
the phase transition. We have shown that thermodynamics
constrain these parameters to the region R � 1=3, r � R�
1. These constraints should be taken into account when the
dynamics of a particular phase transition is considered,
since approximations for the effective potential may vio-
late them, and thus the analysis may lead to incorrect
results.

With the help of a simple model, we have analyzed
numerically the role of different parameters in the dynam-
ics of the phase transition. We have verified that phase
coexistence is more likely in later phase transitions, since
both a lower energy scale and a smaller number of degrees
of freedom favor reheating. In addition, we have seen that
changing the viscosity of the surrounding medium does not
affect significantly the dynamics of supercooling and re-
heating, although it affects the velocity of bubble walls.
The incorporation of bosons to a given model strengthens
the phase transition, so the effect on the dynamics is to
enlarge the latent heat and suppress the nucleation rate. As
we have seen, the latter effect is in general stronger, so
adding bosons favors supercooling. On the contrary, add-
ing fermions in general weakens the phase transition and at
the same time increases the number of d.o.f. We have
checked that in this case phase coexistence is favored.

We have studied how our general results on phase tran-
sition dynamics may affect some of the cosmological con-
sequences. For instance, in the case of dark energy from a
phase transition, we have shown that the thermodynamical
bounds rule out some models. Besides, we have analyzed
the effect of dynamics on two important parameters,
namely, the number density of bubbles and the amplitude
of the velocity variation during reheating. As we have seen,
these quantities are relevant for the generation of different
cosmological relics, e.g., baryon inhomogeneities, topo-
logical defects, and magnetic fields. In particular, we have
found that it is difficult to obtain baryon inhomogeneities
of sizeable amplitude in realistic models of the electroweak
phase transition.

We believe that our results on the dynamics can be
applied to a wide class of phase transitions of the
Universe, and the discussion on the cosmological conse-
quences can be extended to several interesting possibilities,
such as, e.g., the formation of baryon inhomogeneities in
the quark-hadron phase transition [5] or the generation of
gravitational waves [6].
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APPENDIX A: APPROXIMATIONS FOR THE
THERMAL INTEGRALS

In this appendix we consider expansions of the functions
I�x� for small x and large x. The integrals in Eq. (22) can
be evaluated numerically. However, a numerical computa-
tion in the effective potential increases significantly the
total computation time. Indeed, notice that for each tem-
perature, we must find the minimum �m�T� to compute
several quantities derived from F �T�. Moreover, the cal-
culation of the bounce action S3�T� requires the time-
demanding overshoot-undershoot technique to solve
Eq. (31) for the bubble profile at each T. Therefore, it is
useful to employ analytical approximations for the thermal
integrals.

Following the derivation of Ref. [44], we can obtain the
expansions of I�x� in powers of x. For bosons we have

 I��x� � �
�4

45
�
�2

12
x2 �

�
6
x3 �

x4

32
log

x2

ab

� 2�7=2
X1
l�1

��1�l
��2l� 1�

�l� 2�!
�
�
l�

1

2

��
x

2�

�
2l�4

;

(A1)

where ab is given by logab � 3=2� 2
� 2 log�4��, with

 the Euler constant; � is the Riemann zeta function, and �
is the Gamma function. The expansion for fermions is
 

I��x� � �
7�4

360
�
�2

24
x2 �

x4

32
log

x2
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�
�7=2

4

X1
l�1

��1�l

�
��2l� 1�

�l� 2�!

�
1�

1

22l�1

�
�
�
l�

1

2

��
x
�

�
2l�4

; (A2)

where af is given by logaf � 3=2� 2
� 2 log�. For any
value of x we can get the desired precision by keeping
enough terms in these expansions. For example, keeping
up to l � 5 in I� and l � 12 in I�, we obtain a precision of
10�8 for 0 � x � 2.

The expansion for large x can be obtained by changing

the variable of integration to z �
����������������
y2 � x2

p
and expanding
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the logarithm in Eq. (22) in powers of e�z (see Ref. [18]),

 I��x� � �
X1
k�1

�1�k�1

k

Z 1
x
dz z

����������������
z2 � x2

p
e�kz: (A3)

For each k, the integral yields x2K2�kx�=k, where K2 is the
n � 2 modified Bessel function of the second kind [45]
Kn�z�. Hence, we obtain the expansions

 I� � �x
2
X1
k�1

�1�k�1

k2 K2�kx�: (A4)

Notice that the integrals in Eq. (A3) are of the order of
e�kx, so the terms in this expansion decrease with powers
of e�x. Therefore, in general we will obtain the desired
precision by considering a few terms. For example, for x �
10 we obtain �I=I & 10�10 by keeping only the first two
terms in (A4). For x � 2, keeping terms up to k � 7 in the
expansion gives a precision �I=I & 10�8. As a rough
estimation of the error of the truncated expansion, we
note that the kth term is�x2e�kx=k2, and the error is given
by the ratio of the �k� 1�th term to the first term, �I=I �
e�kx=k2.
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