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We analyze the possibility that topological defects can act as a source of magnetic fields through the
Harrison mechanism in the radiation era. We give a detailed relativistic derivation of the Harrison
mechanism at first order in cosmological perturbations, and show that it is only efficient for temperatures
above T ’ 0:2 keV. Our main result is that the vector metric perturbations generated by the defects cannot
induce vorticity in the matter fluids at linear order, thereby excluding the production of currents and
magnetic fields. We show that anisotropic stress in the matter fluids is required to source vorticity and
magnetic fields. Our analysis is relevant for any mechanism whereby vorticity is meant to be transferred
purely by gravitational interactions, and thus would also apply to dark matter or neutrinos.
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I. INTRODUCTION

There is strong observational evidence for the existence
of large-scale magnetic fields in galaxies and clusters, with
intensity 0:1–10 �G (see, e.g., Refs. [1,2]). The observed
features suggest a common generation mechanism, leading
to weak seed fields that are amplified first by the collapse of
structure and turbulent substructure formation, and then by
the dynamo mechanism [3,4]. However, dynamo amplifi-
cation is still under debate and depends not only on the type
of structure but also on the cosmological parameters [4,5].

Magnetogenesis mechanisms can operate either primor-
dially or during galaxy formation. Primordial magneto-
genesis is particularly appealing because it can produce
seed fields on large scales and would account for their
ubiquity. Several primordial generation mechanisms have
been proposed. For example, magnetic fields can be gen-
erated during a first-order primordial phase transition [6],
and during the electroweak phase transition even if it is
second order [7]; magnetic helicity can be generated by
parity-violating processes [8,9]; magnetic fields can also
be generated during inflation, if the conformal invariance
of electromagnetism is broken in some way [10], or during
a pre–big bang [11]. These are only some examples of the
generation mechanisms that have been proposed in the
literature, many of which are strongly constrained by nu-
cleosynthesis [12]. It is fair to say that there is to date no
preferred generation mechanism, and the origin of astro-
physical magnetic fields remains an open problem.

In this paper, we concentrate on a mechanism first
proposed by Harrison [13]. The basic idea is the following:
during the early radiation era, Thomson scattering between
electrons and photons is more efficient than Coulomb
scattering between electrons and protons, so that electrons
and photons can be described as a single fluid with a

common velocity, in principle different from that of the
protons. If, by means of some external mechanism, vortical
motion is present in the radiative and proton fluids, then, in
the absence of interactions, the vorticities of the two fluids
evolve independently. The different spin-down rates of the
photon-electron and proton fluids give rise to nonzero net
rotational currents, which in turn can act as sources of
magnetic fields. Two fundamental ingredients are needed
for this generation process to work. First, one needs an
external source of vorticity in the fluids. Second, the proton
and photon-electron fluids must have different velocities,
otherwise there is no current and consequently no magnetic
field.

In Harrison’s original argument the analysis is
Newtonian, and some of the assumptions are not made
explicit. We present in Sec. II a detailed relativistic deri-
vation of the Harrison mechanism, consistent at first order
in cosmological perturbation theory. We show that the
Harrison mechanism can operate when the temperature
of the Universe is T > 0:2 keV, so that Thomson scattering
of electrons and photons is more efficient than Coulomb
scattering of electrons and protons. Moreover, we show
that the magnetic field sourced by the Harrison mechanism
depends only on the initial value of the total vorticity in the
fluids.

There is no obvious reason for vorticity to be nonzero
unless there is an external source. The vorticity might arise
from second-order gravitational and scattering effects re-
lated to the nonlinear evolution of density perturbations, as
studied in Refs. [14–17]. At first order, there is no vorticity
from inflationary-generated perturbations, but topological
defects are an active source of vector perturbations. In this
paper we analyze the possibility that vorticity in the matter
fluids could be driven by topological defects. We show
that, at first order in perturbation theory, and in the absence
of electrical currents in the defects themselves, this idea
cannot work.

We assume that the defects interact with the cosmic fluid
only gravitationally, and that they have no significant effect
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on the background evolution of the Universe. Defects are
modeled as an inhomogeneously distributed component
whose energy-momentum tensor has scalar, vector and
tensor degrees of freedom [18–20]. Therefore, defects
induce perturbations in the metric at first order, and, in
particular, vector-type perturbations [21]. Our main result
is presented in Sec. III, where we demonstrate that first-
order vector-type metric perturbations cannot induce vor-
ticity in perfect fluids without anisotropic stress.
Consequently, defects cannot act as a source of magnetic
fields in such fluids through the Harrison mechanism at
first order. We identify fluid anisotropic stress as a possible
way around this no-go result. (If the defects are super-
conducting and carry primordial currents then their mag-
netic fields can induce magnetic fields in the fluids at first
order [22].)

At early times, baryons and photons have negligible
anisotropic stresses on the scales of interest, and conse-
quently their vorticity is not sourced. On the other hand,
defects have nonzero anisotropic stress, which induces
vorticity in the defects and vector perturbations in the
metric. However, we show that the vector modes in the
defects and the metric form a closed system of conserved
quantities and do not couple to the vorticity in the fluids.

Previous analyses have considered the possibility of
Harrison magnetogenesis via vorticity from cosmic defects
[23–27]. The argument relies on breaking the perfect fluid
condition and/or on nonlinear effects in the defect evolu-
tion. In Refs. [23], the authors argue that for fluid particles
that pass near enough to cosmic strings, shock fronts form
in the fluid. The shock causes a discontinuity in the entropy
of the fluid, and leads to turbulence and vorticity, and in
turn to magnetic fields through a Harrison-type mechanism
[28]. This effect, which is confined to the wakes after
recombination and due to highly nonlinear dynamics, is
completely absent in our analysis, which restricts to linear
theory and deals with perfect matter fluids with constant
entropy. Subsequently it was proposed that magnetic fields
can be generated also prior to recombination, around
matter-radiation equality, via nonlinear dynamical friction
of the surrounding particles on the motion of two wiggly
strings moving in opposite directions [25,26]. In [27] it is
argued that it is the rotating string loops rather than the
long straight strings which dominate the generation of
vorticity on the relevant scales.

In the next section we review the Harrison mechanism in
first-order perturbation theory, and derive the collision
rates for Coulomb and Thomson scattering. In Sec. III,
we present the necessary defect equations and then show
that vorticity is not induced in the fluids if they do not have
anisotropic stresses and do not interact other than gravita-
tionally with the defects.

We consider a flat Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) background. The metric perturbations
can be split in scalar, vector and tensor types, which

decouple at linear order. Because we investigate the vorti-
cal dynamics of the system, we only consider vector-type
metric perturbations:

 ds2 � a2���f�d�2 � 2�id�dx
i � �ijdx

idxjg; (1)

where we choose the Poisson gauge, so the transverse
three-vector � is the only vector degree of freedom [29].
The scale factor a is normalized so that a��0� � 1 today.

II. HARRISON MECHANISM AND MAGNETIC
FIELD EVOLUTION

The Harrison mechanism in the radiation Universe is
based on the mutual interaction of protons, electrons,
photons ( labeled by I � p, e, �) and electromagnetic
fields. The radiation and charged particles are modeled as
perfect fluids with barotropic equation of state, pI � wI�I,
and with transverse velocity perturbation, vI, relative to the
comoving observer frame defined by the four-velocity
u� � �a�1; 0; 0; 0�. Thus the four-velocities are

 u�I � a�1�1;vI� ) uI� � a��1;vI � ��; (2)

where k � � � 0 � k � vI (where k is the comoving wave
vector). Density perturbations ��I are of scalar type and
contribute to the vorticity only at higher order so that we do
not consider them. The fluid vorticities are given by

 !�
I �

1

2a
�0;�I�; �I :�

i

a
k� �vI � ��; (3)

as derived in Appendix A.
The fluid and electromagnetic energy-momentum ten-

sors are

 T��I � ��I � pI�u
�
I u

�
I � pIg

��; (4)

 T��em �
1

4�

�
�E2 � B2�u�u� �

1

2
�E2 � B2�g��

� 2u��"����E
�B� � E�E� � B�B�

�
; (5)

where "��� � 	����u
� is the projected totally antisym-

metric tensor, and parentheses denote symmetrization (see
Appendix A). In the next section we will add cosmic
defects to this system. Since the defects and the other
components interact only gravitationally, the total
energy-momentum tensor for the fluids and electromag-
netic field is conserved:

 r�T
��
I �

X
J

K�
JI � K

�
em;I;

X
I;J

K�
JI � 0; (6)

 r�T
��
em � �

X
I

K�
em;I : (7)

The scattering and electromagnetic rates of momentum
exchange are at first order [16,30]
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 K�
IJ �

1

a
�0; CIJ�vJ � vI	�; (8)

 K�
em;I �

1

a
�0; qInE�; (9)

where CIJ are the Thomson or Coulomb collision coeffi-
cients, qI are the charges (q� � 0, qp � e � �qe), n �
�p=mp � �e=me is the number density andE � E��; k� is
the transverse part (k �E � 0) of the electric field as
measured in the ‘‘lab’’ frame. (See the appendices for
further details. In Eq. (B16) of Appendix B, we neglect
the Lorentz force term which is second order.)

Using the above expressions for the momentum ex-
change rates, the fluid momentum conservation Eq. (6)
gives

 ��1� wI�a4�I�vI � ��	0 � a5

�X
J

CIJ�vJ � vI� � qInE
�
;

(10)

where a prime denotes a derivative with respect to confor-
mal time �. Taking the curl, and using Maxwell’s induction
Eq. (B14),

 ik� �a2E� � ��a2B	0; (11)

we arrive at the following system of equations:

 

4

3
�a5����	0 � a6fCe���e � ��� � Cp���p � ���g;

(12)

 

�a5�e�e	0 � ena3�a2B	0 � a6fCe���� � �e�

� Cep��p � �e�g; (13)

 

�a5�p�p	0 � ena3�a2B	0 � a6fCp���� � �p�

� Cep��e � �p�g: (14)

These equations relate the vorticity in the three fluids
(photons, electrons and protons) to the magnetic field. In
order to close the system, we use the curl of Ampère’s law
Eq. (B18) which leads to a wave equation for the magnetic
field sourced by the vortical current,

 �a2B	00 � k2a2B � 4�ena4��p � �e�; (15)

such that Eqs. (12)–(15) describe the generation and evo-
lution of magnetic fields in the radiation era at first order
(the electric and magnetic fields vanish in the background).

We now investigate the collision terms on the right-hand
sides of Eqs. (12)–(14), which determine the momentum
exchange among the particle species. The coefficients CIJ
are the ratios between the enthalpy density of the scattering
particles and the mean relaxation times for scattering
between the species [16,31]:

 Cep :�
�e
�ep
�
�p
�pe
�

4�e4 ln�

me
n2

�
me

T

�
3=2
; (16)

 Ce� :�
�e
�e�
�

4��
3��e

�
32�e4

9m2
e
��n; (17)

 Cp� :�
�p
�p�
�

4��
3��p

�

�
me

mp

�
2
Ce�; (18)

where ln� ’ 17 is the Coulomb logarithm, coming from
the Coulomb cross section, 
C � 4�e4 ln�=T2. In the
radiation era the relaxation times are

 �ep :�
1

ven
C
’ 9� 10�4

�
eV

T

�
3=2

s; (19)

 �e� :�
3me

4��
T
’ 7� 102

�
eV

T

�
4
s; (20)

 �p� :�
3mp

4��
Tp
�

�mp

me

�
3
�e�; (21)

where �IJ denotes the scattering of the I-type particle
against the J-type particle, ve is the thermal electron
velocity, 
T is the electron-photon Thomson cross section
and 
Tp � �me=mp�

2
T is the Thomson cross section of
proton-photon interactions. Here and subsequently we use
values for the cosmological parameters from [32].

The evolution of the various fluid velocities and
vorticities is governed by the relative strengths of these
relaxation times, which are shown in Fig. 1. At high
temperatures, the strongest coupling is between the elec-
trons and the photons, and the scattering rate is so high that
they can be treated as tightly coupled. At lower tempera-
tures, the photon density is diluted and eventually the
electron-proton interactions come to dominate. This occurs
when Cep ’ Ce�, at a crossover temperature of Tc ’
230 eV. A similar transition occurs between the proton-
photon scattering and the proton-electron scattering at a
higher temperature, T ’ 94 keV. For temperatures T &

94 keV we can neglect the proton-photon coupling, and
we make this approximation from now on.

Recently Takahashi et al. [17] have pointed out that
electrons and protons are coupled not only by Coulomb
scattering, but also via their coupling to the electric field,
and they find that the latter coupling is much more efficient
than Coulomb scattering. This would mean that Thomson
scattering is dominant only at higher temperatures than
’ 230 eV, i.e., Tc would be higher than shown in Fig. 1.

At temperatures below Tc, the electron-proton coupling
dominates, which damps any currents that are needed for
magnetogenesis. A difference in the vorticities of the elec-
tron and proton fluids is in fact necessary for magnetic field
generation, as appears clearly from Eq. (15).
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Magnetogenesis becomes possible when photon pair
production ceases and the three-fluid picture described
above holds. We assume there is no magnetic field initially,
B�ai� � 0, so that due to Eq. (15) and the tight coupling of
all fluids the vorticities are equal, ��i � �ei � �pi �: �i.
We can derive a total vorticity evolution equation by add-
ing all the vorticity exchange Eqs. (12)–(14). The ex-
change terms cancel and we arrive at the conservation of
total angular momentum

 

me

mH
a2�e �

mp

mH
a2�p � aeqa�� � a2

i

�
1�

aeq

ai

�
�i: (22)

Here we have defined aeq�’ 1=680� via �b�aeq� �

4���aeq�=3. While this equation holds, vorticity is not
created, but can be passed between the various species.

We derive the magnetic field evolution equation for the
high temperature regime (T 
 Tc) where the photons and
the electrons are tightly coupled. The Thomson collision
term of the photons and electrons diverges in the tight
coupling limit and must therefore be cancelled by adding
Eqs. (12) and (13). (Note that it is incorrect to simply drop
the Thomson scattering terms.) After combining Eqs. (12)
and (13) we may safely set �e � �� to find

 

�
a5

�
4

3
�� � �e

�
��

�
0

� ena3�a2B	0 � a6Cep��p � ���:

(23)

Then we can derive an evolution equation for the magnetic
field by subtracting the proton vorticity Eq. (14) from

Eq. (23), and by using angular momentum conservation,
Eq. (22), and the wave Eq. (15), both with �e � ��. The
result is given in Appendix B, Eq. (B19). For subhorizon
scales, k� aH, it can be integrated to give

 �1� k2‘2a�B�
L2k2

a2

Z a

ai

a5=2Bda �
mp

e
ai

a

�
ai

a
� 1

�
�i:

(24)

Here we used the fact that a� aeq for T 
 Tc and intro-
duced the diffusion scales:

 L2 :�
e2 ������

me
p

ln�

T3=2
0 H0

����������
�rad

p ; ‘2 :�
2mHmpG

3e2H2
0�b

: (25)

L is a characteristic scale for Coulomb diffusion while ‘ is
related to the classical electromagnetic interaction between
the charged particles. Clearly the magnetic field is only
sourced by a nonzero initial vorticity �i.

Equation (24) is the generalized form of Harrison’s
result, including the scale-dependent Coulomb dif-
fusion integral term. We arrive at Harrison’s result [13]
by considering cosmologically relevant scales: well
inside the horizon, but large enough that the diffusion
terms are negligible, k�1 � L ’ 3:2� 10�2 pc� ‘ ’
3� 10�9 pc:

 

e
mp
B �

ai

a

�
ai

a
� 1

�
�i: (26)

From Eqs. (24) and (26), it is clear that one needs initial
vorticity to create magnetic fields. If the initial vorticity is
zero, then under the assumption �e � ��, Eqs. (23) and
(24) show that the vorticities and the magnetic field remain
zero.

III. VORTICITY FROM DEFECTS?

In order to produce a magnetic seed by Harrison’s
mechanism, the initial value of the total vorticity in the
electron, proton and photon fluids must be nonzero.
However, this begs the question of where this vorticity
originated. Harrison had turbulence in mind, but it now
seems unlikely that significant turbulence existed in the
early Universe on the scales of interest [33]. Vorticity
originating in the very early Universe, such as during an
inflationary period, would have decayed to negligible lev-
els before the onset of Harrison’s mechanism. However,
cosmic defects are an active source of vector perturbations,
at the same order of magnitude as scalar perturbations,
which in principle could lead to a seed for magnetic fields.

Cosmic defects are usually modeled as a fluid [18]. Here
we only consider their vector contribution, and the vector
part of the defect energy-momentum tensor is

 �0i � ��v�i (27)

FIG. 1 (color online). The mean relaxation times, Eqs. (19)–
(21), and the expansion time scale, 1=H, as a function of the
radiation temperature. The Harrison mechanism operates in the
shaded region, T * Tc ’ 230 eV.

HOLLENSTEIN, CAPRINI, CRITTENDEN, AND MAARTENS PHYSICAL REVIEW D 77, 063517 (2008)

063517-4



 �ij �
i

2
�ki�

���
j � kj�

���
i 	: (28)

Here ��v�i is the transverse momentum density, and ����i is
the transverse vector part of the anisotropic stress. The lab
frame quantities are defined via the four-vectors ����� �
a�0;����� for � � v;�.

Because the defects interact only gravitationally with the
radiation and matter fluids, they are separately conserved:
r���� � 0. Momentum conservation for the defects im-
plies

 �a3��v�	0 � �
1

2
a3k2����: (29)

The total momentum conservation for the fluids follows
from Eq. (10),

 

�
a4
X
I

�1� wI��I�vI � ��
�
0
� 0: (30)

Anisotropic stress in the defects sources the vector metric
perturbation via the Einstein equation,

 �a2�	0 � 8�Ga3����: (31)

However, this is not enough to source vorticity in the
radiation and matter fluids, which remains conserved by
Eq. (22). The vorticity is not simply the curl of the fluid
velocity—by Eq. (3) it is the curl of vI � �. Defects
source �, but cannot break the conservation of angular
momentum.

Therefore, we can conclude that despite the fact that the
defects change the evolution of the metric, the fluid veloc-
ities adjust to compensate this change and ensure the
conservation of the vorticity. Thus the defects do not
induce magnetic fields via the Harrison mechanism at first
order.

Note that the Einstein constraint equation does not pro-
vide any additional avenue for vorticity generation. It takes
the form of a vector ‘‘Poisson’’ equation,

 a2k2� � �16�GQ; (32)

where we defined the total vector momentum (fluids and
defects)

 Q :� a3��v� � a4
X
I

�1� wI��I�vI � ��: (33)

From the dynamical Einstein Eq. (31) together with the
momentum conservation Eqs. (29) and (30) we find

 �a2k2�	0 � �16�GQ0: (34)

Thus the constraint is identically satisfied at all times if it is
satisfied at an initial time �i. This determines the initial
metric vector perturbation in terms of the initial total
momentum.

We have given a comprehensive general relativistic
analysis which shows how vorticity is related to metric

vector perturbations and to vector anisotropic stress. This
analysis has not used any special properties of the defects.
In fact, it appears that it is not possible to induce vorticity
in the matter fluids by any source that interacts with the
fluids purely gravitationally. Thus our general analysis
would apply equally well to neutrinos (after decoupling)
or dark matter. This result is implicit in Ref. [27] for the
special case of cosmic string wakes in a Newtonian ap-
proximation: in this reference angular momentum conser-
vation is identified as the reason for the absence of vorticity
at first order.

One possible source of vorticity in the fluid is fluid
vector anisotropic stress [34]:

 �I
ij �

ipI
2
�ki�Ij � kj�

I
i �; (35)

where �Ii is transverse and the lab frame quantities are
defined via the four-vectors �I� � a�0;�I�.

Our key underlying assumption above is that none of the
fluids (electrons, protons, photons) has significant aniso-
tropic stress in the relevant temperature range T 
 Tc,
since they are too tightly coupled with each other. If
present, fluid anisotropic stress would not only provide
an extra source for the metric perturbation,

 �a2�	0 � 8�Ga3

�
���� �

X
I

pI�I

�
; (36)

but it would also directly source vorticity in the fluids via
the curl of the momentum equation:

 

�
a5
X
I

�1� wI��I�I

�
0
� �

ik2a3

2
k�

X
I

pI�I: (37)

This shows explicitly how fluid anisotropic stress violates
the vorticity conservation shown above in Eq. (22). For
fluids that support anisotropic stress it is possible that this
can be sourced by the defects: e.g., during recombination,
when photons decouple from the baryons, metric vector
perturbations from defects are a source for the photon
anisotropic stress [19].

Another possible way to break our no-go result is at
higher order in perturbations. For example, Kobayashi
et al. [16] showed recently that at second order in pertur-
bation theory and second order in the tight coupling ap-
proximation, vorticity and magnetic fields could be
generated during the phase dominated by electron-proton
scattering.

IV. SUMMARY AND CONCLUSIONS

In this paper we investigated the possibility that the
seeds for the magnetic fields observed today in galaxies
and clusters are generated in the primordial Universe by
the Harrison mechanism. We found that the Harrison
mechanism can act during a relatively early stage of the
radiation era, for T 
 Tc ’ 230 eV. At lower temperatures
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the electrons are tightly coupled to the protons and no
current can be generated. We analyzed the problem at first
order in perturbation theory, and generalized Harrison’s
original result, showing that initial vorticity in the matter
and photon fluid sources the magnetic field.

The idea of sourcing vorticity in the matter fluids via
topological defects (in particular, cosmic strings) has been
considered previously in the literature, based on
Newtonian analyses of nonlinear processes in the dynamics
of one or more cosmic strings, such as turbulence induced
in the wake of a string after recombination [23,25]. We
analyzed the problem at first order in gravitational effects,
modelling the defects as a fluid with anisotropic stress. We
found that the defects do not provide a source for vorticity
in the matter fluids, so that no magnetic field is generated in
the period of the radiation era relevant for the Harrison
mechanism.

The reason for this is connected to the nature of vector
perturbations: the fluid velocities adjust to compensate the
metric perturbation sourced by defects, in such a way that
fluid vorticity remains conserved. This result is not specific
to defects: in a two-component system interacting only
through gravity, the vector metric perturbations induced
by one component do not act as a source of vorticity in the
other component. At first order, the only source of vorticity
is vector anisotropic stress in the fluid itself. If this is
absent, no vorticity can be generated in the fluid even
though the vector metric perturbation is nonzero.

For the Harrison mechanism to work, one requires either
fluid anisotropic stress, or second-order effects. There is an
interesting tension between the creation of vorticity and the
creation of magnetic fields. The creation of vorticity re-
quires anisotropic stress which is suppressed by strong
coupling between the fluids. On the other hand, creating
magnetic fields by the Harrison mechanism relies on strong
coupling.

ACKNOWLEDGMENTS

The authors thank Konstantinos Dimopoulos, Ruth
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APPENDIX A: THREE-VECTORS, CURLS, AND
VORTICITY

For a flat FLRW metric with first-order scalar, vector
and tensor perturbations in the Poisson gauge
 

ds2 � a2���f��1� 2 �d�2 � 2�id�dx
i

� ��1� 2��ij � hij	dxidxjg: (A1)

The observer at rest in the background (so that � � const
are global rest spaces) has four-velocity

 u� �
dx�

dt
�

1

a
dx�

d�
�

1

a
�1; 0; 0; 0�: (A2)

The vector and tensor metric perturbations are defined as
measured in FLRW proper coordinates �t; r�, where dt �
ad�, dr � adx. We refer to this as the lab frame (see
Ref. [35]), and in this frame there is no difference between
upper and lower spatial indices (e.g., �i � �i).

For any four-vector Z� that is orthogonal to u�, i.e.,
u�Z

� � 0, it is convenient to define the associated three-
vector z as measured in the lab frame:

 Z� � a�1�0; z� ) Z� � a�0; z�: (A3)

Then one can apply the usual Euclidean vector calculus to
z.

With four-dimensional perturbed vector and tensor
quantities one has to be careful, because raising and low-
ering indices of four-vectors is done with the perturbed
metric. In the case of the four-velocity of fluid I,

 u�I �
1

a
�1�  ;vI�; uI� � a��1�  ;vI � ��;

(A4)

the vector perturbation � appears in the covector uI� be-
cause uI� is not orthogonal to the observer u�.

An associated subtle issue is the curl and therefore the
vorticity. Covariantly one defines the curl of any four-
vector Y� with respect to the observer u� by [30]

 �curlY�� :� 	����u�h


�r
Y�; (A5)

where h�� :� g�� � u�u� projects orthogonal to u� and
the Levi-Civita alternating tensor is defined by 	0123 �

�
�������
�g
p

. (Note that our sign convention is opposite to that
of Ref. [30].) It follows that u��curlY�� � 0, even if
Y�u� � 0. If the four-vector is orthogonal, i.e., if
Eq. (A3) holds, then the curl is particularly simple:

 �curlZ�� � a�2�0;r� z�: (A6)

But for nonorthogonal four-vectors, the curl acquires a
metric correction. The curl of the four-velocity of fluid I is

 �curluI�� �
1

a2 �
�
j �

jkl@k�vIl � �l� �
1

a
�0;�I�; (A7)

where �I is

 � I :�
1

a
r� �vI � ��: (A8)

This is the appropriate three-vector in the lab frame corre-
sponding to the fluid vorticity, which is defined by

 !�
I �

1

2
�curluI��: (A9)

Note that at second order, in addition to �I, products of
first-order scalar perturbations appear in the spatial part of
the vorticity [14].
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APPENDIX B: ELECTROMAGNETISM

We discuss how to treat electromagnetic fields in a
perturbative approach. The main point is to understand
the connection between the covariant four-vector represen-
tation and the three-vectors which are Fourier transformed.

The electromagnetic field is covariantly described by the
Faraday tensor F�� � 2@��A�	, where A� is the four-
potential. Maxwell’s equations are

 r��F��	 � 0; r�F
�� � 4�j�; (B1)

where the four-current is

 j� �
X
I

qInIu
�
I : (B2)

To find the appropriate three-vector representation we
split the Faraday tensor into its electric and magnetic parts
relative to the observer u�,

 F�� � 2u��E�	 � 	����u�B�; E�u� � 0 � B�u�:

(B3)

If we assume the electromagnetic field vanishes in the
background, then Maxwell’s equations are

 @iBi � 0; (B4)

 @i�a
3Ei� � 4�a4j0; (B5)

 a�curla3B�i � 4�a4ji � �a3Ei�0; (B6)

 a�curla3E�i � ��a3Bi�0: (B7)

We define the lab electric and magnetic three-vectors as in
Eq. (A3):

 E� � a�1�0;E�; B� � a�1�0;B�: (B8)

The four-current may be written as

 j� � a�1��q;J�; (B9)

where J is the lab three-current and �q is the lab charge
density. For the first-order vector perturbations considered
in this paper,

 �q � 0; J � en�vp � ve�: (B10)

Maxwell’s equations in the lab frame then become [35]

 r �B � 0; (B11)

 r � �a2E� � 0; (B12)

 r� �a2B� � 4�a3J� �a2E	0; (B13)

 r� �a2E� � ��a2B	0: (B14)

Note that these results only hold in a perturbed metric if
we consider the electromagnetic fields to be at the maximal
order of perturbation considered and the fields to vanish in
the background. In our case it makes sense to requireE and
B to be at first order because we are interested in magnetic
field generation with vanishing initial conditions. How-
ever, one has to be very careful if one considers back-
ground electromagnetic fields and higher-order perturba-
tions, since metric perturbations would enter the
expressions in Maxwell’s equations.

Electromagnetic energy-momentum conservation is
given by

 r�T
��
em � �F��j� � �F

�
�

X
I

qInIu
�
I :� �

X
I

K�
em;I :

(B15)

For first-order vector perturbations,

 K�
em;I � qInIE�; (B16)

where we dropped the second-order Lorenz-force term,
vI �B.

The curl of Ampère’s law, Eq. (B13), provides an equa-
tion for the magnetic field with the curl of the current as its
source. Using Eqs. (A7) and (A8), we find at first order,

 �curlj�� �
1

a

�
0;
X
I

qInI�I

�
: (B17)

Then the curl of Eq. (B6) leads to

 ���a2B� � 4�ena4��p � �e�; (B18)

where the d’Alembert operator is defined as ��f� :�
r2f� f00.

The above equation, together with Eqs. (12)–(14) which
are derived from the fluids’ energy-momentum conserva-
tion, describe the generation and evolution of the magnetic
field at first order in perturbation theory. As described in
the main text, if tight coupling of electrons and photons is
assumed, they can be reduced to the following evolution
equation for the magnetic field:

 �
a2B� ‘2

�me=mH � aeq=a

a� aeq

�
��a2B�

�
0

� L2H0

����������
�rad

p
��a2B�

� �
mp

e
a2

i

�
1�

aeq

ai

�
�i

�
a

a� aeq

�
0

: (B19)

The definition of the diffusion scales L, ‘ and a simplified
version of this equation, which applies during the epoch
relevant for the Harrison mechanism where a� aeq, are
given in the main text, Eq. (24).
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